Rastergraphik
&
Rasteralgorithmen

3D Computer Graphik

(Bemerkungen)

Page 1

Bildkonstruktion wie schon immer ...

Fig. 6.9 Albrecht Diirer, illustration showing a *veil hc|ng used to draw a perspective image of a naked woman.
From his Underweysung der Messung mit dem Zirkel lquIRirhl\('/u'\‘l (Nuremberg, 1525), Book 3, Figure 67.

Bilderzeugung ?

Komplexitat des Weltmodells ist von den Anforderungen abhdngig!

Photorealismus Versus Interaktivitét (Komplexitat)

Page 2

Welt- & Bildmodelle : zwei extreme Standpunkte

A: Physikalisches Modellieren von Licht und Materie.

- der traditionelle Ansatz ('Schwerpunkt der Vorlesung)

- nur Ausreichend wenn genigend Modellwissen existiert

B: Neu Bilder aus Bildvorlagen: ,Image Based Rendering IBR"

- in Diskussion seit Anfang der 90er

- meist eingeschréankte Interaktion

Der richtige Weg??

Vermutlich in der Mitte:

? Bilder mit 3D Geometrie

? Erlernen von Bildmodellen

Anforderungen & Methoden der Bilderzeugung

Polygonale Objekte

)

Interaktion: + Textur
- Wahl des Blickwinkels ++++ ++++

- Wahl der Beleuchtung ++++ ++

- Manipulation der Objekte T+t —_
Bildqualitat:

- Realismus + ++

- Einfache Herstellung ++ ++

Bildvorlagen
.Image Based Rendering IBR®

++

++++

+++

Page 3

Komponenten des physikalischen Renderns

Lichtquelle
Oberflache
Reflektion
L
// L
sichtbare || (@
]
//

Bildschirm

Ray Casting/Tracing versus Scan Conversion

Frage: Wo beginnen mit der Bildberechnung?

a) Verfolge jeden Sehstrahl durch jeden Pixel (Ray Tracing)
b) Projiziere alle Objekte auf den Bildschirm (Scan Conversion)

Pixel

A AN
s

Page 4

Ray Casting / Tracing

for every pixel, construct a ray from the eye
for every object in the scene
intersect ray with object
find closest intersection with the ray
compute normal at point of intersection
compute color for pixel (shoot secondary rays)

"Inverse-Mapping" approach

Foreach pixel on the screen
go throuah the display list

«

Scan Conversion — Graphics Pipeline

for every object in the scene
shade the vertices
scan convert the object to the framebuffer
interpolate the color computed for each vertex
remember the closest value per pixel

"Forward-Mapping'" approach
to Computer Graphics

Rester Display Display List

=
-

&+
BEE
)

T[]

|+ +[+

N S S
gl r{r)r

++]+[+]+]+

4]+ £leT+

|||t]r

[S

I

S MRS R R AR 525

HEERERREEEEED

++[+]+

++++|++++++++|+

++++|
+[+ a7
et [+
[+ [+ [F]F
T+ Eiesesas

+[+ [+
T
+[+][4
-

- ettt

R e

¥ [t e[[+ <]+

+'I">-+++++++++++

e[l e e[l []]+

Page 5

Rendering pipeline

Transformation in Transformation in Transformation in
Weltkoordinaten, Blickpunktkoordinaten, Bildschirmkoordinaten,
festlegen der definiert durch festgelegt durch die
Objektposition oder Orientierung und Kameraeigenschaften

der Animation Position der Kamera

Model World Eye Screen
Space Space Space Space

Clipping

Rendering:
* Verdeckung,
« Rasterung

« Schattierung

Modellieren der

Objekte, ihrer
Teile und deren
Position

‘Back-face culling
Lichtquellen
und den
Oberflachen-
eigenschafte

Viewport und Window

dargestellter Weltausschnitt

darzustellender Weltausschnitt = Viewport

= Window

Weltkoordinaten

Pixelkoordinaten
des Graphikbereichs auf dem Bildschirm

Page 6

Rastertechnik

Viewport entspricht einem linearem Speicherarray

10234

0 1279

Adressierung als 2D-Array
* Startadresse
— links oben (X11, Java AWT)
— links unten (Open GL)

Rastertechnik

Im Rastergraphiksystem werden die einzelnen graphischen Primitiva
(Dreiecke, Polygone), aus den die Szene zusammengesetzt ist, in
Rasterpunkte (Pixel) zerlegt.

