
Page 1

Rastergraphik

&

Rasteralgorithmen 

3D Computer Graphik

(Bemerkungen)



Page 2

Bildkonstruktion wie schon immer ...

Computergraphik

Bilderzeugung ? 

Computergraphik

Welt & Bildmodell

Komplexität des Weltmodells ist von den Anforderungen  abhängig!

versus              Interaktivität (Komplexität)Photorealismus



Page 3

Welt- & Bildmodelle : zwei extreme Standpunkte

A: Physikalisches Modellieren von Licht  und Materie.

- der traditionelle Ansatz

- nur Ausreichend wenn genügend Modellwissen existiert 

B: Neu Bilder aus Bildvorlagen: „Image Based Rendering IBR“

- in Diskussion seit Anfang der 90er 

- meist eingeschränkte Interaktion

( Schwerpunkt der Vorlesung )

Der richtige Weg?? 

Vermutlich in der Mitte: 

?  Bilder mit 3D Geometrie

?  Erlernen von Bildmodellen

Anforderungen & Methoden der Bilderzeugung

Interaktion:

- Wahl des Blickwinkels

- Wahl der  Beleuchtung

- Manipulation der Objekte

Bildvorlagen  

„Image Based Rendering  IBR“

Polygonale Objekte

+ Textur

__ 

++++

++++

++++

++++

++

++

__ 

__ 

Bildqualität:

- Realismus + ++ ++++

- Einfache Herstellung ++ ++ +++



Page 4

Komponenten des physikalischen Renderns

Bildschirm

Pixel

sichtbar?

Lichtquelle

Oberfläche 

Reflektion

Ray Casting/Tracing versus Scan Conversion

Pixel

Frage:  Wo beginnen mit der Bildberechnung?

a) Verfolge jeden Sehstrahl durch jeden Pixel (Ray Tracing)

b) Projiziere alle Objekte auf den Bildschirm (Scan Conversion)



Page 5

Ray Casting / Tracing

for every pixel, construct a ray from the eye 

for every object in the scene

intersect ray with object

find closest intersection with the ray 

compute normal at point of intersection

compute color for pixel (shoot secondary rays)

Scan Conversion – Graphics Pipeline

for every object in the scene

shade the vertices 

scan convert the object to the framebuffer

interpolate the color computed for each vertex

remember the closest value per pixel



Page 6

Rendering pipeline

Model 

Space

Modellieren der 

Objekte, ihrer 

Teile und deren 

Position

`Back-face culling´Definition der 

Lichtquellen 

und den 

Oberflächen-

eigenschaften 

Clipping 

Rendering:  

• Verdeckung,

• Rasterung

• Schattierung

Screen 

Space

Transformation in 

Bildschirmkoordinaten, 

festgelegt durch die 

Kameraeigenschaften

Eye 

Space

Transformation in 

Blickpunktkoordinaten, 

definiert durch 

Orientierung und 

Position der Kamera 

World 

Space

Transformation in 

Weltkoordinaten, 

festlegen der 

Objektposition oder 

der Animation 

Viewport und Window

Weltkoordinaten

darzustellender  Weltausschnitt 
= Window

Pixelkoordinaten 

des Graphikbereichs auf dem Bildschirm

dargestellter Weltausschnitt 

= Viewport



Page 7

Viewport entspricht einem linearem Speicherarray

Adressierung als 2D-Array

• Startadresse

– links oben (X11, Java AWT)

– links unten (Open GL)

Rastertechnik

Im Rastergraphiksystem werden die einzelnen graphischen Primitiva 

(Dreiecke, Polygone), aus den die Szene zusammengesetzt ist, in 

Rasterpunkte (Pixel) zerlegt. 

Für jedes Pixel werden dabei zusätzlich Operationen 

• zur Verdeckungsrechnung (inclusive Transparenz) 

• zum Shading und 

• zur Texturierung 

durchgeführt. 

Rastertechnik

© R.Klein



Page 8

Punkte und Linien

Vorerst besteht ein Punkt aus einem Eintrag im Bildarray 

(z.B. 1248x1024).  Ein Punkt entspricht einem Pixel und 

seine Intensität ist binär (0/1).

