Machine Learning 2020

Volker Roth

Department of Mathematics & Computer Science
University of Basel

19th March 2020

Section 4

Regression

Regression basics

• In regression we assume that a response variable $y \in \mathbb{R}$ is a noisy function of the input variable $\mathbf{x} \in \mathbb{R}^d$.

$$y = f(\mathbf{x}) + \eta.$$

- We often assume that f is linear, $f(\mathbf{x}) = \mathbf{w}^t \mathbf{x}$, and that η has a zero-mean Gaussian distribution with constant variance, $\eta \sim N(0, \sigma^2)$.
- This is can equivalently be written as

$$p(y|\mathbf{x}) = N(\mu(\mathbf{x}), \sigma^2), \text{ with } \mu(\mathbf{x}) = \mathbf{w}^t \mathbf{x}.$$

- In one dimension: $\mu(\mathbf{x}) = w_0 + w_1 x$ and $\mathbf{x} = (1, x)$. w_0 is the **intercept** or bias term and w_1 is the **slope**.
- If $w_1 > 0$, we expect the output to increase as the input increases.

Least Squares and Maximum Likelihood

- Fit n data points (x_i, y_i) to a model that has d+1 parameters $w_j, j = 0, \ldots, d$.
- Notation: $\mathbf{x} \leftarrow (1, \mathbf{x}) \rightsquigarrow w_0$ is the intercept.
- Frequentist view: w is an unknown parameter vector, not a RV.
- We assume that the *n* observations are **iid**.
- Linear model: $y_i = \mathbf{w}^t \mathbf{x}_i + \eta_i$, $\eta_i \sim N(0, \sigma^2)$. Observed y_i generated from a normal distribution centered at $\mathbf{w}^t \mathbf{x}_i$.
- Model predicts linear relationship between conditional expectation of observations y_i and inputs x_i:

$$E[y_i|\mathbf{x}_i] = w_0 + w_1x_{i1} + \cdots + w_dx_{id} = \mathbf{w}^t\mathbf{x}_i = f(\mathbf{x}_i;\mathbf{w}).$$

Note: the expectation operator is linear and $E[\eta_i] = 0$.

Regression function = conditional expectation.

LS and Maximum Likelihood

• **Likelihood function:** conditional probability of all observed y_i given their explanation, treated as a function of the model parameters \mathbf{w} :

$$L(\mathbf{w}) \propto \prod_{i} \exp \left[-\frac{1}{2\sigma^2} (y_i - \mathbf{w}^t \mathbf{x}_i)^2 \right]$$

• Maximizing L = finding model that best explains observations:

$$\hat{\boldsymbol{w}} = \arg \max_{\boldsymbol{w}} L(\boldsymbol{w}) = \arg \min_{\boldsymbol{w}} [-L(\boldsymbol{w})] = \arg \min_{\boldsymbol{w}} [-\log(L(\boldsymbol{w}))]$$
$$= \arg \min_{\boldsymbol{w}} \sum_{i} (y_{i} - \boldsymbol{w}^{t} \boldsymbol{x}_{i})^{2}$$

Least-squares fit = ML solution under Gaussian error model.

• \hat{w}_{MLE} minimizes the residual sum of squares

$$RSS(\mathbf{w}) = \sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} [y_i - f(\mathbf{x}_i; \mathbf{w})]^2 = \|\mathbf{y} - X\mathbf{w}\|^2.$$

Least squares regression: Geometry

$$\frac{\partial RSS(\mathbf{w})}{\partial \mathbf{w}} = \frac{\partial}{\partial \mathbf{w}} [\mathbf{y}^t \mathbf{y} - 2\mathbf{y}^t X \mathbf{w} + \mathbf{w}^t X^t X \mathbf{w}]$$

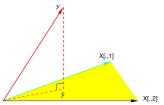
$$= -2X^t \mathbf{y} + 2X^t X \mathbf{w} \stackrel{!}{=} \mathbf{0}$$

$$\Rightarrow \hat{\mathbf{w}} = (X^t X)^{-1} X^t \mathbf{y}$$

$$\Rightarrow X^t (\mathbf{y} - X \hat{\mathbf{w}}) = X^t \hat{\mathbf{r}} = \mathbf{0}.$$

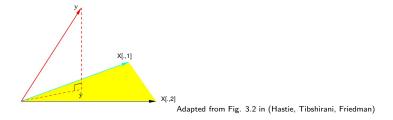
If follows that $\sum_{i=1}^{n} X_{ij} r_i = 0, \ \forall j = 0, 1, \dots, d$.

