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Section 1

Probabilities
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Outline

Probability basics
Some important probability distributions
Some important statistical concepts
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Probability theory vs Statistics

Definition (Probability Theory)
A branch of mathematics
concerned with the analysis of
random phenomena.

General ⇒ Specific

Definition (Statistics)
The science of collecting,
analyzing, presenting, and
interpreting data.

Specific ⇒ General

Machine learning is closely related to (inferential) statistics.
Learning algorithms are often probabilistic algorithms.
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Probabilities

Definition (Probability Space)
A probability space is the triple

(Ω, S,P)

where
Ω is the sample/outcome space, ω ∈ Ω is a
sample point/atomic event.
Example: 6 possible rolls of a die: Ω = {1, 2, 3, 4, 5, 6}
S is a collection of events to which we are willing to assign
probabilities. An event a ∈ S is any subset of Ω, e.g., die roll < 4:
a = {1, 2, 3}
P is a mapping from events in S to R that satisfies the probability
axioms.
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Axioms of Probability

1 P(a) ≥ 0 ∀a ∈ S: probabilities are not negative,
2 P(Ω) = 1: “trivial” event has maximal possible prob 1,
3 a, b ∈ S and a ∩ b = { } ⇒ P(a ∪ b) = P(a) + P(b): probability of

two mutually disjoint events is the sum of their probabilities.
Example:
P(die roll < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2.
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Random Variables

Definition (Random Variable)
A random variable X is a function from the sample points to some range,
e.g., the reals

X : Ω→ R,

or booleans X : Ω→ {true,false}.

Real random variables are characterized by their distribution function.

Definition (Cumulative Distribution Function)
Let X : Ω→ R be a real valued random variable. We define

FX (x) = P(X ≤ x).

This is the probability of the event {ω ∈ Ω : X (ω) ≤ x}

Volker Roth (University of Basel) Machine Learning 2020 26th February 2020 7 / 67



Probability and Propositions

Proposition: event (set of sample points) where the proposition is
true.
Given Boolean random variables A and B:

I event a = set of atomic events where A(ω) = true
I event ¬a = set of atomic events where A(ω) = false
I event a ∧ b = atomic events where A(ω) = true and B(ω) = true

With Boolean variables,
event = propositional logic model
e.g., A = true, B = false, or a ∧ ¬b.
Proposition = disjunction of events in which it is true
e.g., (a ∨ b) = (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)
=⇒ P(a ∨ b) = P(¬a ∧ b) + P(a ∧ ¬b) + P(a ∧ b)
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Syntax for Propositions

Boolean random variables
e.g., Cavity (do I have a cavity?)
Cavity = true is a proposition, also written cavity
Discrete random variables (finite or infinite)
e.g., Weather is one of 〈sunny , rain, cloudy , snow〉
Weather = rain is a proposition
Values must be exhaustive and mutually exclusive
Continuous random variables (bounded or unbounded)
e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.
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Probability distribution

Unconditional probabilities of propositions
e.g., P(Weather = sunny) = 0.72. Bayesian interpretation:
correspond to belief prior to arrival of any (new) evidence
Probability distribution gives values for all possible assignments:
P(Weather) = 〈0.72, 0.1, 0.08, 0.1〉 (normalized, sums to 1)
Joint probability distribution for a set of RVs gives the probability
of every atomic event on those RVs (i.e., every sample point)
P(Weather ,Cavity) = a 4× 2 matrix of values:

Weather = sunny rain cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08
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Probability for continuous variables
Suppose X describes some uncertain continuous quantity. What is the
probability that a < X ≤ b?

define events A = (X ≤ a),B = (X ≤ b),W = (a < X ≤ b).
B = A ∨W , A and W are mutually exclusive
 p(B) = p(A) + p(W )  p(W ) = p(B)− p(A).
Define the cumulative distribution function (cdf) as
F (q) := p(X ≤ q)  p(a < X ≤ b) = F (b)− F (a).
Assume that F is absolutely continuous: define probability density
function (pdf) p(x) := d

dx F (x).
Given a pdf, the probability of a continuous variable being in a finite
interval is: P(a < X ≤ b) =

∫ b
a p(x) dx .

