3D Computer Graphik:

Transformationen in 3D

Scan Conversion — Graphics Pipeline

for every object in the scene
shade the vertices
scan convert the object to the framebuffer
interpolate the color computed for each vertex
remember the closest value per pixel

"Forward-Mapping'" approach
to Computer Graphics

Rester  Display

Display  List
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Graphics Pipeline

Input:
‘ Geometrische Modelle:

Modeling
Transformations

Illumination
(Shading)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

Viewing Transformation
(Perspective / Orthographic)

Farben / Intensitaten:
Angepasst an den Framebuffer und den

Beschreibung aller Objekte, Oberflachen,
Position der Lichtquellen.

Beleuchtungsmodell:
Rechenvorschriften zur Simulation der
Interaktion von Materie und Licht

Blickwinkel:
Kamera oder Augenposition,
"viewing frustum"

Raster Bereich
"Viewport", Pixelgrid in welches die
Bildeben abgebildet wird

Output:

Bildschirm (z.B. 24-bit RGB Werte)

Modeling Transformations

_ 3D Modelle haben eigenes Koordinatensystem

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

(object space)

"Modeling transforms" orientieren die Modelle
in einem gemeinsamen Koordinatensystem

(world space)
=

Object space World space
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Geometrische

Transformationen in 3D

Wiederholung: Verkettung von Transformationen in 2D

Rotation um Fixpunkt
R(x,,y,.0)=

x,.y,)
‘ T(X,,y,)*R(0) > T(-X,,-y,)

[1 0 x, ] [cos® —sin® O] [1 O —x, |
IO 1 yrIoIsinH coséd OIoIO 1 —yrI=
lo o 1] | o o 1|/ ]o o 1 |

[cos@ —siné& x . (1—cos@)+y, sin 9]
|

|sino  coso yr(l—cose)—xrsinel

| o 0 1 |
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3D Transformationen
Rechtshandiges System:

Positive Rotation um eine Koordinatenachse:
Rotation gegen den Uhrzeigersinn, wenn man vom

Positiven in die Richtung zum Ursprung schaut.

3D Translation Tit,t,t)

Xy

[X] [1 0 O t][x]
vl o r o]l
'z] |0 0 1 t]|]|z]
1] |o 0o o 1]]|1]
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3D Rotation um die x-, y-, z- Achse

I o 0 0]
I 0 cos@ -—-sin@ O I
R, (0)= .
o sing coso O]
Lo 0 0 1J
[ cos@ 0 sing O]
P—RX’Y’Z(Q) P I 1 0 oI
R, (9)= .
| —sin@ 0 cos@ O]
L o o0 O 1J
[cos®@ —sin@ 0O O]
| sin @ cosé 0O O |
F\)z (9)=| |
| o 0 1 0]
L 0 0 0 lJ

3D Rotation um eine beliebige Achse

1. Verschiebe das Objekt so, dass Rotationsachse durch den
Ursprung geht.

2. Rotiere das Objekt so, dal? die Rotationsachse mit einer der
Koordinatenachsen zusammen fallt.

3. Rotiere das Objekt um dem gewinschten Winkel.
4. Invertiere die Rotation aus Schritt 2.

5. Invertiere die Translation aus Schritt 1.
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Wechsel der Koordinatensystem

Transformationen lassen sich auch als ein Wechsel der
Koordinatensysteme verstehen.

Objekte in Szenen haben meist ihr eigenes Koordinatensystem,
sollen aber in ein gemeinsames Weltkoordinaten-system
eingebunden werden. (Beispiel: Fahrrad mit rotierenden Radern)

Beispiel

Ein Rad rolle auf dem Boden und drehe sich dabei um den Winkel a . Wo
befindet sich dann ein Punkt P auf dem Reifen in Weltkoordinaten?

In Radkoordinaten P~ T (rg,0,0)oR(a)-P"®

In den neuen Radkoordinaten p "’ = R (). P

In Weltkoordinaten pere M L ple
-

P =M icrea P = M e °T (re,0,0)° R (@) - P
oder

P = ™ welt—rad' P = M wette_rad' © M Lag- vag © R(O‘)' p (e
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Freie Bewegung
von 3D Objekten im 3D Raum

Parameterisierung der Objektorientierung

Problem : Wie lasst sich die Orientierung eines Objekts beschreiben?