Residual is orthogonal to 1 (j = 0) and to every input dimension $X_{\bullet j}$.



Adapted from Fig. 3.2 in (Hastie, Tibshirani, Friedman)

Least squares regression: Geometry



• The fitted values at the training inputs are

$$(\hat{f}(\mathbf{x}_1),\ldots,\hat{f}(\mathbf{x}_n))^t = \hat{\mathbf{y}} = X\hat{\mathbf{w}} = X(X^tX)^{-1}X^t\mathbf{y}.$$

- $H = X(X^tX)^{-1}X^t$ is called "hat" matrix (puts hat on y)
- Column vectors of X span the **column space** of $X \subset \mathbb{R}^n$.
- Minimizing $RSS(w) \rightsquigarrow$ choose \hat{w} such that r is orthogonal.
- ullet Fitted values \hat{y} are **orthogonal projection** of y on column space.

Least squares regression: Algebra

• *H* is **orthogonal projection** on **column space** of *X*:

$$HX = X(X^tX)^{-1}X^tX = X.$$

- Fundamental theorem of linear algebra: the nullspace of X^t is the orthogonal complement of the column space of X.
- $M = I_n H$ is **orthogonal projection** on **nullspace** of X^t : $MX = (I_n - H)X = X - X = 0$.
- H and M are symmetric ($H^t = H$) and idempotent (MM = M)

The Algebra of Least Squares

- H creates fitted values: $\hat{\pmb{y}} = H \pmb{y} \leadsto \hat{\pmb{y}} \in Col(X)$
- M creates residuals: $r = My \rightsquigarrow \hat{r} \in \text{Null}(X^t) \Leftrightarrow X^t r = 0$

Frequentist confidence limits

- **Recall:** $y_i = f(\mathbf{x}_i; \mathbf{w}) + \eta_i$, with independent Gaussian noise.
- In matrix-vector form: $\mathbf{y} = X\mathbf{w} + \boldsymbol{\eta}$, with $\boldsymbol{\eta} \sim N(\mathbf{0}, \sigma^2 I_n)$.

$$\hat{\mathbf{w}} = (X^t X)^{-1} X^t \mathbf{y}$$

$$= (X^t X)^{-1} X^t X \mathbf{w} + (X^t X)^{-1} X^t \boldsymbol{\eta}$$

$$= \mathbf{w} + (X^t X)^{-1} X^t \boldsymbol{\eta}$$

$$\Rightarrow \quad \hat{\mathbf{w}} - \mathbf{w} = (X^t X)^{-1} X^t \boldsymbol{\eta} =: A \boldsymbol{\eta}$$

• Linear functions of normals are normal:

$$\eta \sim N(\mathbf{0}, \sigma^2 I_n) \Rightarrow A\eta \sim N(\mathbf{0}, \sigma^2 A A^t).$$

Here:
$$A = (X^t X)^{-1} X^t \Rightarrow AA^t = (X^t X)^{-1}$$

• Conditioned on X and σ^2 :

$$\hat{\boldsymbol{w}} - \boldsymbol{w} | X, \sigma^2 \sim \mathcal{N} \left(\boldsymbol{0}, \sigma^2 (X^t X)^{-1} \right).$$

Frequentist confidence limits

• Distribution completely specified \leadsto confidence limits:

$$\hat{w}_k - w_k \sim N(0, \sigma^2 S^{kk}),$$

where S^{kk} denotes the kth diagonal element of $(X^tX)^{-1}$.

