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3D Computer Graphik:

Transformationen in 3D
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Scan Conversion – Graphics Pipeline

for every object in the scene

shade the vertices 

scan convert the object to the framebuffer

interpolate the color computed for each vertex

remember the closest value per pixel
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Graphics Pipeline

Modeling 

Transformations

Illumination

(Shading)

Viewing Transformation

(Perspective / Orthographic)

Clipping

Projection 

(to Screen Space)

Scan Conversion

(Rasterization)

Visibility / Display

Output:

Farben / Intensitäten:

Angepasst an den Framebuffer und den 

Bildschirm (z.B. 24-bit RGB Werte) 

.

Input:

Geometrische Modelle:

Beschreibung aller Objekte, Oberflächen, 

Position der Lichtquellen.

Beleuchtungsmodell:

Rechenvorschriften zur Simulation der 

Interaktion von Materie und Licht

Blickwinkel:

Kamera oder Augenposition, 

"viewing frustum"

Raster Bereich

"Viewport", Pixelgrid in welches die 

Bildeben abgebildet wird

12

Modeling Transformations

3D  Modelle haben eigenes Koordinatensystem 

(object space)

"Modeling transforms" orientieren  die Modelle 

in einem gemeinsamen Koordinatensystem 

(world space)

Modeling 

Transformations

Illumination

(Shading)

Viewing Transformation

(Perspective / Orthographic)

Clipping

Projection 

(to Screen Space)

Scan Conversion

(Rasterization)

Visibility / Display

Object space World space
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Geometrische

Transformationen in  3D
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Wiederholung: Verkettung von Transformationen in 2D
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3D Transformationen

Rechtshändiges System:

x

y

z

Positive Rotation um eine Koordinatenachse:

Rotation gegen den Uhrzeigersinn, wenn man vom 

Positiven in die Richtung zum Ursprung schaut.
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3D Translation    T(tx,ty,tz)
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3D Rotation um die  x-, y-, z- Achse

  PRP
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 
,,

'
 

cos 0 sin 0

0 1 0 0

sin 0 cos 0

0 0 0 1

Y
R

 


 

 

 

 
 

 
 

 




























1000

0cossin0

0sincos0

0001






X
R

 























 



1000

0100

00cossin

00sincos






Z

R

18

3D Rotation um eine beliebige Achse

1. Verschiebe das Objekt so, dass Rotationsachse durch den

Ursprung geht.

2. Rotiere das Objekt so, daß die Rotationsachse mit einer der 

Koordinatenachsen zusammen fällt.

3. Rotiere das Objekt um dem gewünschten Winkel.

4. Invertiere die Rotation aus Schritt 2.

5. Invertiere die Translation aus Schritt 1.
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Wechsel der Koordinatensystem

Transformationen lassen sich auch als ein Wechsel der 

Koordinatensysteme verstehen.

Objekte in Szenen haben meist ihr eigenes Koordinatensystem, 

sollen aber in ein gemeinsames Weltkoordinaten-system 

eingebunden werden. (Beispiel: Fahrrad mit rotierenden Rädern)

20

Beispiel

Ein Rad rolle auf dem Boden und drehe sich dabei  um den Winkel  . Wo 

befindet sich dann ein Punkt P auf dem Reifen in Weltkoordinaten?

   
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Freie Bewegung 

von 3D Objekten im 3D Raum

22

Parameterisierung der Objektorientierung

Problem : Wie lässt sich die Orientierung eines Objekts beschreiben? 

Das heißt, wie ist der Raum aller möglichen Orientierung zu 

Parameterisieren?

Oder, wie ist zwischen zwei Orientierungen zu interpolieren?

Eine Möglichkeit:  Eulerwinkel, die definierte aneinander Reihung von 

Basisrotationen!
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3D Rotationen um die  x-, y-, z- Achsen

 
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Jede beliebige Rotation lässt sich durch 

hintereinander Reihung von 3 Basisrotationen 

beschreiben.

 
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Eulerwinkel sind unpraktisch - erster Grund!

1. Es ist schwierig eine bestimmte Rotation einzustellen.

Es werden zwar die Punkte eines Objektes rotiert, aber nicht 

seine Koordinatenachsen!

   
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?

Eulerwinkel sind unpraktisch - zweiter Grund!

2. Für Key-frame Technik nicht nutzbar!

Wie soll zwischen zwei Positionen interpoliert werden?

Es gibt viele verschiedene Wege!

y

z x

y

xz
oder ?

26

Euler‘s Theorem

Jede beliebige Rotation                      läßt sich durch eine

einzige Rotation um eine Achse n beschreiben.
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Transformation als Funktion eines Winkels

Rr
r



n

r || = ( n • r ) n

r = r - ( n • r ) n

Zerlege       r  = r || + r 

r

r || 

Konstruiere  v in der Rotationsebene 

v = n r = n r

𝑅 𝜃1, 𝜃2, 𝜃3 • 𝑟 = 𝑅 𝜃, 𝑛 • 𝑟

r


v Rr
da   v , r , Rr planar

=>     R r = cos( )  r +  sin ( ) v

=> R r  = R r|| + R r =    r|| + R r

→ → →

Transformation als Funktion eines Winkels

R r  = R r|| + R r =    r|| + R r

R r  =    r || +  R r

R r  = ( n • r ) n +  R r

R r  = ( n • r ) n +  cos( )  r +  sin ( ) v

R r  = ( n • r ) n +  cos( ) (r - ( n • r ) n) +  sin ( ) v

R r  = ( n • r ) n +  cos( ) (r - ( n • r ) n) +  sin ( ) (n r)