Das heil3t, wie ist der Raum aller méglichen Orientierung zu
Parameterisieren?

Oder, wie ist zwischen zwei Orientierungen zu interpolieren?

Eine Mdglichkeit: Eulerwinkel, die definierte aneinander Reihung von
Basisrotationen!
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3D Rotationen um die x-, y-, z- Achsen

Irl 0 0 OTI Jede beliebige Rotation lasst sich durch
©) |0 cosf, —sino, 0, hintereinander Reihung von 3 Basisrotationen
Ry (6,)= )
M0 sin 6, coso, Ol beschreiben.
lLo 0 0 1J|
R(91,92,03): R (93)" Ry (92)" Ry (‘91)
[ cosg, O sing, O]
6,) I 0 1 0 0 } |—
R, (6,)= c,c C,S —s
Y1 | —sine, 0 cos@, O | 372 273 2
0 0 0 1J R (91,92363) _ | 5152C3 - 0153 515253 + ClC3 slcz
I C,S,C, +8,S; CS,5,—SC, CC,
L 0 0 0
[cosf; —sing; 0 O]
| |
sin@. cosé. 0O O
R, (0,) = ’ ° l mit
R o 1 ol
|_ 0 0 0 1J| C, =€0s0, und s, =sin0,

L O O O
S — |

Eulerwinkel sind unpraktisch - erster Grund!

1. Es ist schwierig eine bestimmte Rotation einzustellen.

Es werden zwar die Punkte eines Objektes rotiert, aber nicht
seine Koordinatenachsen!
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Hat nur zwei Freiheitsgrade!
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Eulerwinkel sind unpraktisch - zweiter Grund!

2. Fur Key-frame Technik nicht nutzbar!
Wie soll zwischen zwei Positionen interpoliert werden?

Es gibt viele verschiedene Wege!

oder ?

Euler's Theorem

Jede beliebige Rotation r(s,,6,,6,) laBt sich durch eine

einzige Rotation um eine Achse n beschreiben.

dh. Vv6,,0,,0, 30,n

daB gilt : R(6,,0,,0,)=R(6,n)
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Transformation als Funktion eines Winkels
R(64,6,,03)+r=R(6,7) 7

Zerlege r =r +7r
~r,=(ner)n
»rLzr-(n-r)n

=>| Rr=Rr+Rr = n+Rr
1 1

Konstruiere v in der Rotationsebene

-V =NXr =nxr
1

da v,r,Rr planar

= —R rL=cos(9) ro+ sin (8) v

Transformation als Funktion eines Winkels

Rr=Rn+Rr = n+Rr

Rr= r+Rr
Rr=(ner)n +Rr,
Rr =(ner)n + cos(8) ro+ sin (8) v

Rr=(ner)n +cos(@)(r-(ne<r)n) + sin(6)v

Rr=(ner)n +cos(@)(r-(ner)n) + sin(@)(nxr)

Rr =cos(@)r+(1-cos(@) J)n(ren) + sin(8) (n xr)
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EINSCHUB: Mathematik Repetitorium

Komplexe Zahlen

Quaternionen

Komplexe Zahlen ( Repetitorium)

Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen:
. imaginére
z=(x,y) mit x,y e ]R y-Achse
wobei
° V4

X = Re(z) als Realteil von z und

y =1m(z) als Imaginarteil von z bezeichnet wird. reale x-Achse

mit der Einheit (0, 1) = i
Rechenregeln :

(xl,y1)+(x2.y2)= (X1+X2,y1+y2)

(X1,Y1)-(X2,y2): (X = X, 91 - ¥,)

Ocya) ey )= (xg = yiy, xgy, + X,yy)

X1 Xo ¥ ¥1¥Y2 Xp¥1 = X1 ¥ J

2 2 ’ 2 2
Xz +Y> Xz T Y3

(X1vy1)*(xzvyz): (
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Komplexe Zahlen (2)

Eigenschaften :

Realte il :
Imaginérteil : i° = (0 1)2 = (-1 O) = = \/_1
z:(x,y) oder Z=X+1y
|z|— x> +y®  oder |z|:\/E mit z = x - iy
2 2,2, _ (X1X2+y1y2 X2y1_xly2J
N > 2 2 2 2
Z; 237, Xy + Y3 X2 Y,