• Thus, both z'_k and $z_k = -z'_k$ are standard normal:

$$z_k := (w_k - \hat{w}_k)/\sqrt{\sigma^2 S^{kk}} \sim N(0,1)$$

CDF:

$$P(z_k < k_c) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{k_c} e^{-t^2/2} dt =: \Phi(k_c) = 1 - c$$

• Upper limit for w_k :

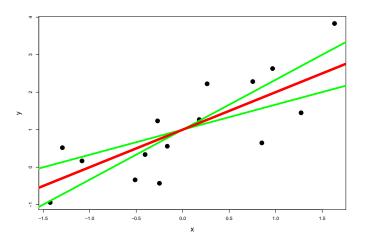
$$P(z_{k} < k_{c}) = P(\sqrt{\sigma^{2}S^{kk}}z_{k} < \sqrt{\sigma^{2}S^{kk}}k_{c})$$

$$= P(w_{k} - (w_{k} - \hat{w}_{k}) > w_{k} - \sqrt{\sigma^{2}S^{kk}}k_{c})$$

$$= P(\hat{w}_{k} > w_{k} - \sqrt{\sigma^{2}S^{kk}}k_{c})$$

$$= P(w_{k} < \hat{w}_{k} + \sqrt{\sigma^{2}S^{kk}}k_{c}) = 1 - c.$$

Frequentist confidence limits



Least-squares fit (red) and two lines with slopes according to upper (lower) 95% confidence limit (green).

Standard parametric rate

Assume we have estimated the parameters based on n samples:

$$(\hat{\boldsymbol{w}}_{n} - \boldsymbol{w}) \sim N(\boldsymbol{0}, \sigma^{2} (X^{t}X)^{-1})$$

$$= N(\boldsymbol{0}, \sigma^{2} (X^{t}X/n)^{-1} \cdot 1/n)$$

$$\sqrt{n}(\hat{\boldsymbol{w}}_{n} - \boldsymbol{w}) \sim N(\boldsymbol{0}, \sigma^{2} (X^{t}X/n)^{-1})$$

- Since for $n \to \infty$, $X^t X/n \to \Sigma = const$, this means that $\hat{\boldsymbol{w}}_n$ converges to \boldsymbol{w} at a rate of $1/\sqrt{n}$.
- This is a very general result that holds in an asymptotic sense even without assuming normality \(\simes\) central limit theorem.
- Due to its universality, it is called the **standard parametric rate.**

Basis functions

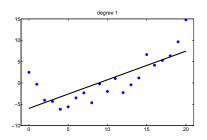
• Can be generalized to model non-linear relationships by replacing ${\bf x}$ with some non-linear function of the inputs, $\phi({\bf x})$:

$$p(y|\mathbf{x}) = N(\mathbf{w}^t \phi(\mathbf{x}), \sigma^2).$$

• Predictions can be based on a linear combination of a set of basis functions $\phi(\mathbf{x}) = \{g_0(\mathbf{x}), g_1(\mathbf{x}), \dots, g_m(\mathbf{x})\}$, with $g_i(\mathbf{x}) : \mathbb{R}^d \mapsto \mathbb{R}$. Can model the intercept by setting $g_0(\mathbf{x}) = 1$:

$$f(\mathbf{x};\mathbf{w})=w_0+w_1g_1(\mathbf{x})+\cdots+w_mg_m(\mathbf{x}).$$

→ additive models



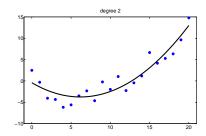


Fig 1.7 in K.Murphy

Additive models

Examples:

If
$$x \in \mathbb{R}^d$$
 and $m = d+1$, $g_0(\mathbf{x}) = 1$ and $g_i(\mathbf{x}) = x_i, i = 1, \dots, d$, then $f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \dots + w_d x_d$. If $x \in \mathbb{R}$, $g_0(\mathbf{x}) = 1$ and $g_i(x) = x^i, i = 1, \dots, m$, then $f(x; \mathbf{w}) = w_0 + w_1 x^1 + \dots + w_m x^m$.