Eine Linie ist eine Abfolge von Punkten.

PROBLEM:

1. Welche Punkte repräsentieren die Linie am besten?

2. Welches ist der schnellste Algorithmus?

Welche Punkte repräsentieren die Linie ?

Mit 2 ausgewählten Punkten 1 1 2 2( , ) , ( , )P x y P x y

2 1

2 1

1 1

y y
m

x x

b y m x

y m x






  

  

folgt

y m x b  Geradengleichung:



Page 9

DDA Algorithmus  (digital differential analyzer)

Angenommen die Gerade hat eine 

positive Steigung m

1

mit  1       1

k k

m x

y y m

   

 

Durch Runden der berechneten x,y Positionen, wird dann 

der zu setzende Pixel ausgewählt.

1

falls   1      1

1
k k

m y

x x
m



   

 

DDA Algorithmus  (Nachteile)

Der Algorithmus vermeidet zwar die Multiplikation wie sie 

in der ursprünglichen Geradengleichung vorkommt,

aber, Rundungsfehler bei der Berechnung von  m

werden akkumuliert. 

Floating-point Arithmetik und Rundungsoperation!



Page 10

Der Bresenham Algorithmus

Idee: Eigentlich gibt es doch gar keine große Auswahl an 

möglichen Pixeln.

Annahme m<1 und x,y  sind die Anfangspixel der Geraden! 

Entweder ist  (x+1,y) oder (x+1,y +1) der nächste Pixel.

Der Bresenham Algorithmus (2)

Liegt die Mitte zwischen den 2 nächsten möglichen Pixeln 

unterhalb oder oberhalb der Geraden?

( , ) 0F x y ax by c   

( , ) 0  für alle Punkte auf der Geraden

( , ) 0  für alle Punkte unter der Geraden

( , ) 0  für alle Punkte über der Geraden

F x y

F x y

F x y







( , ) 0F x y y x x y b x          
y

aus   y
x

x b


 


Gerade durch Implizitefunktion darstellen!



Page 11

Der Bresenham Algorithmus (3)

0 0

      berechnen :

1
( 1) ( )

2

E

E y x x y b x          

0 0

0 0

0 0

1
Testvariable      ( 1, )

2

  (a)     falls   0    nächster Punkt    ( 1, )

  (b)     falls   0    nächster Punkt    ( 1, 1)

E F x y

E x y

E x y

  

  

   

0 0

1
W ir testen  den M itte lpunkt    ( 1, )   !

2
F x y 

Der Bresenham Algorithmus (4)

     n e w o l dE E y   

0 0 0 0

0 0

1 1
( 2, ) ( 2) ( )

2 2

1
mit                          ( 1) ( )   

2

new

old

E F x y y x x y x b

E y x x y x b

             

          

0 0F a l l  ( a )       n ä c h s t e r  P u n k t     ( 1 , )x y



Page 12

Der Bresenham Algorithmus (5)

0 0

0 0 0 0

0 0

Fall (b)      nächster Punkt    ( 1, 1)

3 3
( 2, ) ( 2) ( )

2 2

1
mit                           ( 1) ( )   

2

new

old

x y

E F x y y x x y x b

E y x x y x b

 

             

          

     n e w o l dE E y x     

Der Bresenham Algorithmus (6)

0 0

0 0

1
Testvariable      ( 1, )   berechnen :

2

1
( 1) ( )

2

start

start

E F x y

E y x x y b x

  

          

Die Division in          kann durch eine Multiplikation der 

Testvariable mit 2 vermieden werden, somit benötigt der 

Bresenham Algorithmus nur Additionen! 

s tar tE

0 0( , ) 
2

start

x
E F x y y


   

2
start

x
E y


   



Page 13

Intensität als Funktion der Steigung

Glätten von gerasterten Stecken



Page 14

Filling

&

Clipping 

Füllen von Flächen

0.) Füllen von Dreiecken (Spezial Fall ist die Regel)

1.) Rasterlinien Algorithmen für allg. Polygone 

(Scan-Line Algorithms )

2.) Randfüll-Algorithmen

3.) Flutungs-Algorithmen



Page 15

Füllen von allgemeinen Polygonen

IDEE:

1. Rand mit Bresenham-Algorithmus markieren

2. Inneres Auffüllen

Probleme: Beim Vertauschen von Innen und Außen ??

