Xl

XX Universitat
7R Basel Computergrafik 2020

Prof. Dr. Thomas Vetter Patrick Kahr (patrick.kahr@unibas.ch)
Departement Mathematik und Informatik Clemens Biichner (clemens.buechner@unibas.ch)
Spiegelgasse 1, CH — 4051 Basel Moira Zuber (moira.ziber@unibas.ch)

Ubungsblatt 2

Ausgabe: 13.03.2020
Abgabe: 26.03.2020
Vorfiihrung: entfillt

Zu erreichende Punktzahl: 30 (Programmieraufgaben + Theoriefragen)

Bevor Sie die Ubungen losen, lesen Sie bitte dieses Ubungsblatt sowie das Infoblatt aufmerksam
durch. Es ist wichtig dass die Abgabe rechtzeitig und wie im Infoblatt beschrieben erfolgt.

In diesem Ubungsblatt werden Sie einige wichtige und hiufig verwendete Algorithmen der digitalen
Bildbearbeitung implementieren.
Die Klassenstruktur dieses Aufgabenblattes ist wie folgt aufgebaut:

BackwardWarpl |Upsamp|ing| |NNDownsampIing
| .

<<interfaces=>

ImageAlgorithm
+per form{img: Image<RGBA>): Image<RGBA>

MeanConvolutionI IGaussConvqutionI

Die Klassen befinden sich alle in (Sub-) Packages von image.processing.

mailto:patrick.kahr@unibas.ch
mailto:clemens.buechner@unibas.ch
mailto:moira.ziber@unibas.ch

Xl

X< Universitat Computeraraik 2020
7 V% T Ubungsblatt 2
>IN\ Basel

Seite 2

Aufgabe 1 — Faltung

In dieser Aufgabe sollen Sie das Faltungsprodukt mit verschiedenen Kernels implementieren.
Ein Kernel wird in unserem Fall als Image<Float> dargestellt.

Unit-Tests: ex2.KernelTest. java

Hinweis 1: Falls Sie beim Testen die Fehlermeldung Failed loading resources. erhalten, so
ist vermutlich das working directory der JUnit run-configurations falsch eingestellt. Passen Sie
es an zu out/test/ und probieren Sie es dann erneut. Ansonsten helfen wir gerne weiter.

(a)

(b)

(c)

Mean und Gauss Kernel (1, Punkte)

Zuerst bauen wir uns ein paar Kernel: einen Mittelwerts- und einen Gauss-Filter. Ver-
vollstdndigen Sie dazu die Methode getKernel() in den Klassen MeanConvolution und
GaussConvolution.

Hinweis 1: Der Gauss Kernel sollte mit der Summe seiner Eintrdge normiert werden.

Benotigte Dateien: image.processing.convolution.MeanConvolution. java,
image.processing.convolution.GaussConvolution. java

Convolution (1Y, Punkte)

Nun kénnen wir die eigentliche Faltung, die Sie in der Vorlesung besprochen haben, imple-
mentieren. Vervollstdndigen Sie dazu die Methode perform(..) der Klasse Convolution.
Beachten Sie, dass eine Faltung am Rand des Bildes immer auf Werte ausserhalb des Bildes
zugreift. Normalerweise miisste man deshalb eine spezielle Randbehandlung einfiihren. Dies
wurde fiir Sie in der Methode get(..) der Image Klasse iibernommen (bei Zugriff ausser-
halb des Bildes wird der néichste Randwert zuriickgegeben). Sie brauchen sich also nicht
darum zu kiimmern.

Hinweis 1: Die Methode printKernel () konnte fiir das Debugging hilfreich sein...

