
Prof. Dr. Thomas Vetter
Departement Mathematik und Informatik
Spiegelgasse 1, CH – 4051 Basel

Computergrafik 2020

Patrick Kahr (patrick.kahr@unibas.ch)
Clemens Büchner (clemens.buechner@unibas.ch)

Moira Zuber (moira.ziber@unibas.ch)

Übungsblatt 2

Ausgabe: 13.03.2020
Abgabe: 26.03.2020
Vorführung: entfällt

Zu erreichende Punktzahl: 30 (Programmieraufgaben + Theoriefragen)

Bevor Sie die Übungen lösen, lesen Sie bitte dieses Übungsblatt sowie das Infoblatt aufmerksam
durch. Es ist wichtig dass die Abgabe rechtzeitig und wie im Infoblatt beschrieben erfolgt.

In diesem Übungsblatt werden Sie einige wichtige und häufig verwendete Algorithmen der digitalen
Bildbearbeitung implementieren.
Die Klassenstruktur dieses Aufgabenblattes ist wie folgt aufgebaut:

Die Klassen befinden sich alle in (Sub-) Packages von image.processing.

mailto:patrick.kahr@unibas.ch
mailto:clemens.buechner@unibas.ch
mailto:moira.ziber@unibas.ch


Computergrafik 2020
Übungsblatt 2

Seite 2

Aufgabe 1 – Faltung 6 Punkte

In dieser Aufgabe sollen Sie das Faltungsprodukt mit verschiedenen Kernels implementieren.
Ein Kernel wird in unserem Fall als Image<Float> dargestellt.

Unit-Tests: ex2.KernelTest.java

Hinweis 1: Falls Sie beim Testen die Fehlermeldung Failed loading resources. erhalten, so
ist vermutlich das working directory der JUnit run-configurations falsch eingestellt. Passen Sie
es an zu out/test/ und probieren Sie es dann erneut. Ansonsten helfen wir gerne weiter.

(a) Mean und Gauss Kernel (11/2 Punkte)

Zuerst bauen wir uns ein paar Kernel: einen Mittelwerts- und einen Gauss-Filter. Ver-
vollständigen Sie dazu die Methode getKernel() in den Klassen MeanConvolution und
GaussConvolution.

Hinweis 1: Der Gauss Kernel sollte mit der Summe seiner Einträge normiert werden.

Benötigte Dateien: image.processing.convolution.MeanConvolution.java,
image.processing.convolution.GaussConvolution.java

(b) Convolution (11/2 Punkte)

Nun können wir die eigentliche Faltung, die Sie in der Vorlesung besprochen haben, imple-
mentieren. Vervollständigen Sie dazu die Methode perform(..) der Klasse Convolution.
Beachten Sie, dass eine Faltung am Rand des Bildes immer auf Werte ausserhalb des Bildes
zugreift. Normalerweise müsste man deshalb eine spezielle Randbehandlung einführen. Dies
wurde für Sie in der Methode get(..) der Image Klasse übernommen (bei Zugriff ausser-
halb des Bildes wird der nächste Randwert zurückgegeben). Sie brauchen sich also nicht
darum zu kümmern.

Hinweis 1: Die Methode printKernel() könnte für das Debugging hilfreich sein...

Benötigte Dateien: image.processing.convolution.Convolution.java

(c) Separable Convolution (11/2 Punkte)

Separierbare Filter haben die Eigenschaft, dass sie sich als Multiplikation eines Vektors
mit sich selbst darstellen lassen. Beispiel:

1

16

 1 2 1
2 4 2
1 2 1

 =
1

4
(1 2 1) · 1

4
(1 2 1)T

Diese Eigenschaft hat zur Folge, dass eine Faltung realisiert werden kann, indem zuerst alle
Zeilen des Bildes und danach alle Spalten des Ergebnisbildes mit dem 1D-Kernel gefaltet
werden. Dies ist effizienter als eine volle 2D-Faltung. Der Gauss Kernel ist ein Beispiel für
einen separierbaren Filter. In dieser Aufgabe sollen Sie:

• Einen separierbaren Gauss Kernel in der Klasse GaussSeparableConvolution imple-
mentieren.