=3y

T

/I
<
[=

FUr jedes Pixel werden dabei zusatzlich Operationen
» zur Verdeckungsrechnung (inclusive Transparenz)
* zum Shading und

+ zur Texturierung

durchgefuhrt.

Page 7

Punkte und Linien

Vorerst besteht ein Punkt aus einem Eintrag im Bildarray
(z.B. 1248x1024). Ein Punkt entspricht einem Pixel und
seine Intensitat ist binar (0/1).

Eine Linie ist eine Abfolge von Punkten.
PROBLEM:
1. Welche Punkte repréasentieren die Linie am besten?

2. Welches ist der schnellste Algorithmus?

Welche Punkte reprdsentieren die Linie ¢

Geradengleichung: y=m#x+Dh

Mit 2 ausgewahlten Punkten P (Xl, yl), P (X21 yz)

folgt m_Yz_Y1
X2 Xl

b=y, —m#*Xx,
Ay = m * AX

Page 8

DDA Algorithmus (digital differential analyzer)

Angenommen die Gerade hat eine
positive Steigung m

mit m<l = Ax=1

Y = Yt M

Durch Runden der berechneten x,y Positionen, wird dann
der zu setzende Pixel ausgewabhit.

falls m>1 = Ay=1

1
Ko = Xy "’E

DDA Algorithmus (Nachteile)

Der Algorithmus vermeidet zwar die Multiplikation wie sie
in der urspringlichen Geradengleichung vorkommt,

aber, Rundungsfehler bei der Berechnung von m
werden akkumuliert.

Floating-point Arithmetik und Rundungsoperation!

Page 9

Der Bresenham Algorithmus

|dee: Eigentlich gibt es doch gar keine groRe Auswahl an
maoglichen Pixeln.

Annahme m<1 und xy sind die Anfangspixel der Geraden!
Entweder ist (x+1,y) oder (x+1,y +1) der nachste Pixel.

Der Bresenham Algorithmus (2)

Liegt die Mitte zwischen den 2 nachsten moglichen Pixeln
unterhalb oder oberhalb der Geraden?

Gerade durch Implizitefunktion darstellen!
F(x,y)=ax+by+c=0
F(x,y)=0 firalle Punkte auf der Geraden

F(x,y)>0 firalle Punkte unter der Geraden
F(x,y) <0 fir alle Punkte Uber der Geraden

A
aus y:&“b > F(x,y)=Ay - x-Ax-y+b-Ax=0

Page 10

Der Bresenham Algorithmus (3)
Wir testen den Mittelpunkt F(x,+1, vy, + %) !

Testvariable E=F(x,+1,y,+ %)

(a) falls E<0 = nachster Punkt (x,+1,Y,)
(b) falls E>0 = nachster Punkt (x,+1,Yy,+1)

E berechnen :

E:Ay-(xo+1)—Ax-(y0+%)+b-Ax

Der Bresenham Algorithmus (4)

Fall (a) ndchster Punkt (x,+1,Y,)

e = FO 2,95+) = Ay (1, +2) =8 (3 +) + 8¢ b

mit Eo|d:AY'(XO+1)_AX'(YO+%)+AX'b

= E oo = Eoig +4Y

new

Page 11

Der Bresenham Algorithmus (5)

Fall (b)) néchster Punkt (x,+1,y,+1)

E... = F(X,+2, yo+§)=Ay-(xo+2)—Ax-(y0+§)+Ax-b

mit E =Ay-(x0+l)—Ax-(yO+%)+Ax-b

= B, = Egy tAY - AX

new

Der Bresenham Algorithmus (6)

start

Testvariable E_ ., =F(x,+1Y, +%) berechnen :

Estart :Ay'(xo+1)_AX'(yo+%)+b'AX

AX
Estart - F(XO' yO) +Ay _7

= Egan =AY — —

start

Die Division in E,,, kann durch eine Multiplikation der
Testvariable mit 2 vermieden werden, somit bendtigt der

Bresenham Algorithmus nur Additionen!