R r  = cos( ) r + ( 1 - cos( ) ) n ( r • n) +  sin ( ) (n r)
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EINSCHUB: Mathematik Repetitorium

Komplexe Zahlen

Quaternionen

30

Komplexe Zahlen ( Repetitorium)

 

 

Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen:

 ,   mit  ,

wobei

     Re( )  als Realteil von z  und 

     Im   als Imaginärteil von z bezeichnet wird.

                       mit de

z x y x y

x z

y z
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
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 
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reale x-Achse
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y-Achse

z

ℝ



Page 12

31

Komplexe Zahlen (2)
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Komplexe Zahlen (Polarkoordinaten)

  iy x    z o d e r              ,x     z  b is h e r      y

 
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


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   
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 r e  z 

α iα r  z r




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Quaternionen    (Hamilton 1843)

2 2 2

ein Quaternion    sei  

                                  mit    1

                                                                         

                               

q

q a ib jc kd i j k

ij k ji

       

  

                                         

                                                                         

jk i kj

ki j ik

  

  
                                  k dj ci baq 

   qq 12       

222
|||q|   vs qq 

         vvssv,sv,sqq 2121221121 ,       



→ → → →

       v,sv,sqq  221121            
→ →

    ,m i t                                ,  o d e r       vsq k vj vi vsvsq zyx




→ →

 1 2 1 2 1 2 2 1 1 2
    -  ,    s s v v s v s v v v       

→ → → → → →

 

1 1 2 3 3 2

2 2 3 1 1 3

3 3 1 2 2 1

  

          

x y x y x y

x  y x y x y

x y x y x y

x y y x

     

     
  

     

          

    
→ → →→

34

 1 2 1 2
     -  ,                                     s s v v     

→ →

Quaternionen    (Multiplikation)

       )()(    22221111 zyxzyx k vj vi vs k vj vi vs 

       v,sv,sqq  221121            


1 2 2 2 2

1 2 2 2 2

1 2 2 2 2

1 2 2 2 2

     ( ) ( ) 

    ( ) 

    ( )  

    ( )       

x y z

x x y z

y x y z

z x y z

s  s iv jv kv

iv  s iv jv kv

jv  s iv jv kv

kv  s iv jv kv

    

    

    

    

2 2 2
  1

   

 

  

i j k

ij k ji

jk i kj

ki j ik

   

  

  

  

1 2 1 2 1 2 1 2

1 2 2 1 1 2 1 2

1 2 2 1 1 2 1 2

1 2 2 1 1 2 1 2

   

    ( ) 

    ( )  

    ( )       

x x y y z z

x x y z z y

y y x z z x

z z x y y x

s  s v v v v v v

i s v s v v v v v

j s v s v v v v v

k s v s v v v v v

   

   

   

   

   vs 21



→ →

→

12 vs



→

 21 vv 



→ →
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Von Quaternionen zu Rotationen

 

  )         (         1mit     vs ,q           und

  ,0            s ei

1
qqqq

r p









R r  = cos( ) r + ( 1 - cos( ) ) n ( r • n) +  sin ( ) (n r)

 

                  

            R

definiere

 

1

q



qpqp

→

→

 nqq


 s in,c o s          1d a     
→

    

                  

22,0 

 

2
rvsrvvrvvs



→ → → → →→→→

      rnrnnrp


  s inc o s2s in2s inc o s,0         R
222

q

→ →→ →→→

        rnrnnrp


  2s in2c o s12c o s,0       R          
q

→ → →→ → →

 
-1

D er O p e ra tor   q   m it     cos ,    s in   b e sch re ib t e in e  R ota tion !!
2 2

q q n
  

  
 

→

36

Quaternionen als Rotationen

    0,0,1,00,0,1
2

s in,
2

cos         )( 


















xX
qR

q" q' q

 

Euler's Theorem folgt implizit aus der Quaternionenalgebra,

da das Produkt von 2 Einheits Quaternionen wiederum ein 

Quarternion der Länge eins ist.

                  R  R  R    mit   " '    

    

q q q  

              
Beispiel:

    1,0,00,1,0,0 

  0,0,1,0

     1,0,0,00,1,0,0       
zy

qq

y

xz

?

y

z x

•

   )( )(  YZ RR 

•
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Interpolation von Quaternionen

1. Lineare Interpolation im Quaternionenraum

BAP  

   
AB qtt q  1tq 

B
A ?

2. Lineare Interpolation im Quaternionenraum  mit   |P|=1

 











s in

s in

s in

s in
   P     c o s  PA   u n d    c o s BA BA



  
Spherische Interpolation  zwischen   ,   mit cos

A B A B
q q q q  

 
 











sin

sin

sin

)1sin(
tq

t

BA
q

t
q

38

Quaternion zu Rotationsmatrix

 

     

     

     

2 2

2 2

2 2

1 2 2 2 0

2 1 2 2 0

2 2 1 2 0

0 0 0 1

y z x y z x z y

x y z x z y z x

x z y y z x x y

v v v v sv v v sv

v v sv v v v v sv
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