• Die separable Faltung in der Klasse SeparableConvolution realisieren. Beachten Sie
hierbei, dass wirklich zuerst alle Zeilen und danach alle Spalten mit einem 1D Kernel
gefiltert werden.

Benötigte Dateien: image.processing.convolution.SeparableConvolution.java,
image.processing.convolution.GaussSeparableConvolution.java



Computergrafik 2020
Übungsblatt 2

Seite 3

(d) Weitere Kernel (11/2 Punkte)

In dieser Teilaufgabe werden wir ein paar weitere Kernel generieren. Oftmals ist es von
Interesse, in einem Bild die Kanten zu detektieren. Dazu gibt es verschiedene Möglichkeiten:

• Mit einem Laplace Kernel: −1
8

(
1 1 1
1 −8 1
1 1 1

)
• Mit einem Sobel Kernel (in horizontaler Richtung). Der Sobel Kernel ist nichts weiteres

als eine Approximation an den Gradienten an einer bestimmten Stelle.

Implementieren Sie diese zwei Kernel in der getKernel() Methode der jeweiligen Klassen.

Beachten Sie, dass bei diesen Kernel negative Farbwerte entstehen können. Dieser Umstand
wird von uns abgefangen, indem das resultierende Bild normalisiert, d.h. alle Farbwerte
ins Interval [0, 1] skaliert werden.

Benötigte Dateien: image.processing.convolution.LaplaceConvolution.java,
image.processing.convolution.SobelHConvolution.java

Aufgabe 2 – Skalierung 5 Punkte

In dieser Aufgabe geht es darum, verschiedene Verfahren zur Bildvergrösserung und Bild-
verkleinerung kennenzulernen. Der Einfachheit halber beschränken wir uns dabei auf eine Skalierung
um den Faktor 2.

Unit-Tests: ex2.ScalingTest.java

(a) Downsampling (2 Punkte)

Die einfachste Methode um ein Bild zu verkleinern, bezeichnet man als Nearest-Neighbour-
Downsampling oder auch Subsampling. Hierbei wird einfach jedes zweite Pixel ausgelassen.
Implementieren Sie dieses Verfahren in der Methode perform(..) der Klasse NNDown-

sampling.

Dieses Verfahren führt allerdings zu Artefakten. Ein besseres Resultat erhält man, wenn
man die hohen Frequenzen aus dem Bild herausschneidet, bevor man es verkleinert. Im-
plementieren Sie dieses Verfahren in der Klasse GaussianDownsampling indem Sie das zu
verkleinernde Bild vor der Skalierungsoperation mit einem Gauss Kernel filtern. Verwen-
den Sie dazu Ihren Gauss Filter aus der vorigen Aufgabe (size = 5, σ = 1). Sehen Sie die
Verbesserung?

Benötigte Dateien: image.processing.scaling.NNDownsampling.java,
image.processing.scaling.GaussianDownsampling.java



Computergrafik 2020
Übungsblatt 2

Seite 4

(b) Upsampling (1 Punkt)

Das Vergrössern von Bildern gestaltet sich ein bisschen schwieriger. Beim Downsampling
konnten wir einfach Informationen weglassen, jetzt müssen wir neue Informationen aus
bestehenden interpolieren. Auch dafür gibt es wiederum verschiedene Verfahren. Das ein-
fachste - die Nearest Neighbour Interpolation - wurde für Sie implementiert. Hierbei wird
die Farbe eines Pixels auf den Farbwert des nächsten umliegenden Pixels gesetzt. Schauen
Sie sich diese Implementierung in der Klasse NNInterpolation an.