Basis functions can capture various properties of the inputs.
 Example: Document analysis

$$m{x} = ext{text document (collection of words)}$$
 $g_i(m{x}) = \begin{cases} 1, & ext{if word i appears in the document} \\ 0, & ext{otherwise} \end{cases}$ $f(m{x}; m{w}) = w_0 + \sum_{i \in ext{words}} w_i g_i(m{x}).$

Additive models cont'd

- We can also make predictions by gauging the similarity of examples to prototypes.
- For example, our additive regression function could be

$$f(\mathbf{x};\mathbf{w}) = w_0 + w_1 g_1(\mathbf{x}) + \cdots + w_m g_m(\mathbf{x}),$$

where the basis functions are radial basis functions

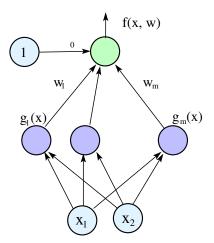
$$g_k(\mathbf{x}) = \exp(-\frac{1}{2\sigma^2} \|\mathbf{x} - \mathbf{x}_k\|^2)$$

measuring the similarity to the prototypes x_k .

- The variance σ^2 controls how quickly the basis function vanishes as a function of the distance to the prototype.
- Training examples themselves could serve as prototypes.

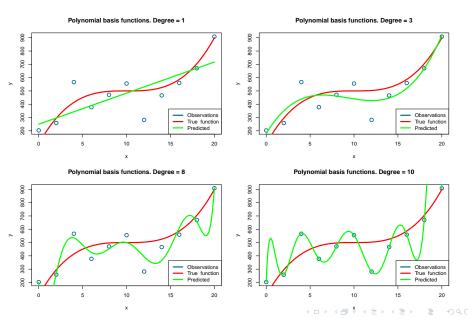
Additive models cont'd

Can view additive models graphically in terms of units and weights.



In **neural networks** the basis functions have adjustable parameters.

Example: Polynomial regression



Complexity and overfitting

With limited training examples our polynomial regression model may achieve zero training error but nevertheless has a large expected error.

training
$$\frac{1}{n}\sum_{i=1}^{n}(y_{i}-f(\boldsymbol{x}_{i};\hat{\boldsymbol{w}})^{2}\approx0$$
 expectation
$$E_{(\boldsymbol{x},y)\sim p}\;(y-f(\boldsymbol{x};\hat{\boldsymbol{w}})^{2}\gg0$$

We suffer from **over-fitting**→ should reconsider our model → **model selection**.

We will discuss model selection from a **Bayesian perspective** first. A frequentist approach will follow later in the chapter on **statistical learning theory.**

Subsection 1

Bayesian Regression

Bayesian interpretation: priors

• Suppose our generative model takes an input $\mathbf{x} \in \mathbb{R}^d$ and maps it to a real valued output y according to

$$p(y|\mathbf{x}, \mathbf{w}, \sigma^2) = N(y|\mathbf{w}^t\mathbf{x}, \sigma^2)$$

- We will keep σ^2 fixed and only try to estimate \boldsymbol{w} .
- Given data $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$, the **likelihood function** is

$$L(\boldsymbol{w}; \mathcal{D}) = \prod_{i=1}^{n} N(y_i | \boldsymbol{w}^t \boldsymbol{x}_i, \sigma^2) = \prod_{i=1}^{n} \frac{1}{Z} \exp\left(-\frac{1}{2\sigma^2} (y_i - \boldsymbol{w}^t \boldsymbol{x}_i)^2\right).$$

- In classical regression we used the maximizing parameters $\hat{\boldsymbol{w}}$.
- In Bayesian analysis we keep all regression functions, just weighted by their ability to explain the data.
- Our knowledge about \mathbf{w} after seeing the data is defined by the **posterior distribution** $p(\mathbf{w}|\mathcal{D})$.

Bayesian regression: Prior and posterior

• We specify our **prior belief** about the parameter values as p(w). For instance, we could prefer small parameter values:

$$p(\mathbf{w}) = N(\mathbf{w}|0, \tau^2 I)$$

The smaller τ^2 is, the smaller values of \boldsymbol{w} we prefer prior to seeing the data.