As the size of the interval gets smaller, we can write
P(x < X ≤ x + dx) ≈ p(x) dx .
We require p(x) ≥ 0, but it is possible for p(x) > 1, so long as the
density integrates to 1.
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Probability for continuous variables

Left: cdf for the standard normal, N (0, 1). Right: corresponding pdf.
Shaded regions each contain α/2 of the probability mass  
nonshaded region contains 1− α.
Left cutoff point is Φ−1(α/2), Φ is cdf of standard Gaussian.
By symmetry, the right cutoff point is Φ−1(1− α/2) = −Φ−1(α/2).
If α = 0.05, the central interval is 95%, left cutoff is −1.96, right
cutoff is 1.96.
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Probability for continuous variables
Example: uniform distribution:

Unif(a, b) = 1
b − a I(a ≤ x ≤ b).

0.125

dx18 26

p(X = 20.5) = 0.125 really means

lim
dx→0

P(20.5 ≤ X ≤ 20.5 + dx)/dx = 0.125
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Mean and Variance

Most familiar property of a distribution: mean, or expected value,
denoted by µ.
Discrete RVs:

E [X ] =
∑
x∈X

xp(x),

Continuous RVs:
E [X ] =

∫
X

xp(x) dx .

If this integral is not finite, the mean is not defined.
The variance is a measure of the spread of a distribution:

var[X ] = E [(X − µ)2] = E [X 2]− µ2 =: σ2.

The square root
√

var[X ] is the standard deviation.
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Common discrete distributions: Binomial and Bernoulli

Toss a coin n times. Let X ∈ {0, . . . , n} be the number of heads.
If the probability of heads is θ, then we say the RV X has a binomial
distribution, X ∼ Bin(n, θ):

Bin(k|n, θ) =
(

n
k

)
θk(1− θ)n−k .

Special case for n = 1: Bernoulli distribution.
Let X ∈ {0, 1}  binary random variable. Let θ be the probability of
success. We write X ∼ Ber(θ).

Ber(x |θ) = θI(x=1)(1− θ)I(x=0).

In other words,

Ber(x |θ) =
{
θ, if x = 1
1− θ, if x = 0.

Volker Roth (University of Basel) Machine Learning 2020 26th February 2020 15 / 67



Common discrete distributions: Multinomial

Tossing a K -sided die  can use the multinomial distribution.
Let X = (X1,X2, . . .XK ) be a random vector. Let xj be the number
of times side j of the die occurs.

Mu(x|n,θ) =
(

n
x1 · · · xK

) K∏
j=1

θ
xj
j ,

where θj is the probability that side j shows up, and(
n

x1 · · · xK

)
= n!

x1!x2! · · · xK !
is the multinomial coefficient (the number of ways to divide a set of
size n =

∑K
k=1 xk into subsets with sizes x1 up to xK ).
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Common discrete distributions: Multinoulli

Special case for n = 1: Mutinoulli distribution.
Rolling a K -sided dice once, so x will be a vector of 0s and 1s, in
which only one bit can be turned on.
If the dice shows up as face k, then the k’th bit will be on
 think of x as being a scalar categorical random variable with K
states, and x is its dummy encoding.
Example: K = 3, encode the states 1, 2 and 3 as (1, 0, 0), (0, 1, 0),
and (0, 0, 1).
Also called a one-hot encoding, since we imagine that only one of
the K “wires” is “hot” or on.

Mu(x|1,θ) =
K∏

j=1
θ
I(xj =1)
j .
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Common discrete distributions: Empirical
Given a set of data, D = {x1, . . . , xN}, define the empirical
distribution, a.k.a. empirical measure:

pemp(A) = 1
N

N∑
i=1

δxi (A),

where

δx (A) =
{

0, if x 6∈ A
1, if x ∈ A

In general, we can associate weights with each sample:

p(x) =
N∑

i=1
wiδxi (x)

where we require 0 ≤ wi ≤ 1 and
∑N

i=1 wi = 1.
We can think of this as a histogram, with “spikes” at the data points
xi , where wi determines the height of spike i .
This distribution assigns 0 probability to any point not in the data set.
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Common continuous distributions: Normal
The pdf of the normal distribution is

p(x | µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2 ,

where µ is the mean, σ2 is the variance. The inverse variance is
sometimes called precision.
The cdf of the standard normal distribution is the integral

Φ(x) = 1√
2π

∫ x

−∞
e−t2/2 dt.