Komplexe Zahlen (Polarkoordinaten)

imaginére
y-Achse
in Polarkoordinaten

z=(r,0)
T - -
“ z= (r,) oder z =r(cosa + isina)
reale x-Achse ia
= z =re
_ i(a+a,)
= z,-2, =1r,e

2 _ r_lei(alfaz)

Z,
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Quaternionen (Hamilton 1843)

ein Quaternion q sei

q=a-+ib+ jc+kd mit i‘=j’=k’=-1
ij=k=—ji
jk =1i=—=Kj
_ Ki=j=-lIk
q =a-ib- jc-kd ‘Fxﬂl l”ﬂl lrxzys—xgyﬂl
E | X2 | Y2 | T Ym0V
oder g=(s,v) = s+iv,+ v +ky, EYREAREYT TS
Ch*Qz:(51'V?)+(52’V;):(51+52"71+‘72) . ;X;:,(;X;)

— — - — — —

Gy 0y = (spvy) - (s0) = (8,-8,-V,v, SV, + 8,V + v xV,)# 0,00

2 — 2 2
lg1"=q g =5 +[v]

Quaternionen (Multiplikation)

—

ql'q2:(51'V1)'(52’V2):
= (s vy, ¢t jvly kv, ) (s, Hiv,, 4+ jv2y +kv,,)

= (s,)- (s, +iv, + jv2y +kv,,)

-2 -2 2

i . i i"=j =k " =-1
+ vy, (s, +iv,, + jv,, +kv, ) =k — i
+ jv1y (s, +iv, + jv2y +kv,,) L
+Kkv, - (s, +iv, + jv, +kv22) ki=j=—ik

= Sl S lev2x Vlyv2y VleZZ

+ 0 (S\V,, +S,V, [+V, V, —V V, )

2 1x- 1y "2z 1z Zy;
+ -l (slv2y + S2V1y leVZZ +Vlz 2x)
+k (slv22 + SN +V1xv2y _______ 1 ,v._._2._X.)
N = [
( S 8, VV, S1Va *32Yy +VXV2 )
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Von Quaternionen zu Rotationen

sei p=(0r)
und a=(s,v) mit qg =1 (= a'=q)
definiere

- -

Rq(p):qpq71 = ( O,(sz—vﬁ-vﬁ)-rﬁ+ 2v(v-r) + 25V x ra)

—

da |q|:l q:(cosﬁ, sing n|

— - o

> R,(p) = (0,(cosz¢9—sin29)-r + 2sin’ 9 n(n-r) + 2cosfsing nﬁxrﬂ)

— —

R,(p) = ( 0,(cos28)-r + (1-cos26) n(n-r) + sin26 rTxr)

Rr =cos(@)r+(1-cos(@) )n(ren) + sin(@)(n xr)

) . 0 -
Der Operator q( )q ' mit q= [cos—, sin— n | beschreibteine Rotation!!
2 2

Quaternionen als Rotationen

Euler's Theorem folgt implizit aus der Quaternionenalgebra,
da das Produkt von 2 Einheits Quaternionen wiederum ein

Quarternion der Lange eins ist.

R,.=R, "R, mit g"=q-q’

Beispiel. R, () < q, :[cos%, sin% (1 o0 O)J = (o0 (10 0)
Rz(”)'Ry(”)

R oo ool hlo(ne) K
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Interpolation von Quaternionen

A
B

P = ah+ fB

1. Lineare Interpolation im Quaternionenraum q(t)=tgy + (1-t)g,

2. Lineare Interpolation im Quaternionenraum mit |P|=1

sin(Q - 9) sin @
+B
sin Q sin Q

A-B=cosQ und A-P=cos® = P=A

Spherische Interpolation zwischen q,,q, mitqg,-q, =cosQ

q(t): I

sin((1-1)Q) sin Qt
. +0s —
sin Q sin Q

Quaternion zu Rotationsmatrix

—

Sei g eine Einheits-Quaternion mit g =(s,v) und qq =1

dann berechnet sich die entsprechende Rotationsmatrix R zu

1
! |

2(vxvy+svz) 172(vf+vf) 2(vyvzfsvx) OI
Z(VXVZ—SVy) 2(vyvz+svx) 1—2(vf+vj) OI
]

|
|
|
\
| 0 0 0 1
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