Page 12

Intensitat als Funktion der Steigung

Glatten von gerasterten Stecken

Page 13

Filling
&
Clipping

FUllen von Flachen

0.) Fillen von Dreiecken (Spezial Fall ist die Regel)

1.) Rasterlinien Algorithmen fur allg. Polygone
(Scan-Line Algorithms)

2.) Randfill-Algorithmen
3.) Flutungs-Algorithmen

Page 14

FUllen von allgemeinen Polygonen

IDEE:
1. Rand mit Bresenham-Algorithmus markieren

2. Inneres Auffillen

Probleme: Beim Vertauschen von Innen und Auf3en ??

FUllen von Flachen

Der Brese ithmus ent idet: cher Pixel zur
Begre achsten liegt!

Fur Flachen bendtigen wir ein anderes Kriterium:
Liegt ein Pixel innerhalb,
aul3erhalb,

auf, der Begrenzung?

Page 15

Pixel auf der Begrenzung?

Vereinbarung: Damit bei gemeinsamen Kanten zwischen
zwei benachbarten Flachen keine Problem entstehen, wird
folgendes vereinbart:

Nur die Pixel auf der linken und unteren Begrenzung
werden zur Flache gezeichnet. Dies bedeutet, Punkte auf
der obersten und der ganz rechten Rasterzeile werden nicht

gesetzt.

FUllen von Flachen

0.) Fillen von Dreiecken: Der Spezialfall ist die Regel.
Objektoberflachen werden fast immer mit Dreiecken
approximiert, da hierzu effiziente Algorithmen existieren.

Page 16

Rastern von Dreiecken (-> Ubungen)

* schlau:
Skanline Algorithmus von Kante
zu Kante.

* mit roher Gewalt: \ "»;/
Alle Pixel testen ob innerhalb oder zﬂ—/' N
auRerhalb des Dreiecks. et N

siehe "E.S.K- Graph. Datenverarbeitung” (Kapitel 2.5.3)

Brute force solution

Fur jeden Pixel
» Berechne Geradengleichung aller Kanten

» “clip” gegen das Dreieck

) Problem?

|+ |+ [+
+ |+ |+
‘ &

|+ [+]+

|+ [+]+
|+ |+ [+
|+ [+]+
|t

+ W |+

.
"
+t |+ |+

+++’++
/
++++++‘++

PR I I N O

[+ |+ [+ [+]+]+
+

R AR AR ES
+
+

ES I I I N I I I I
+
+

E3 I I I I A N I I

E I I I I I A B I I I
E IR I I I I R B I I I

A CEAEREA AR EAEREAES

\

+ [+ |+ [+ [+ | T

+ |+ | A
+
+ +
+ 4|+ |+
+ 4|+ |+
+ [+ |+ |+ | + W
+ |+ [+ |+
I I N
P I I N I
+ |+ |+ [+]+

Page 17

Brute force solution

Fur jeden Pixel
» Berechne Geradengleichung aller Kanten
» “clip” gegen das Dreieck

Problem?

|| e+ +|+|+]+|+]]|+ YRR
. . .
Al il Il Tl Tl I Tl IS Il Il Bl Bl Bei kleinen Dreiecken
MR EIEIRA RN AR EAEIEEE \EEE
.
V26 GRS SR RS Ly A5 ESEI RSN AR 4 viele nutzlose
+ |+ e[|+ + e[e[+ +]+] % +
TN A T L [Berechnungen!
.
|+ |||+ +++’++++++++
s+ e[|+ +]+]+]+
[+ |+ el e[e[|+ +]+]+]+]+
T+ - N [o e [[|~
+’+ w ||+ | Q| e[« [« [+ [+][+]+]+]+

Brute force solution

Verbesserung:
Berechnung nur fir die Screen Bounding Box des Dreiecks.