Benotigte Dateien: image.processing.convolution.Convolution. java

Separable Convolution (1Y, Punkte)

Separierbare Filter haben die Eigenschaft, dass sie sich als Multiplikation eines Vektors
mit sich selbst darstellen lassen. Beispiel:

121

1 1 1

Gl242 :1(121)-1(121)T
121

Diese Eigenschaft hat zur Folge, dass eine Faltung realisiert werden kann, indem zuerst alle
Zeilen des Bildes und danach alle Spalten des FErgebnisbildes mit dem 1D-Kernel gefaltet
werden. Dies ist effizienter als eine volle 2D-Faltung. Der Gauss Kernel ist ein Beispiel fiir
einen separierbaren Filter. In dieser Aufgabe sollen Sie:

e Einen separierbaren Gauss Kernel in der Klasse GaussSeparableConvolution imple-
mentieren.

e Die separable Faltung in der Klasse SeparableConvolution realisieren. Beachten Sie
hierbei, dass wirklich zuerst alle Zeilen und danach alle Spalten mit einem 1D Kernel
gefiltert werden.

Bendtigte Dateien: image.processing.convolution.SeparableConvolution. java,
image.processing.convolution.GaussSeparableConvolution. java

NI/

X< Universitat Computergraf 2020
S ungsbla
/<IN Basel Seite 3

(d) Weitere Kernel (1%, Punkte)

In dieser Teilaufgabe werden wir ein paar weitere Kernel generieren. Oftmals ist es von

Interesse, in einem Bild die Kanten zu detektieren. Dazu gibt es verschiedene Moglichkeiten:

111
e Mit einem Laplace Kernel: —% (% —18 %)

e Mit einem Sobel Kernel (in horizontaler Richtung). Der Sobel Kernel ist nichts weiteres
als eine Approximation an den Gradienten an einer bestimmten Stelle.

Implementieren Sie diese zwei Kernel in der getKernel () Methode der jeweiligen Klassen.
Beachten Sie, dass bei diesen Kernel negative Farbwerte entstehen konnen. Dieser Umstand
wird von uns abgefangen, indem das resultierende Bild normalisiert, d.h. alle Farbwerte
ins Interval [0, 1] skaliert werden.

Bendtigte Dateien: image.processing.convolution.LaplaceConvolution. java,
image.processing.convolution.SobelHConvolution. java

Aufgabe 2 — Skalierung

In dieser Aufgabe geht es darum, verschiedene Verfahren zur Bildvergrosserung und Bild-
verkleinerung kennenzulernen. Der Einfachheit halber beschrinken wir uns dabei auf eine Skalierung
um den Faktor 2.

Unit-Tests: ex2.ScalingTest.java

(a) Downsampling (2 Punkte)

Die einfachste Methode um ein Bild zu verkleinern, bezeichnet man als Nearest-Neighbour-
Downsampling oder auch Subsampling. Hierbei wird einfach jedes zweite Pixel ausgelassen.
Implementieren Sie dieses Verfahren in der Methode perform(..) der Klasse NNDown-
sampling.

Dieses Verfahren fiihrt allerdings zu Artefakten. Ein besseres Resultat erhédlt man, wenn
man die hohen Frequenzen aus dem Bild herausschneidet, bevor man es verkleinert. Im-
plementieren Sie dieses Verfahren in der Klasse GaussianDownsampling indem Sie das zu
verkleinernde Bild vor der Skalierungsoperation mit einem Gauss Kernel filtern. Verwen-
den Sie dazu Ihren Gauss Filter aus der vorigen Aufgabe (size = 5,0 = 1). Sehen Sie die
Verbesserung?

Benotigte Dateien: image.processing.scaling.NNDownsampling. java,
image.processing.scaling.GaussianDownsampling. java

Xl

X< Universitat Computergrafik 2020
—\—/— ungsola
/XN Basel Seito 4

(b) Upsampling (1 Punkt)
Das Vergrossern von Bildern gestaltet sich ein bisschen schwieriger. Beim Downsampling
konnten wir einfach Informationen weglassen, jetzt miissen wir neue Informationen aus
bestehenden interpolieren. Auch dafiir gibt es wiederum verschiedene Verfahren. Das ein-
fachste - die Nearest Neighbour Interpolation - wurde fiir Sie implementiert. Hierbei wird
die Farbe eines Pixels auf den Farbwert des nichsten umliegenden Pixels gesetzt. Schauen
Sie sich diese Implementierung in der Klasse NNInterpolation an.