It has no closed form expression.
The cdf is sometimes expressed in terms of the error function

erf (x) = 2√
π

∫ x

0
e−t2 dt,

as follows:
Φ(x) = 1

2

[
1 + erf

( x√
2

)]
.
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Common continuous distributions: Normal

If σ tends to zero, p(x) tends to zero at any x 6= µ, but grows
without limit if x = µ, while its integral remains equal to 1.
Can be defined as a generalized function: Dirac’s delta function δ
translated by the mean: p(x) = δ(x − µ), where

δ(x) =
{

+∞, x = 0
0, x 6= 0,

additionally constrained to satisfy the identity∫ ∞
−∞

δ(x) dx = 1.

Sifting property: selecting out a single term from a sum or integral:∫ ∞
−∞

f (x)δ(x − z) dx = f (z)

since the integrand is only non-zero if x − z = 0.
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Central Limit Theorem

Under certain (fairly common) conditions, the sum of many random
variables will have an approximately normal distribution.
Let X1, . . . ,Xn be i.i.d. RVs with the same (arbitrary) distribution,
zero mean, and variance σ2.
Let

Z =
√

n
(

1
n

n∑
i=1

Xi

)
Then, as n increases, the probability distribution of Z will tend to the
normal distribution with zero mean and variance σ2.
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Common continuous distributions: Beta
The beta distribution is supported on the unit interval [0, 1]
For 0 ≤ x ≤ 1, and shape parameters α, β > 0, the pdf is

f (x ;α, β) = 1
B(α, β)xα−1(1− x)β−1.

The beta function, B, is a normalization constant to ensure that the
total probability is 1.

wikimedia.org/w/index.php?curid=15404515
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Common continuous distributions: Multivariate Normal

The multivariate normal distribution of a k-dimensional random
vector X = (X1, . . . ,Xk)t can be written as: X ∼ N (µ, Σ), with
k-dimensional mean vector

µ = E[X] = [E[X1],E[X2], . . . ,E[Xk ]]t

and k × k covariance matrix
Σ =: E[(X− µ)(X− µ)t] = [Cov[Xi ,Xj ]; 1 ≤ i , j ≤ k],

where
Cov[Xi ,Xj ] = E[(Xi − µi )(Xj − µj)].

The inverse of the covariance matrix is the precision matrix Q = Σ−1.

The pdf of the multivariate normal distribution is

p(x1, . . . , xk) = 1√
(2π)k |Σ|

exp
(
−1

2(x− µ)tΣ−1(x− µ)
)

Volker Roth (University of Basel) Machine Learning 2020 26th February 2020 23 / 67



The 2D Normal distribution
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Affine transformations:
If y = c + Bx is an affine transformation of X ∼ N (µ,Σ), then
Y ∼ N

(
c + Bµ,BΣBt)
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The 2D Gaussian distribution

2D Gaussian: p(x|µ = 0,Σ) = 1√
2π|Σ|

exp(−1
2xtΣ−1x)

Covariance
(also written “co-variance”)
is a measure of how much two
random variables vary to-
gether:

+1: perfect linear
coherence,
-1: perfect negative
linear coherence,
0: no linear coherence.
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Common continuous distributions: Dirichlet

The Dirichlet distribution of order K ≥ 2 with parameters
α1, . . . , αK > 0 is a multivariate generalization of the beta
distribution.
Its pdf on RK−1 is

f (x1, . . . , xK ;α1, . . . , αK ) = 1
B(α)

K∏
i=1

xαi−1
i ,

where {xk}k=K
k=1 belong to the standard K − 1 simplex:

K∑
i=1

xi = 1 and xi ≥ 0 ∀i ∈ [1,K ]

The normalizing constant is the multivariate beta function.
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Common continuous distributions: Dirichlet

wikimedia.org/w/index.php?curid=49908662
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Conditional probability

Conditional or posterior probabilities
e.g., P(cavity |toothache) = 0.8
i.e., given that toothache is all I know
NOT “if toothache then 80% chance of cavity”
Notation for conditional distributions:
P(Cavity |Toothache) = 2-element vector of 2-elem. vectors.
If we know more, e.g., cavity is also given, then we have
P(cavity |toothache, cavity) = 1
Note: the less specific belief remains valid after more evidence
arrives, but is not always useful.
New evidence may be irrelevant, allowing simplification:
P(cavity |toothache, die roll = 3) = P(cavity |toothache) = 0.8
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Conditional probability

Definition of conditional probability:

P(a|b) = P(a ∧ b)
P(b) if P(b) 6= 0

Product rule gives an alternative formulation:
P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)
A general version holds for whole distributions, e.g.,
P(Weather ,Cavity) = P(Weather |Cavity)P(Cavity)
Chain rule is derived by successive application of product rule:

P(X1, . . . ,Xn) = P(X1, . . . ,Xn−1) P(Xn|X1, . . . ,Xn−1)
= P(X1, . . . ,Xn−2) P(Xn−1|X1, . . . ,Xn−2) P(Xn|X1, . . . ,Xn−1)
= . . .