Füllen von Flächen

Der Bresenham-Algorithmus entscheidet, welcher Pixel zur 

Begrenzung am nächsten liegt!

Für Flächen benötigen wir ein anderes Kriterium:

Liegt ein Pixel   innerhalb,

außerhalb,

auf,                 der Begrenzung?



Page 16

Pixel auf der Begrenzung?

Vereinbarung: Damit bei gemeinsamen Kanten zwischen 

zwei benachbarten Flächen keine Problem entstehen, wird 

folgendes vereinbart:

Nur die Pixel auf der linken und unteren Begrenzung 

werden zur Fläche gezeichnet. Dies bedeutet, Punkte auf

der obersten und der ganz rechten Rasterzeile werden nicht 

gesetzt.

Füllen von Flächen

0.) Füllen von Dreiecken: Der Spezialfall ist die Regel.

Objektoberflächen werden fast immer mit Dreiecken 

approximiert, da hierzu effiziente Algorithmen existieren.



Page 17

Rastern von Dreiecken  ( -> Übungen)

• schlau:    

Skanline Algorithmus von Kante 

zu Kante.

• mit roher Gewalt:  

Alle Pixel testen ob innerhalb oder 

außerhalb des Dreiecks.

siehe "E.S.K- Graph. Datenverarbeitung" (Kapitel 2.5.3)

Brute force solution

Für jeden Pixel

• Berechne Geradengleichung aller Kanten

• “clip” gegen das Dreieck

Problem?



Page 18

Brute force solution

Für jeden Pixel

• Berechne Geradengleichung aller Kanten

• “clip” gegen das Dreieck

Bei kleinen Dreiecken
viele nutzlose 
Berechnungen!

Problem?

Brute force solution

Verbesserung: 

Berechnung nur für die Screen Bounding Box des Dreiecks.

Wie bestimmt man diese?
- Xmin, Xmax, Ymin, Ymax der Vertices des Dreiecks.



Page 19

Brute force solution

For every triangle

ComputeProjection

Compute bbox, clip bbox to screen limits

For all pixels in bbox

Compute line equations

If all line equations>0            // pixel [x,y] in triangle

Framebuffer[x,y]=triangleColor

Geht es besser? 

Die Geradengleichnug wird für viele nutzlose Pixel aus 

gewertet!

Was könnte man tun?



Page 20

Scan-line Rasterung

Bestimme alle aktiven Randpixel 

ESK

Scan-line Rasterung

Bestimme alle aktiven Randpixel

Fülle alle Rasterlinien



Page 21

Scan line Rasterung

Benötigt einiges an Fallunterscheidungen!

Rastern von Dreiecken

• Scan-Line ist nur schlau 

bei großen Dreiecken

• mit roher Gewalt ist schlau 

bei kleinen Dreiecken.



Page 22

Interpolation über Dreiecke

Parametrisierung eines Dreiecks

   

   p( a b      mit   c        



         

p (1 )a b c   



    

Baryzentrische Koordinaten

p a (b-a) (c-a)   

p

Baryzentrische Koordinaten

p liegt innerhalb des Dreiecks falls gilt:

0

0

0







 

 

 
p



Page 23

Baryzentrische Koordinaten

Berechnen:

b a c a a

b a c Pa a

Px x x x x

y y y y y

x

y





       
     

       

a (b-a c a)p ) ( -   

   
   

( ),
a b b a a b b a

a b c b

P P

a c a b b a

P P

y y x x x y x y

y y x x x y x y x

x y

y
x y

    


    

   
   

(

     

,

 

)

      1

a c c a a c c a

a c b c a b

P

P

a

P

c

P

a c

y y x x x y x y

y y x x x y x y x
x y

y

x y


  

    


    

  

p

Baryzentrische Koordinaten (equivalent)

Löse:

α𝑎 + β𝑏 + γ𝑐 = 𝑝

α + β + γ = 1 p

=>     

𝑎𝑥 𝑏𝑥 𝑐𝑥
𝑎𝑦 𝑏𝑦 𝑐𝑦
1 1 1

α
β
γ

=

𝑝𝑥
𝑝𝑦
1

Mit Cramerschen Regel lösen! 