Wie bestimmt man diese?
- Xmin, Xmax, Ymin, Ymax der Vertices des Dreiecks.

AR EREEREE s+]+
PR U [[[ey e e fA IV [[y ey ey
MR EIEIEIRA RN AR EIEIEEE \EEE
/+ + |+ |+ |+ +|+]+ +++++++\++
e Y I P PR IR [[ey ey s
) I)y e e e LT]
++++‘+ ++’++++++++
Il IO e ==+]+~
Y I I PR R R [Uy e ey [
g NEE PR U [U R ey e [oy
1+ g P I A @ O D) D) e

Page 18

Brute force solution

For every triangle

ComputeProjection
Compute bbox, clip bbox to screen limits

For all pixels in bbox
Compute line equations

If all line equations>0 /I pixel [x,y] in triangle

Framebuffer[x,y]=triangleColor

BRI R R R A R R R A R A
+ W R R ER R RN N T A A A A S

o B E BRI
+++\+++++++++++++++
N [[[+ +]+]+]+]+]+]+]+
+ ++++>+ Eo I R A N S B B B B
D U R R A R R
+ AR R R R R R R R A R A
AEIEIEIEIET EREE R N T R A R A I A
Eo I o S I O S I VS S S S I S I (A IS B S
Lo S B S I N S B A o B S B A B A I I
Eo S B S S B S B R S B S I S B R IS B S
e[+ e[|+]|+ + [+ +]+]+]+

Geht es besser?e

Die Geradengleichnug wird fir viele nutzlose Pixel aus
gewertet!

Was konnte man tun?

+
B
R
5
5
5
5
s
s
o

»

N
+

R B B A A A IS + |+ |+ ||+ |+
HEEEERRERERY < T 9EErEE
R N B B B + |+ |+ +++‘\++/
Lo R B B B B B L R I B + | 4 +
+ |+ |+ |+ |+]|+ + + |+ |+ |+ |+]|+ + |+ |+

v v | ™ - | - N | -
+ |+ |+ |+]|+]+ + |+ |+ |+ |+ |+ |+]|+ +
N IR N B + Eo B B I I B N R

+

+
o
o
o
o
o
N
N
N

Page 19

Scan-line Rasterung

Bestimme alle aktiven Randpixel

Scan-line Rasterung

Bestimme alle aktiven Randpixel

Fulle alle Rasterlinien

Page 20

Scan line Rasterung

Benotigt einiges an Fallunterscheidungen!

sl e+ e+ e s+ +]+ |+] +]+
e e e+ e+]+ ||+ +]+]+
wl+ |+ e]| s+] +|+]+ |+ |+ s+
wl e+ e |+]+ o S S I
e+ e+] +]+ E—— w4+]+
e+ e]+]+ |+]+
w| e+ e]+]+ |+ e+
e+ 4]+ i T R i [e
|+ |+ |+ + v+ H e+]+
w4+ |+ s+ |+ s+ +|+]+]+
BRI R R R
v+ |+ e+ w]+| e+]+ e+]+ +]+
sl e v e w |+ e[e e[+ e +]]+

Rastern von Dreiecken

* Scan-Line ist nur schlau

bei grofRen Dreiecken

* mit roher Gewalt ist schlau aDoRonE && :

bei kleinen Dreiecken. 11,:1::;,’:;§;: o

Page 21

Interpolation Uber Dreiecke

Parametrisierung eines Dreiecks

p=a+ p(b-a)+y(c-a)
Pt
p=Q-p-y)a+pb+yc

=
p(a,f,y)=aa+ pb+yC mit a+pf+y=1

Baryzentrische Koordinaten

Baryzentrische Koordinaten

© liegtinnerhalb des Dreiecks falls gilt:

O<a<l
O< p<l1
O<y<l

Page 22

Baryzentrische Koordinaten

Berechnen:

p=a+ p(b-a)+ y(c-a)

|:Xb—Xa Xc—Xa:|{ﬂi|_|:XP—Xa:|
Yo—Ya Ye—YVYa]|l}y yp—Ya

~ (ya—yn)Xp +(Xb— Xa) YP + Xayb — XvYa

7/(XP, yP) N (ya— yb) xc+(xb—xa)yc+ XaYyb — XbYa
B(xe, ye =(ya—yc)XP+(Xc—Xa)yP+Xayc—cha

) (ya—yc)Xb+(Xc—Xa)yb+Xayc—cha
a =1-p-y

Baryzentrische Koordinaten (equivalent)

Lose:
aa+pb+yc=p
at+fB+y=1

ay by cx| [& Px
=> la, by, ¢ Bl = |py
1 1 1] 1

Mit Cramerschen Regel 1l&sen!
In der Praxis ergibt sich ein stabileres Ergebnis.

Page 23

Baryzentrische Koordinaten

I
> > >
O T Q

~ -
> > >

Die Fldche eines Dreiecks

Eine “kurze” Formel,

Flache (ABC) = [(by-a,)(c,-a,) — (c-a,)(by-a,) 1/2

Wie kommt sie zustande?

1 a, bx Cy
Flache(ABC) = ? a, b, ¢
1 1 1
{ bX CX CX aX X bX J/Z
= + +
by y y ay y by
= (b,c, —c,b, +c,a,—a,c, +a,b, —ab,)/2

Die kUrzere ist viel effizienter, weniger Multiplikationen!

Page 24

Geometrische Erklarung

Flache(ABC) = [(bs-a,)(cy-a) — (c-a)(b,-a))]/ 2
= ist die Summe von zwei Rechtecken geteilt durch 2.
(bx'ax)(cy'ay) (Cx'ax)(ay'by)

-l
B

Es funktioniert!

?
2 =

Flache = Hohe*Breite/2

Baryzentrische Koordinaten 3D

Z"c p=(0-B-7y)a+Bb+yc

a=A,/A
B=A,/A
® Y =A/A
A = (b-d)x(c-4) Flache = ¥ ”(5_§)x(§_§)”
mit ﬁa:(é—ﬁ)x(p—b)
ﬁb:(a—é)x(p—c)
fie= (b —a)x (P —a)

_N-Na n-nNo n

_ Nc

—_ —™ }/ .
Il Il Il

Testen ob N, und N parallel sind: ~ N-Na = ||n||‘||na||005(a)

Page 25

Interpolation Uber Dreiecke

Bilineare Interpolation tber ein Dreieck (Py, P, P,)

Interpolation der Position

P(B,y)=0Q-L—-y)Po+ pP1+ yP2
mit P(0,0)=Po, P(1,0)=P1und P(0,1) =P

Interpolation der Farben (fy, f;, f,):

f(B,y)=0Q- L —y)fo+ pfi+ yf

oder der Textur, der Normalen (!l) und, und

Scan-Line Polygon Fill Algorithm

Fur jede Rasterzeile:
1.) Bestimme alle Schnittpunkte mit dem Polygonzug.

2.) Sortiere die Schnittpunkte nach aufsteigendem x-Wert.

3.) Fulle die Segmente zwischen den entsprechenden Paaren.

Page 26

Scan-Line Polygon Fill Algorithm (2)

//\ /
7/ \w‘(/ y’
» /1 y
/
Rasterzeile y’ hat 4 Schnittpunkte (X,, Xq, X3, X5) ------- >

2 innere Strecken (X, X;), (X4, X5) .

Rasterzeile y hat 5 Schnittpunkte (X, X3, X1, X5, X3) --->
auch 2 innere Strecken ? (Xg, X1), (X5, X3) -

Scan-Line Polygon Fill Algorithm (3)

Erstellen einer Randliste (active-edge table AET): (1)

a) eliminiere ungultige Schnittpunkte.
b) ordne einzelne Stecken zu Polygonzug

c) fur alle monoton steigende und fallende Kantenpaare,
verkirze die untere Kante.