=
∏n

i=1 P(Xi |X1, . . . ,Xi−1)
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P(cavity∨toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28
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Inference by enumeration
Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Can also compute conditional probabilities:

P(¬cavity |toothache) = P(¬cavity ∧ toothache)
P(toothache)

= 0.016 + 0.064
0.108 + 0.012 + 0.016 + 0.064 = 0.4
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Normalization

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Denominator can be viewed as a normalization constant α

P(Cavity |toothache) = αP(Cavity , toothache)
= α [P(Cavity , toothache, catch) + P(Cavity , toothache,¬catch)]
= α [〈0.108, 0.016〉+ 〈0.012, 0.064〉]
= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables
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Inference by enumeration, contd.

Let X be all the variables. Typically, we want the posterior joint
distribution of the query variables Y given specific values e for the
evidence variables E
Let the hidden variables be H = X− Y− E
Then the required summation of joint entries is done by summing out
the hidden variables:

P(Y|E = e) = αP(Y,E = e) = α
∑

h
P(Y,E = e,H = h)

Joint probability p(x) = p(x1, . . . , xn)  number of states:∏n
i=1 |arity(xi )|.

Obvious problems:
1) Worst-case time complexity O(dn) where d is the largest arity
2) Space complexity O(dn) to store the joint distribution
3) How to find the numbers for O(dn) entries???
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Inference in Jointly Gaussian Distributions: Marginalization

x ∼ N (µ,Σ). Let x =
(

x1
x2

)
and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.

Then x1 ∼ N (µ1,Σ11) and x2 ∼ N (µ2,Σ22).
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Marginals of Gaussians are again Gaussian!
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Inference in Jointly Gaussian Distributions

wikimedia.org/w/index.php?curid=25235145
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Inference in Jointly Gaussian Distributions

x ∼ N (µ,Σ). Let x =
(

x1
x2

)
and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.

Then x2|x1 ∼ N (µ2 + Σ21Σ−1
11 (x1 − µ1),Σ22 − Σ21Σ−1

11 Σ12).
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Conditionals of Gaussians are again Gaussian!
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Independence
A and B are independent iff
P(A|B) = P(A) or P(B|A) = P(B) or P(A,B) = P(A)P(B)

Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch
Cavity

P(Toothache,Catch,Cavity ,Weather)
= P(Toothache,Catch,Cavity)P(Weather)
 4 · 8 = 32 entries reduced to 4 + 8 = 12.
Absolute independence powerful but rare...
Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Conditional independence

P(Toothache,Cavity ,Catch) has 23 − 1 = 7 independent entries
If I have a cavity, the probability that the probe catches in it doesn’t
depend on whether I have a toothache:
(1) P(catch|toothache, cavity) = P(catch|cavity)
The same independence holds if I haven’t got a cavity:
(2) P(catch|toothache,¬cavity) = P(catch|¬cavity)
Catch is conditionally independent of Toothache given Cavity :
P(Catch|Toothache,Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
P(Toothache,Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

Volker Roth (University of Basel) Machine Learning 2020 26th February 2020 39 / 67



Conditional independence contd.

Write out full joint distribution using chain rule:
P(Toothache,Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

I.e., only 2 + 2 + 1 = 5 independent numbers.

Often, conditional independence reduces the size of the representation of
the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of
knowledge about uncertain environments.
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Bayes Rule

Bayes Rule

P(B|A) = P(A|B)P(B)
P(A)

Proof.
P(A|B)P(B) = P(A,B) = P(B|A)P(A)
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Bayes Rule (cont’d)

Useful for assessing diagnostic probability from causal probability:

P(Cause|Effect) =

Prob(symptoms)︷ ︸︸ ︷
P(Effect|Cause)

Prevalence︷ ︸︸ ︷
P(Cause)

P(Effect)
E.g., let M be meningitis (acute inflammation of the protective
membranes covering the brain and spinal cord),
S be stiff neck. Assume the doctor knows that the prevalence of
meningitis is 1/50, 000, that the prior probability of a stiff neck is
0.01, and that the symptom stiff neck occurs with a probability of 0.7.