• **Posterior** proportional to prior p(w) times likelihood:

$$p(\mathbf{w}|\mathcal{D}) \propto L(\mathbf{w}; \mathcal{D})p(\mathbf{w})$$

• Here: posterior is Gaussian $p(\mathbf{w}|\mathcal{D}, \sigma^2) = N(\mathbf{w}|\mathbf{w}_N, V_N)$ with mean \mathbf{w}_N and covariance V_N given by

$$\mathbf{w}_N = (X^t X + \lambda I)^{-1} X^t \mathbf{y}, \quad V_N = \sigma^2 (X^t X + \lambda I)^{-1},$$
 with $\lambda = \frac{\sigma^2}{\tau^2}$.

Bayesian regression: Posterior computation

Given variables $\mathbf{x} \in \mathbb{R}^{d_x}$ and $\mathbf{y} \in \mathbb{R}^{d_y}$, assume **linear Gaussian system:**

$$p(\mathbf{x}) = N(\mathbf{x}|\boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{x}) \quad (\leadsto \text{ prior})$$

 $p(\mathbf{y}|\mathbf{x}) = N(\mathbf{y}|A\mathbf{x} + \boldsymbol{b}, \boldsymbol{\Sigma}_{y}) \quad (\leadsto \text{ likelihood})$

The posterior is also Gaussian:

$$\begin{split} & \rho(\boldsymbol{x}|\boldsymbol{y}) = N(\boldsymbol{x}|\boldsymbol{\mu}_{x|y}, \boldsymbol{\Sigma}_{x|y}) \\ & \boldsymbol{\Sigma}_{x|y}^{-1} = \boldsymbol{\Sigma}_{x}^{-1} + A^{t} \boldsymbol{\Sigma}_{y}^{-1} A \\ & \boldsymbol{\mu}_{x|y} = \boldsymbol{\Sigma}_{x|y} \left(A^{t} \boldsymbol{\Sigma}_{y}^{-1} (\boldsymbol{y} - \boldsymbol{b}) + \boldsymbol{\Sigma}_{x}^{-1} \boldsymbol{\mu}_{x} \right). \end{split}$$

Gaussian likelihood and Gaussian prior form a conjugate pair.

• The normalization constant (denominator in Bayes formula) is $p(\mathbf{v}) = N(\mathbf{v}|A\boldsymbol{\mu}_{\times} + \boldsymbol{b}, \boldsymbol{\Sigma}_{\times} + A\boldsymbol{\Sigma}_{\times} A^{t}).$

Bayesian regression: Posterior predictive

 Prediction of y for new x: use posterior as weights for predictions based on individual w's → Posterior predictive:

$$p(y|\mathbf{x}, \mathcal{D}, \sigma^2) = \int p(y|\mathbf{x}, \mathbf{w}, \sigma^2) p(\mathbf{w}|\mathcal{D}) d\mathbf{w}$$

$$= \int N(y|\mathbf{x}^t \mathbf{w}, \sigma^2) N(\mathbf{w}|\mathbf{w}_N, V_N)$$

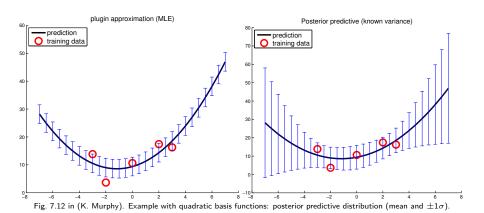
$$= N(y|\mathbf{w}_N^t \mathbf{x}, \sigma_N^2(\mathbf{x})), \text{ with}$$

$$\sigma_N^2(\mathbf{x}) = \sigma^2 + \mathbf{x}^t V_N \mathbf{x}.$$

- The variance in this prediction, $\sigma_N^2(\mathbf{x})$, depends on two terms:
 - the variance of the observation noise, σ^2
 - ightharpoonup the variance in the parameters, V_N
 - \leadsto depends on how close ${\it x}$ is to training data ${\cal D}$
 - → error bars get larger as we move away from training points.