Implementieren Sie dann die Methode perform(..) in der Klasse Upsampling um die
Nearest Neighbour Interpolation zu visualisieren. Verwenden Sie die Methode access(..)

der Membervariable interpolation um auf einen Pixel im zu vergrössernden Bild zuzu-
greifen.

Benötigte Dateien: image.processing.scaling.NNInterpolation.java,
image.processing.scaling.Upsampling.java

(c) Interpolation (2 Punkte)

Das Upsampling mit Nearest Neighbour Interpolation kann heftige Artefakte verursachen.
Wir wollen deshalb zwei bessere Verfahren ansehen, um Pixelwerte zu interpolieren.

Bilineare Interpolation: Bei der eindimensionalen, linearen Interpolation konstruiert
man eine Gerade g : R → R auf Grund zweier Punkte (auch Stützstellen genannt) und
setzt den interpolierten Wert an der Stelle x als: ax = xa1 + (1− x)a0.

Angewandt auf ein Bild können wir einen Punkt einfärben, indem wir die Farbwerte seines
linken und rechten Pixelnachbarn als Stützstellen betrachten. Da unser Bild zweidimension-
al ist, müssen wir die lineare Interpolation sowohl in x wie auch in y-Richtung vornehmen
(deshalb auch bi lineare Interpolation). Wir betrachten im Ganzen also 4 Nachbarpixel:

Implementieren Sie dies in der Methode access der Klasse BiLinearInterpolation.



Computergrafik 2020
Übungsblatt 2

Seite 5

Bikubische Interpolation: Bei der kubischen Interpolation wollen wir anstelle einer
Geraden ein Polynom f : R→ R dritten Grades interpolieren:

f(x) = px3 + qx2 + rx+ b

Um die 4 unbekannten Parameter p, q, r, b zu bestimmen, brauchen wir 4 Stützstellen.
Angenommen die Stützstellen seien a, b, c und d, dann können wir einen Punkt x ∈ [0, 1]
interpolieren, indem wir setzen:

p = (d− c)− (a− b),
q = 2(a− b)− (d− c),
r = c− a.

Auf ein Bild angewandt, entsprechen die Stützstellen den beiden linken und den beiden
rechten Pixelnachbarn eines Punktes. Dehnen Sie dieses Konzept wie schon bei der linearen
Interpolation auf den zweidimensionalen Fall aus (Sie müssen also total 16 Pixelwerte
betrachten) und vervollständigen Sie die Klasse BiCubicInterpolation.

Hinweis 1: Sowohl die bilineare, wie auch die bikubische Interpolation lassen sich als Kom-
bination von eindimesionalen linearen bzw. kubischen Interpolationen schreiben.

Hinweis 2: Bedenken Sie, dass berechnete Farbwerte unter Umständen über oder unter den
erlaubten Maximal- bzw. Minimalwert fallen können.

Benötigte Dateien: image.processing.scaling.BiLinearInterpolation.java,
image.processing.scaling.BiCubicInterpolation.java

Aufgabe 3 – Warp 9 Punkte

In der Vorlesung haben Sie zwei Möglichkeiten kennen gelernt, einen Warp durchzuführen.
Bei einem Backward Warp wird für jeden Pixel im Ziel -Bild bestimmt, wo der Pixel im alten
Bild seinen Ursprung hat (und wenn nötig interpoliert). Dies bedingt, dass man das Inverse
derjenigen Transformation, welche man eigentlich darstellen will, kennt.

Bei einem Forward Warp geht man anders vor: Man berechnet für jeden Pixel im Ursprungs-
Bild, wohin er im Ziel fällt und malt diesen Pixel dann an. Hier wird keine Inverse benötigt,
dafür hat es den Nachteil, dass Pixel mehrfach angemalt werden können und es nicht ganz klar
ist, welche Pixel überhaupt eingefärbt werden sollen.