In der Praxis ergibt sich ein stabileres Ergebnis.



Page 24

Baryzentrische Koordinaten

Die Baryzentrische Koordinaten eines Punktes 
beschreiben Flächenverhältnisse :

Der Fläche der beiden 
Dreiecke ist Konstant

α = Aa / A
β = Ab / A
γ = Ac / A

Die Fläche eines Dreiecks

Eine “kurze” Formel,

Fläche (ABC) = [ (bx-ax)(cy-ay) – (cx-ax)(by-ay) ] / 2

Wie kommt sie zustande?

2/)(

2/

111

)(
2
1

xyyxyxyxyxyx

yy

xx

yy

xx

yy

xx

yyy

xxx

babacaacbccb

ba

ba

ac

ac

cb

cb

cba

cba

ABCFläche




















ax bx cx

cy

ay

by

Die kürzere ist viel effizienter, weniger Multiplikationen!



Page 25

Geometrische Erklärung

Fläche(ABC)  =  [ (bx-ax)(cy-ay) – (cx-ax)(by-ay) ] / 2

=  ist die Summe von zwei Rechtecken geteilt durch 2.

Es funktioniert!

cy

/2 =

ax bx cx

by

ay =
!

=
!

Fläche = Höhe*Breite/2

[ ]+ /2 = /2 =
?

(bx-ax)(cy-ay) (cx-ax)(ay-by)

ax bx cx

cy

by

ay

Baryzentrische Koordinaten 3D

n     (b-a) (c-a) 

p (1 )a b c       

1
2Fläche  (b-a) (c-a) 

a

b

c

        n ( ) ( )

             n ( ) ( )

             n ( ) ( )

mit c b b

a c c

b a a

p

p

p

   

   

   

2

an n

n





Testen ob na und n parallel sind:  cos( )a an n n n  

α = Aa / A

β = Ab / A

γ = Ac / A

2 2
         

b cn n n n

n n
 

 
 



Page 26

Interpolation über Dreiecke

Bilineare Interpolation über ein Dreieck ( P0, P1 , P2 )

0 1 2P( , (1 )P P P          

0, 1 2undmit   P(0,0 P    P(1,0 P    P(0,1 P     

oder der Textur, der Normalen (!!) und, und ........

0 1 2f( , (1 )f f f          

Interpolation der Farben ( f0, f1 , f2 ):

Interpolation der Position

Scan-Line Polygon Fill Algorithm

Für jede Rasterzeile:

1.) Bestimme alle Schnittpunkte mit dem Polygonzug.

2.) Sortiere die Schnittpunkte nach aufsteigendem x-Wert.

3.) Fülle die Segmente zwischen den entsprechenden Paaren.



Page 27

Scan-Line Polygon Fill Algorithm (2)

y’

Rasterzeile  y’ hat 4 Schnittpunkte  (x0, x1, x1, x2) ------->     

2 innere Strecken (x0, x1), ( x1, x2) .

y

Rasterzeile  y   hat 5 Schnittpunkte  (x0, x1, x1, x2, x3)  --->  

auch 2 innere Strecken ? (x0, x1), (x2, x3) .

Scan-Line Polygon Fill Algorithm (3)

a)  eliminiere ungültige Schnittpunkte.

b)  ordne einzelne Stecken zu Polygonzug

c)  für alle monoton steigende und fallende  Kantenpaare,

y+1

y

y-1

verkürze die untere Kante.