P(m|s) = P(s|m)P(m)
P(s) = 0.7× 1/50000

0.01 = 0.0014.

Note: the posterior probability of meningitis is still very small (1 in
700 patients)!
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Bayes rule (cont’d)
Question: Why should it be easier to estimate the conditional
probabilities in the causal direction P(Effect|Cause), as compared to the
diagnostic direction, P(Cause|Effect)?
There are two possible answers (in a medical setting):

We might have access to a collection of health records for patients
having meningitis. This collections will provide us with estimates of
P(s|m). For directly estimating P(m|s) we would need a database of
all cases of the very unspecific symptom.
Diagnostic knowledge might be more fragile than causal knowledge.
Assume a doctor has directly estimated P(m|s). If there is a sudden
epidemic of meningitis, P(m) will go up, but this doctor will have no
idea how to update P(m|s). The other doctor who uses Bayes rule
knows that P(m|s) should go up proportionately with p(m).
Note that causal information P(s|m) is unaffected by the epidemic
(it simply reflects the way how meningitis works)!
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Bayes’ Rule and conditional independence

P(Cavity |toothache ∧ catch)
= αP(toothache ∧ catch|Cavity)P(Cavity)
= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause,Effect1, . . . ,Effectn) = P(Cause)
∏

i
P(Effecti |Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

Total number of parameters is linear in n
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Example: Wumpus World

- The wumpus is a beast that eats anyone who enters the room.
- Some rooms contain bottomless pits that will trap anyone entering the
room (except for the wumpus, which is too big to fall in!)
- The only positive aspect is the possibility of finding gold...

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench Squares adjacent to wumpus are smelly.
Squares adjacent to pit are breezy.
Glitter if and only if gold is in the same square.
Shooting kills the wumpus if you are facing it.
Shooting uses up the only arrow.
Grabbing picks up the gold if in the same square.
Releasing drops the gold in the same square.

Goal: Get gold back to start without entering pit or wumpus square
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Wumpus World

OK
 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

Pij = true iff [i , j] contains a pit
Bij = true iff [i , j] is breezy
Include only B1,1,B1,2,B2,1 in the probability model
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Specifying the probability model

The full joint distribution is P(P1,1, . . . ,P4,4,B1,1,B1,2,B2,1)
Apply product rule: P(B1,1,B1,2,B2,1 |P1,1, . . . ,P4,4)P(P1,1, . . . ,P4,4)
(Do it this way to get P(Effect|Cause).)
First term: 1 if pits are adjacent to breezes, 0 otherwise
Second term: pits are placed randomly, probability 0.2 per square:

P(P1,1, . . . ,P4,4) = Π4,4

i ,j = 1,1P(Pi ,j) = 0.2n× 0.816−n

for n pits.
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Observations and query

We know the following facts:
b = ¬b1,1 ∧ b1,2 ∧ b2,1
known = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1
Query is P(P1,3|known, b)
Define Unknown = Pijs other than P1,3 and Known
For inference by enumeration, we have

P(P1,3|known, b) = α
∑

unknown
P(P1,3, unknown, known, b)

Grows exponentially with number of squares!
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Using conditional independence

Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

KNOWN
FRINGE

QUERY
OTHER

Define Unknown = Fringe ∪ Other
P(b|P1,3,Known,Unknown) = P(b|P1,3,Known,Fringe)
Manipulate query into a form where we can use this!
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Using conditional independence contd.

P(P1,3|known, b) = α
∑

unknown
P(P1,3, unknown, known, b)

= α
∑

unknown
P(b|P1,3, known, unknown)P(P1,3, known, unknown)

= α
∑
fringe

∑
other

P(b|known,P1,3, fringe, other)P(P1,3, known, fringe, other)

= α
∑
fringe

∑
other

P(b|known,P1,3, fringe)P(P1,3, known, fringe, other)

= α
∑
fringe

P(b|known,P1,3, fringe)
∑
other

P(P1,3, known, fringe, other)

= α
∑
fringe

P(b|known,P1,3, fringe)
∑
other

P(P1,3)P(known)P(fringe)P(other)

= αP(known)P(P1,3)
∑
fringe

P(b|known,P1,3, fringe)P(fringe)
∑
other

P(other)

= α′ P(P1,3)
∑
fringe

P(b|known,P1,3, fringe)P(fringe)
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Using conditional independence contd.