Unit-Tests: ex2.WarpTest.java

(a) Backward Warping (2 Punkte)

Implementieren Sie einen Backward Warp in der Klasse BackwardWarp. Die Transformation
ist von uns als Vektorfeld vorgegeben und in der Variable flowField abgespeichert. Dieses
Vektorfeld gibt zu jedem Punkt im Zielbild seine relative Positionsverschiebung als Vektor
an.

Benötigte Dateien: image.processing.warping.BackwardWarp.java



Computergrafik 2020
Übungsblatt 2

Seite 6

(b) Forward Warping (3 Punkte)

Implementieren Sie einen Forward Warp in der Klasse ForwardWarp. Wiederum ist die
Transformation als ein Vektorfeld gegeben. Berechnen Sie die Transformation jeweils für
drei Pixel gleichzeitig und verwenden Sie Ihren SimpleRenderer vom letzten Übungsblatt
um die transformierten Pixel als Dreiecke ins Zielbild zu zeichnen.

Benötigte Dateien: image.processing.warping.ForwardWarp.java

(c) Morphing (4 Punkte)

Die Ausgangslage für diese Aufgabe sind zwei Bilder A und B, welche Gesichter zeigen.
Ausserdem erhalten Sie zwei Korrespondenzfelder a2b und b2a. Das Feld a2b beschreibt,
wie man einen Pixel im BildA (relativ zu seiner Position) bewegen muss, um zum entsprechen-
den Punkt im Bild B zu kommen (analog für b2a). Dabei handelt es sich um eine echte
Korrespondenz. Wenn bspw. der Punkt p ∈ A die Nasenspitze beschreibt, dann zeigt der
zugehörige Vektor v = a2b(p) wo sich die Nasenspitze im Bild B befindet.

Wie können nun beliebige Mischungsverhältnisse

λ ·A+ (1− λ) ·B

bezüglich Form und Farbwerten erreicht werden? Implementieren Sie dies in der Methode
morph() der Klasse Morphing. Für Werte λ < 0 und λ > 1 erhält man Karikaturen, die
alle Merkmale verstärken, in denen sich das eine Bild vom anderen unterscheidet.

Hinweis 1: Die Aufgabe kann mit einem Backward oder einem Forward Warp gelöst werden.

Benötigte Dateien: image.processing.warping.Morphing.java

Aufgabe 4 – Theoriefragen 10 Punkte
Fragen zur Theorie: Die folgenden Fragen sind schriftlich zu beantworten. Bitte legen Sie Ihre
Antwort als PDF Dokument (blatt2-antworten.pdf) in das dafür vorgesehene Verzeichnis im
Übungsframework ab.

(a) Separierbare Filter (5 Punkte)

In den Programmieraufgaben haben Sie die Faltung mit separierbaren Filtern kennengel-
ernt. Anstatt einer 2D Faltung, machen Sie nacheinander zwei 1D Faltungen. Erläutern Sie
die Unterschiede dieser zwei Vorgehensweisen und machen Sie eine Komplexitätsanalyse.
Versuchen Sie die theoretischen Resultate empirisch nachzuweisen und kommentieren Sie
Ihre Beobachtungen.

Hinweis 1: Beschreiben Sie die Komplexität in O-Notation für ein Bild der Grösse M ×N
und eine Filtermaske der Grösse k × k.

(b) Filtern im Fourierraum (5 Punkte)

Das Filtern in Aufgabe 1 wurde mittels Faltung des Bildes und der Filtermaske im Ort-
sraum durchgeführt. Alternativ dazu kann auch im Fourierraum (Frequenzraum) gefiltert
werden. Erklären Sie kurz die Zusammenhänge zwischen beiden Varianten. Welche Schritte
müssen jeweils durchgeführt werden um ein Bild (M × N) mit einer Filtermaske (k × k)
zu filtern? Können Sie Vor- und Nachteile ausmachen?

Hinweis 1: Die Komplexität der 2D Fast Fouriertransformation (2DFFT) sowie ihrer In-
versen für ein Bild der Grösse M ×N ist O(MN log(MN)).