Erstellen einer Randliste (active-edge table  AET): (1)



Page 28

Scan-Line Polygon Fill Algorithm (4)

Erstellen einer Randliste (AET ): (2)

b) Berechnung der Schnittstellen entlang einer Kante. 

1
1

1

1

     und     1

1

k k
k k

k k

k k

y y
m y y

x x

x x
m









  



  

Scan-Line Polygon Fill Algorithm (5)

Effiziente Berechnung der Schnittstellen entlang einer Kante.

Für die k-te Schnittstelle zwischen Rasterline und Kante 

berechnet sich 

0

0

,

 

aktuell aktuell

aktuell

aktuell

x y

y k y

k
x x

m

  

  

Da die  x -Koordinate der Schnittstelle immer ganzzahlig sein 

muss, kann die reelwertige Quotientenbildung k/m vermieden 

werden.                                                                        -------->



Page 29

Scan-Line Polygon Fill Algorithm (6)

Es ist nur interessant wenn der gebrochenrationale Anteil von 

1/m zum Überlauf führt.

1
   w ird  nicht berechent!

x

m y





   

 

Für jede Rasterzeile

wird    akkumuliert zu     x   

und mit  verglichen.

        Bei  

        setzte    1     und     x   -   y 

accu

accu

neu alt accu

x x

y

x y

x x

   



 

   

Scan-Line Polygon Fill Algorithm (7)

Erstellen einer Randliste ( AET ):

2.) Erstelle Kantenliste, sortiert nach aufsteigendem y-Wert 
Raster-

linie

yc

.

.

.

.

.

yD

.

.

yA

1

0

yC’   xD 1/mDC yE   xD 1/mDE

yE xA 1/mAE yB   xA 1/mAB

A

B

E

D

C

C’

yB   xC 1/mCB

yc

ymax  x min

yD

yA



Page 30

Scan-Line Polygon Fill Algorithm (8)

Erstellen der Randliste (AET) aus der Kantenliste.

Für eine aktuelle Rasterlinie sind alle 

Kanten relevant deren Maximalwert 

größer gleich der aktuellen Linie ist.

Paarweise zusammengefasst

beschreiben sie

jeweils Anfand und End

des Füllbereichs  des Polygons. 

Raster-

linie 

yc

.

.

.

.

.

yD

.

.

yA

1

0

yC’   xD 1/mDC yE   xD 1/mDE

yE   xA 1/mAE yB   xA 1/mAB

Scan-Line Polygon Fill Algorithm (9)

Alternative Vorgehensweise:

Zerlege das gesamte Polygon in Dreiecke und fülle die 

einzelnen Dreiecke.

Vorteil: Scan-Line Algorithmen für Dreiecke sind extrem 

einfach.

Nachteil: Die Zerlegung konkaver Polygone in Dreiecke ist 

sehr aufwändig.

Zerlegung in Dreiecke ist jedoch 

bei vielen Anwendungen gegeben.



Page 31

Randfüll Algorithmen

Bei nicht parametrisierbaren Rändern kann die 

Randbestimmung für eine Scan-Line Algorithmus sehr 

aufwändig sein!

--> Auffüllen der Fläche von innen: Starte bei beliebigem 

inneren Punkt und fülle die Fläche von innen nach außen!

Wie viele Nachbarpunkte 

sind zu beachten?

Rekursiver Randfüll Algorithmus  ( 4, 8  Punkte  )

void boundaryfill4 ( int x, int y, int fill, int boundary)
{

int current;

current  = getpixel( x, y );
if  ( ( current != boundary ) && (current != fill ) ) {

setColor ( fill );
setPixel  (  x, y );
boundaryfill4 ( x+1,    y, fill, boundary); 
boundaryfill4 ( x -1,    y, fill, boundary);
boundaryfill4 ( x ,   y+1, fill, boundary);
boundaryfill4 ( x ,   y -1, fill, boundary);

}
}



Page 32

Rekursive Randfüll Algorithmen

Nachteil: Enorme Buchhaltungskosten!

----> Durch Kombination mit Rasterlinien Algorithmen lassen 

sich die Buchhaltungskosten auf die Anfangspunkte 

neuer Rasterlinien beschränken.