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16 0.8 x 0.2 = 0.16

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16

P(P1,3|known, b) = α′ 〈0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)〉
≈ 〈0.31, 0.69〉

P(P2,2|known, b) ≈ 〈0.86, 0.14〉
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Summary

Probability is a rigorous formalism for uncertain knowledge
Joint probability distribution specifies probability of every atomic
event
Queries can be answered by summing over atomic events
For nontrivial domains, we must find a way to reduce the joint size
Independence and conditional independence provide the tools
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Subsection 1

Origins of probabilities
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Origins of probabilities I

Historically speaking, probabilities have been regarded in a number of
different ways:

Frequentist position: probabilities come from measurements. The
assertion P(cavity) = 0.05 means that 0.05 is the fraction that would
be observed in the limit of infinitely many samples. From a finite
sample, we can estimate this true fraction and also calculate how
accurate this estimates is likely to be.
Objectivist view: probabilities are actual properties of the universe
An excellent example: quantum phenomena.
A less clear example: coin flipping – the uncertainty is probably due
to our uncertainty about the initial conditions of the coin.
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Origins of probabilities II

Subjectivist view: probabilities are an agent’s degrees of belief,
rather than having any external physical significance.
The Bayesian view allows any self-consistent ascription of prior
probabilities to propositions, but then insists on proper Bayesian
updating as evidence arrives.
For example P(cavity) = 0.05 denotes the degree of belief that a
random person has a cavity before we make any actual
observation of that person.
Updating in the light of further evidence “person has a toothache”:

P(cavity |toothache) = αP(toothache|cavity)P(cavity)
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The reference class problem

Even a strict frequentist position involves subjective analysis.
Example: Say a doctor takes a frequentist approach to diagnosis.
She examines a large number of people to establish the probability of
whether or not they have heart disease.
To be accurate she tries to measure “similar people” (she knows for
example that gender might be important.)
Taken to an extreme, all people are different and therefore the
reference class is empty.
This has been a vexing problem in the philosophy of science.
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Frequentist and Bayesian view: a simple example
Assume x1, . . . , xn are drawn i.i.d. from normal N(µ, σ2) with known
variance σ2. What can be said about µ?
Frequentist view: no further probabilistic assumptions
 treat µ as an unknown constant.
The sample mean x̄ =

∑
i xi/n is the observed value of the RV

X̄ ∼ N(µ, σ̄2), with σ̄2 = σ2/n.
Now define the linearly transformed random variable

B := µ− X̄
σ̄
∼ N(0, 1), ( i.e. standard normal).

Use normal cdf Φ(kc) = P(B < kc) to derive an upper limit for µ:
P(B < kc) = Φ(kc) = 1− c

= P(−σ̄B > −σ̄kc)
= P(µ− σ̄B︸ ︷︷ ︸

X̄

> µ− σ̄kc)

= P(X̄ + σ̄kc > µ).
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Frequentist and Bayesian view: a simple example

The statement P(µ < X̄ + σ̄kc) = 1− c can be interpreted as
specifying a hypothetical long run of statements about the
constant µ, a portion 1− c of which is correct.
(Note that X̄ is a RV!)
Plugging in the observed x̄ , the statement µ < x̄ + σ̄kc can be
interpreted as one of a long run of such statements about µ.
Arguments involving probability only via its (hypothetical)
long-run frequency interpretation are called frequentist.
That is, in the frequentist world we define procedures for assessing
evidence that are calibrated by how they would perform were they
used repeatedly.
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Frequentist and Bayesian view: a simple example

From the Bayesian viewpoint, we treat µ as having a probability
distribution both with and without the data. That is, µ is the
unobserved value of the random variable M.
Bayes’ theorem: pM|X (µ|x) = α× pX |M(x |µ)pM(µ).
Intuitive idea:

I all relevant information about µ is in the conditional distribution, given
the data;

I this distribution is determined by the elementary formulae of probability
theory;