LU o

Y o y-1
YR

Page 27

Scan-Line Polygon Fill Algorithm (4)

Erstellen einer Randliste (AET): (2)

b) Berechnung der Schnittstellen entlang einer Kante.

m= Jea =y und Y, -y, =1
X1 = X
1
O TR m

Scan-Line Polygon Fill Algorithm (5)

Effiziente Berechnung der Schnittstellen entlang einer Kante.

Fur die k-te Schnittstelle zwischen Rasterline und Kante

berechnet sich
Xaktuell * Yaktuell

= Yawen =K+ Yo
= Xaktuell = XO +—

Da die x -Koordinate der Schnittstelle immer ganzzahlig sein
muss, kann die reelwertige Quotientenbildung k/m vermieden
werden. e >

Page 28

Scan-Line Polygon Fill Algorithm (6)

Es ist nur interessant wenn der gebrochenrationale Anteil von
1/m zum Uberlauf fiihrt.

1 M wird nicht berechent!
m Ay
Fur jede Rasterzeile
wird Ax akkumuliertzu Xaccu += AX
und mit Ay verglichen.
Bei Xaccu > Ay

setzte Xneu= Xat+1 und Xaccu - = Ay

Scan-Line Polygon Fill Algorithm (7)

Erstellen einer Randliste (AET):

2.) Erstelle Kantenliste, sortiert nach aufsteigendem y-Wert

Raster-
linie

Ye

[Ya] Xc [1/meg \|

Yol Xp[Umpe | o= [yel Xp [Umpe NN]

Ye Yo
C\/E\ / '
Yb .

Ya

= Yd Xa[1/mye | d— [yg| Xa[1/mug [\]

A

X

LDl Lol [T T [of |

ymax min

Page 29

Scan-Line Polygon Fill Algorithm (8)

Erstellen der Randliste (AET) aus der Kantenliste.

FUr eine aktuelle Rasterlinie sind alle
Kanten relevant deren Maximalwert
grofRer gleich der aktuellen Linie ist.

Raster-
linie

Ye

Paarweise zusammengefasst
= Yol Xp[21/impe | o[yel Xp [1/mpe N]

Yo

beschreiben sie

Ya | Vel Xa [1/Mag [& [Yg] Xa[T/mag N\ jeweils Anfand und End

LUl Pl TELLTTTT

des Fullbereichs des Polygons.

Scan-Line Polygon Fill Algorithm (9)

Alternative Vorgehensweise:

Zerlege das gesamte Polygon in Dreiecke und flille die
einzelnen Dreiecke.

Vorteil: Scan-Line Algorithmen flr Dreiecke sind extrem
einfach.

Nachteil: Die Zerlegung konkaver Polygone in Dreiecke ist
sehr aufwandig.

Zerlegung in Dreiecke ist jedoch

A bei vielen Anwendungen gegeben.

Page 30

RandfUll Algorithmen

Bei nicht parametrisierbaren Randern kann die
Randbestimmung fiir eine Scan-Line Algorithmus sehr
aufwandig sein!

--> Auffillen der Flache von innen: Starte bei beliebigem
inneren Punkt und fulle die Flache von innen nach aul3en!

eeo0 o0 Wie viele Nachbarpunkte eee e e
@] . () ()
® e sind zu beachten? ° ®
00O N W) 000 e e
@] [NONGHRON N)
@ (@) @ [NONGRON]
0000 o0 00O

Rekursiver Randfull Algorithmus (4,8 Punkte)

void boundaryfill4 (int x, int 'y, int fill, int boundary)
{

int current;

current = getpixel(x,y);

if ((current!=boundary) && (current !=fill)) {
setColor (fill);
setPixel (x,y);
boundaryfill4 (x+1, vy, fill, boundary);
boundaryfill4 (x -1, v, fill, boundary);
boundaryfill4 (x, y+1, fill, boundary);
boundaryfill4 (x, y -1, fill, boundary);

Page 31

Rekursive Randfull Algorithmen

Nachteil: Enorme Buchhaltungskosten!
----> Durch Kombination mit Rasterlinien Algorithmen lassen
sich die Buchhaltungskosten auf die Anfangspunkte

neuer Rasterlinien beschranken.