Implementieren Sie dann die Methode perform(..) in der Klasse Upsampling um die
Nearest Neighbour Interpolation zu visualisieren. Verwenden Sie die Methode access(. .)
der Membervariable interpolation um auf einen Pixel im zu vergrossernden Bild zuzu-
greifen.

Benotigte Dateien: image.processing.scaling.NNInterpolation. java,
image.processing.scaling.Upsampling. java

(c) Interpolation (2 Punkte)

Das Upsampling mit Nearest Neighbour Interpolation kann heftige Artefakte verursachen.
Wir wollen deshalb zwei bessere Verfahren ansehen, um Pixelwerte zu interpolieren.

Bilineare Interpolation: Bei der eindimensionalen, linearen Interpolation konstruiert
man eine Gerade g: R — R auf Grund zweier Punkte (auch Stiitzstellen genannt) und
setzt den interpolierten Wert an der Stelle z als: a, = za1 + (1 — z)ao.

d;

X

Angewandt auf ein Bild kdnnen wir einen Punkt einférben, indem wir die Farbwerte seines
linken und rechten Pixelnachbarn als Stiitzstellen betrachten. Da unser Bild zweidimension-
al ist, miissen wir die lineare Interpolation sowohl in z wie auch in y-Richtung vornehmen
(deshalb auch bilineare Interpolation). Wir betrachten im Ganzen also 4 Nachbarpixel:

‘l' . 1. ll

3

@—oO

Implementieren Sie dies in der Methode access der Klasse BiLinearInterpolation.

NI/

XXX Universitit Compuerraic 202
—\—/— ungsola
IXIN Basel Seite 5

Bikubische Interpolation: Bei der kubischen Interpolation wollen wir anstelle einer
Geraden ein Polynom f : R — R dritten Grades interpolieren:

f(@) =pa® +qz® +rz +b

Um die 4 unbekannten Parameter p,q,r,b zu bestimmen, brauchen wir 4 Stiitzstellen.
Angenommen die Stiitzstellen seien a, b, ¢ und d, dann kénnen wir einen Punkt = € [0, 1]
interpolieren, indem wir setzen:

p=(d—c)=(a=b),
q:2(a—b)—(d—c),

r==c—a.

Auf ein Bild angewandt, entsprechen die Stiitzstellen den beiden linken und den beiden
rechten Pixelnachbarn eines Punktes. Dehnen Sie dieses Konzept wie schon bei der linearen
Interpolation auf den zweidimensionalen Fall aus (Sie miissen also total 16 Pixelwerte
betrachten) und vervollstdndigen Sie die Klasse BiCubicInterpolation.

Hinweis 1: Sowohl die bilineare, wie auch die bikubische Interpolation lassen sich als Kom-
bination von eindimesionalen linearen bzw. kubischen Interpolationen schreiben.

Hinweis 2: Bedenken Sie, dass berechnete Farbwerte unter Umsténden iiber oder unter den
erlaubten Maximal- bzw. Minimalwert fallen kénnen.

Benotigte Dateien: image.processing.scaling.BilinearInterpolation. java,
image.processing.scaling.BiCubicInterpolation. java

Aufgabe 3 — Warp

In der Vorlesung haben Sie zwei Moglichkeiten kennen gelernt, einen Warp durchzufiihren.
Bei einem Backward Warp wird fiir jeden Pixel im Ziel-Bild bestimmt, wo der Pixel im alten
Bild seinen Ursprung hat (und wenn nétig interpoliert). Dies bedingt, dass man das Inverse
derjenigen Transformation, welche man eigentlich darstellen will, kennt.

Bei einem Forward Warp geht man anders vor: Man berechnet fiir jeden Pixel im Ursprungs-
Bild, wohin er im Ziel fallt und malt diesen Pixel dann an. Hier wird keine Inverse benoétigt,
dafiir hat es den Nachteil, dass Pixel mehrfach angemalt werden kénnen und es nicht ganz klar
ist, welche Pixel iiberhaupt eingefarbt werden sollen.