1

4

5
3

2

1

4

7

Flutungs Algorithmen

Flächen die nicht durch den Rand definiert sind, können mit 

Flutungsalgorithmen verändert werden.   

Flutungsalgorithmen sind den Randfüllalgorithmen ähnlich.

void floodFill4 ( int x, int y, int fillColor, int oldColor)

{

if  ( getPixel (x,y) == oldColor) {

setColor ( fillColor);

setPixel  (  x, y );

floodFill4  ( x+1,    y, fill, boundary); 

floodFilll4 ( x -1,    y, fill, boundary);

floodFill4  ( x ,   y+1, fill, boundary);

floodFill4  ( x ,   y -1, fill, boundary);

}

}



Page 33

Clipping

Clipping

Wraparound

Überlauf des Bildspeichers ergibt meist Störungen des 

eigentlichen Bildes.



Page 34

Clipping

Der Vergleich aller möglichen Bildpunktkoordinaten (X,Y) mit den 

Fensterkoordinaten Xmin, Xmax, Ymin,Ymax ist nicht effizient.

(Es kann sehr aufwendig sein Bildpunktkoordinaten zu berechnen!!!)

Eine einfache Lösung:

Zeichne das Bild durch isolierte Punkte an P( X,Y)

wenn    

      und    M a xM inM a xM in YYYXXX 

Clipping von Linien

Man beachte: Das Fenster unterteilt jede Strecke in nur 

einen einzigen sichtbaren Abschnitt.



Page 35

Cohen-Sutherland-Clipping (1)

Xmin                  Xmax

1001                1000                 1010

0001                0000                 0010

0101                0100                 0110

Ymin

Ymax

Outcode Ansatz:

X < Xmin : Bit 1 = 1 für X  - Xmin < 0

X > Xmax : Bit 2 = 1 für Xmax - X     < 0

Y < Ymin : Bit 3 = 1 für Y  - Ymin < 0

Y > Ymax : Bit 4 = 1 für Ymax - Y     < 0

Cohen-Sutherland-Clipping (2)

1001                1000                 1010

0001                0000                 0010

0101                0100                 0110

• innerhalb des Fensters, wenn der Code für alle Endpunkte 0000 ist.

• außerhalb des Fensters, wenn der Durchschnitt (logisches UND) 

beider Endpunktkodierungen ungleich Null ist. 

1. Stufe

Ein Vector liegt völlig:

Falls beides nicht zutrifft, geht der Algorithmus in die 2.Stufe .  -> 



Page 36

Cohen-Sutherland-Clipping (3)

A: 0001

B: 1000

A & B :  0000

A

BC

---> Berechne Schnittpunkte mit Fenstergrenzen 

für Xmin ergibt sich Schnittpunt C   

Teste Strecke AC und CB

---> Outcode ist für beide Strecken != 0000

====> Beide Stecken liegen entweder ganz oberhalb oder ganz neben 

dem Fenster  ----- clippen!

A

Clipping von Polygonen

Ansatz:

Clipping von Vektoren

ist nicht ausreichend !!!!

Um das Polygon zu füllen

ist ein geschlossener Polygonzug nötig! 



Page 37

Sutherland-Hodgeman Polygon Clipping 

1.)  Die gesamte Polygonbegrenzung wird jeweils an den Grenzen 

Xmin, Xmax, Ymin,Ymax,  ‘geclipped’.

2.)  Es werden alle Fensterbegrenzungen nacheinander abgearbeitet.

Wie werden neu Punkte zur Polygonbegrenzung eingefügt? 

Es gibt 4 Regeln!                      =====>

Sutherland-Hodgeman Polygon Clipping (2)

Für jeden Vektor von A -> B 

wird entschieden ob man die 

Grenze des erlaubten 

Bereichs überschreitet.

Für  A -> B 

außen -->  innen    :  speichere   SAB, B 

innen    --> außen :                      SAB    

innen    --> innen    :                      B   

außen --> außen :                        -----