C N 00 C) L]
] 000 O® O 00000000 70O
@® 5 (] @0 00000000 e
@330 0000000 Ee NONONCRONCRONCRONON
Q 4 00 Q0C0e @ 4 (N NONON NN)
(] @ @e00e (] @ @O0O0e
(] o001l 0o (] o001l @o
(] (] (] (]
000000000 OOCO 0000000000 OQ

Flutungs Algorithmen

Flachen die nicht durch den Rand definiert sind, kbnnen mit
Flutungsalgorithmen verandert werden.

Flutungsalgorithmen sind den Randfullalgorithmen ahnlich.

void floodFill4 (int x, inty, int fillColor, int oldColor)
{
if (getPixel (x,y) == oldColor) {
setColor (fillColor);
setPixel (x,y);
floodFill4 (x+1, v, fill, boundary);
floodFilll4 (x -1, v, fill, boundary);
floodFill4 (x, y+1,fill, boundary);
floodFill4 (x, vy -1, fill, boundary);

Page 32

Clipping

Clipping

Wraparound

Uberlauf des Bildspeichers ergibt meist Stérungen des
eigentlichen Bildes.

Page 33

Clipping

Eine einfache Losung:

Zeichne das Bild durch isolierte Punkte an P(X,Y)

wenn

Xmin < X < Xwmax und YMmin Y < Ywmax

Der Vergleich aller moglichen Bildpunktkoordinaten (X,Y) mit den
Fensterkoordinaten Xmin, Xmax, Ymin,Ymax ist nicht effizient.

(Es kann sehr aufwendig sein Bildpunktkoordinaten zu berechnen!!!)

Clipping von Linien

/

Man beachte: Das Fenster unterteilt jede Strecke in nur

einen einzigen sichtbaren Abschnitt.

Page 34

Cohen-Sutherland-Clipping (1)

Outcode Ansatz: Xmin Xmax

Ymin

Ymax

X<Xnn :Bitl=1 fur X
X>Xpax 'Bit2=1 fur X,ux- X <0
Y<Yn,, :Bit3=1 fur Y
Y>Ynax :Bitd=1 fur VY,x-Y <O

Cohen-Sutherland-Clipping (2)
1001 1000 1010
0001 0000 0010
1. Stufe 0101 0100 0110

Ein Vector liegt vollig:

innerhalb des Fensters, wenn der Code fiir alle Endpunkte 0000 ist.

» auBerhalb des Fensters, wenn der Durchschnitt (logisches UND)
beider Endpunktkodierungen ungleich Null ist.

Falls beides nicht zutrifft, geht der Algorithmus in die 2.Stufe . ->

Page 35

Cohen-Sutherland-Clipping (3)
A: 0001 /5.//‘ ®

B: 1000 A'//

A&B: 0000

---> Berechne Schnittpunkte mit Fenstergrenzen
flr Xmin ergibt sich Schnittpunt C
Teste Strecke AC und CB
---> Qutcode ist fur beide Strecken != 0000

====> Beide Stecken liegen entweder ganz oberhalb oder ganz neben
dem Fenster ----- clippen!

Clipping von Polygonen

Ansatz:

Clipping von Vektoren

ist nicht ausreichend !!!!

Um das Polygon zu flllen

ist ein geschlossener Polygonzug natig!

Page 36

Sutherland-Hodgeman Polygon Clipping

1.) Die gesamte Polygonbegrenzung wird jeweils an den Grenzen
Xmin! xmax’ Ymin'Ymax’ ‘geC“pped’-

2.) Es werden alle Fensterbegrenzungen nacheinander abgearbeitet.

Wie werden neu Punkte zur Polygonbegrenzung eingeflgt?
Es gibt 4 Regeln! —====>

Sutherland-Hodgeman Polygon Clipping (2)

Fur jeden Vektor von A -> B
wird entschieden ob man die
Grenze des erlaubten

Bereichs Uberschreitet.

Fuar A->B

aul3en --> innen : speichere S,z B
innen -->aullen: Sag
innen -->innen : B
auen -->aullen: -

Page 37