Unit-Tests: ex2.WarpTest. java
(a) Backward Warping (2 Punkte)

Implementieren Sie einen Backward Warp in der Klasse BackwardWarp. Die Transformation
ist von uns als Vektorfeld vorgegeben und in der Variable flowField abgespeichert. Dieses
Vektorfeld gibt zu jedem Punkt im Zielbild seine relative Positionsverschiebung als Vektor
an.

Benotigte Dateien: image.processing.warping.BackwardWarp. java

Xl

X< Universitat Computeraraik 2020
7 V% T Ubungsblatt 2
>IN\ Basel

Seite 6

(b)

Forward Warping (3 Punkte)
Implementieren Sie einen Forward Warp in der Klasse ForwardWarp. Wiederum ist die
Transformation als ein Vektorfeld gegeben. Berechnen Sie die Transformation jeweils fiir

drei Pixel gleichzeitig und verwenden Sie Thren SimpleRenderer vom letzten Ubungsblatt

um die transformierten Pixel als Dreiecke ins Zielbild zu zeichnen.

Bendtigte Dateien: image.processing.warping.ForwardWarp. java

Morphing (4 Punkte)
Die Ausgangslage fiir diese Aufgabe sind zwei Bilder A und B, welche Gesichter zeigen.
Ausserdem erhalten Sie zwei Korrespondenzfelder a2b und b2a. Das Feld a2b beschreibt,

wie man einen Pixel im Bild A (relativ zu seiner Position) bewegen muss, um zum entsprechen-

den Punkt im Bild B zu kommen (analog fiir b2a). Dabei handelt es sich um eine echte
Korrespondenz. Wenn bspw. der Punkt p € A die Nasenspitze beschreibt, dann zeigt der
zugehorige Vektor v = a2b(p) wo sich die Nasenspitze im Bild B befindet.

Wie koénnen nun beliebige Mischungsverhéltnisse

A-A+(1-)\)-B

beziiglich Form und Farbwerten erreicht werden? Implementieren Sie dies in der Methode
morph() der Klasse Morphing. Fiir Werte A < 0 und A > 1 erhélt man Karikaturen, die
alle Merkmale verstéirken, in denen sich das eine Bild vom anderen unterscheidet.

Hinweis 1: Die Aufgabe kann mit einem Backward oder einem Forward Warp geldst werden.
Benotigte Dateien: image.processing.warping.Morphing.java

Aufgabe 4 — Theoriefragen 110 Punkte|

Fragen zur Theorie: Die folgenden Fragen sind schriftlich zu beantworten. Bitte legen Sie Thre
Antwort als PDF Dokument (blatt2-antworten.pdf) in das dafiir vorgesehene Verzeichnis im
Ubungsframework ab.

()

(b)

Separierbare Filter (5 Punkte)
In den Programmieraufgaben haben Sie die Faltung mit separierbaren Filtern kennengel-

ernt. Anstatt einer 2D Faltung, machen Sie nacheinander zwei 1D Faltungen. Erldautern Sie

die Unterschiede dieser zwei Vorgehensweisen und machen Sie eine Komplexitédtsanalyse.
Versuchen Sie die theoretischen Resultate empirisch nachzuweisen und kommentieren Sie

Thre Beobachtungen.

Hinweis 1: Beschreiben Sie die Komplexitdt in O-Notation fiir ein Bild der Grosse M x N

und eine Filtermaske der Grosse k X k.

Filtern im Fourierraum (5 Punkte)

Das Filtern in Aufgabe 1 wurde mittels Faltung des Bildes und der Filtermaske im Ort-
sraum durchgefiihrt. Alternativ dazu kann auch im Fourierraum (Frequenzraum) gefiltert
werden. Erkléren Sie kurz die Zusammenhénge zwischen beiden Varianten. Welche Schritte
miissen jeweils durchgefithrt werden um ein Bild (M x N) mit einer Filtermaske (k x k)
zu filtern? Konnen Sie Vor- und Nachteile ausmachen?

Hinweis 1: Die Komplexitidt der 2D Fast Fouriertransformation (2DFFT) sowie ihrer In-
versen fiir ein Bild der Grosse M x N ist O(M N log(MN)).