I remaining problems are solely computational.
Example: choose p(µ) = N(m, ν2)  p(µ|x) = N(m̃, ν̃2) with

m̃ = x̄/σ̄2 + m/ν
1/σ̄2 + 1/ν2 , ν̃2 = 1

1/σ̄2 + 1/ν2

“Normal likelihood times normal prior gives normal posterior”
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Frequentist and Bayesian view: a simple example

Same reasoning as before: define transfomed B̃ := µ−m̃
ν̃ ∼ N(0, 1)

Upper limit for µ: P(µ < m̃ + kc ν̃) = 1− c.
If the prior variance ν2 � σ̄2 and the prior mean m is not too
different from X̄ , this limit agrees closely with the one obtained by
the frequentist method (because then m̃ ≈ X̄ and ν̃ ≈ σ̄).
This broad parallel between the different types of analysis is in no way
specific to the normal distribution.
See the beautiful book (D.R. Cox, Principles of statistical inference,
Cambridge, 2006) for further details.
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Subsection 2

Some important statistical concepts
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Convergence of random variables

Definition (Convergence in Probability)
Let X1,X2, . . . be random variables. We say that Xn converges in
probability to the random variable X as n→∞, iff, for all ε > 0,

P(|Xn − X | > ε)→ 0, as n→∞.

We write Xn
p−→ X as n→∞.

Volker Roth (University of Basel) Machine Learning 2020 26th February 2020 62 / 67



Example: Weak law of large numbers
Theorem (Bernoulli’s Theorem, Weak law of large numbers)
Let X1,X2, . . . , be a sequence of independent and identically distributed
(i.i.d.) random variables, each having mean µ (and standard deviation σ).
Let Sn = X1 + . . .+ Xn. Then

P(|Sn/n − µ| > ε)→ 0

as n→∞.

Given sufficiently many observations xi , the sample mean
x = 1

n
∑n

i=1 xi will approach the true mean µ.
Note that |Sn/n − µ| > ε might happen an infinite number of
times, although at infrequent intervals.
The strong law even says that for any ε > 0 the inequality
|Sn/n − µ| < ε holds for all large enough n, but we will not discuss
this further...
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Example: convergence of empirical CDF

Definition (Empirical cumulative distribution function)
Let X1,X2, . . . ,Xn be iid real random variables with the common cdf F (t).
Then the empirical distribution function is defined as

F̂n(t) = #(elements) in the sample ≤ t
n = 1

n

n∑
i=1

1{Xi ≤ t},

where 1{A} is the indicator of event A.

For a fixed t, the indicator 1{Xi ≤ t} is a Bernoulli random variable
with mean µ = F (t).
Weak law of large numbers ⇒ estimator F̂n(t) converges in probability
to F (t) as n→∞, for every value of t:

F̂n(t) p−→ F (t).
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Expectation

Definition (Expectation)
Let X be a random variable with probability density function fX .
The expectation is

E [X ] :=
∫ ∞
−∞

xfX (x) dx .

Definition (Sample mean)
Let a sample x = {x1, x2, . . . , xn} be given. The sample mean is

x = 1
n

n∑
i=1

xi .

The sample mean is an unbiased estimator of µ = E [X ].
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Variance

Definition (Variance)
Let X be a random variable with density function fX . The variance is

Var[X ] = E [(X − E [X ])2] = E [X 2]− (E [X ])2.

The square root
√

Var[X ] is the standard deviation.

Definition (Sample Variance)
Let the sample x = {x1, x2, . . . , xn} with sample mean x be given.
The sample variance is

s2 = 1
n − 1

n∑
i=1

(xi − x)2.

The sample variance is an unbiased estimator of Var[X ].
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Bias and Variance of an Estimator

Assume that a statistical model parametrized by θ gives rise to a
probability distribution for observed data, P(x |θ).
Let θ̂ be an estimator of θ based on any observed data x , i.e. θ̂ maps
observed x to values that we hope are close to θ.
The bias of θ̂ is defined to be

Bias[ θ̂ ] = EP(x |θ)[ θ̂ ]− θ = EP(x |θ)[ θ̂ − θ ],
where EP(x |θ)[·] denotes expected value over the distribution P(x |θ),
i.e. averaging over all possible observations x .
An estimator is unbiased if its bias is zero for all values of
parameter θ.
The variance of θ̂ is the expected value of the squared sampling
deviations: var(θ̂) = E [(θ̂ − E (θ̂))2].
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