Bayesian regression: Posterior predictive

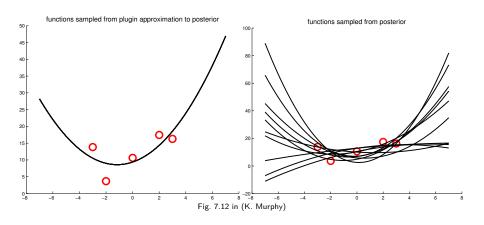
• By contrast, the **plugin approximation** uses only the ML-parameter estimate with the degenerate distribution $p(\mathbf{w}|\mathcal{D}, \sigma^2) = \delta_{\hat{\mathbf{w}}}(\mathbf{w})$: $p(\mathbf{y}|\mathbf{x}, \mathcal{D}, \sigma^2) \approx \int p(\mathbf{y}|\mathbf{x}, \mathbf{w}, \sigma^2) \delta_{\hat{\mathbf{w}}}(\mathbf{w}) d\mathbf{w} = p(\mathbf{y}|\mathbf{x}, \hat{\mathbf{w}}, \sigma^2) = N(\mathbf{y}|\mathbf{x}^{\dagger}\hat{\mathbf{w}}, \sigma^2)$.



Sampling from posterior predictive

Left: plugin approximation: $f(y) = \phi(\mathbf{x})^t \hat{\mathbf{w}}$, where $\phi(\mathbf{x})$ is the expanded input vector $(1, x, x^2)^t$.

Right: sampled functions $\phi(\mathbf{x})^t \mathbf{w}^{(s)}$, where $w^{(s)}$ are samples from the posterior



MAP approximation and ridge regression

- Posterior proportional to prior $p(\mathbf{w}) = N(\mathbf{w}|0, \tau^2 I)$ times likelihood.
- The MAP estimate is

$$\begin{aligned} \mathbf{w}_{\mathsf{MAP}} &= \arg \max \{ \log[L(\mathbf{w}; \mathcal{D})] + \log[p(\mathbf{w})] \} \\ &= \arg \min \{ -\log[L(\mathbf{w}; \mathcal{D})] - \log[p(\mathbf{w})] \} \\ &= \arg \min \{ \frac{1}{2\sigma^2} \sum_i (y_i - \mathbf{w}^t \mathbf{x}_i)^2 + \frac{1}{2\tau^2} \mathbf{w}^t \mathbf{w} \} \\ &= \arg \min \{ \sum_i (y_i - \mathbf{w}^t \mathbf{x}_i)^2 + \frac{\sigma^2}{\tau^2} \mathbf{w}^t \mathbf{w} \} \\ &= \arg \min \{ \sum_i (y_i - \mathbf{w}^t \mathbf{x}_i)^2 + \lambda \mathbf{w}^t \mathbf{w} \} \end{aligned}$$

• In classical statistics, this is called ridge regression:

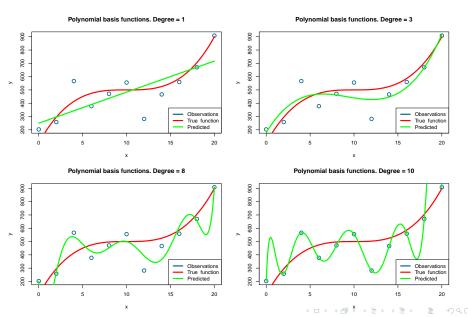
$$\mathbf{w}_{\mathsf{MAP}} = \mathbf{w}_{\mathsf{ridge}} = (X^t X + \lambda I)^{-1} X^t \mathbf{y}.$$

 In regularization theory, this is an example of Tikhonov Regularization.

Subsection 2

Bayesian model selection

Example: Polynomial regression



Bayesian regression (again)

• Suppose our parametrized model \mathcal{F}_{θ} takes an input $\mathbf{x} \in \mathbb{R}^d$ and maps it to a real valued output y according to

$$p(y|\mathbf{x}, \boldsymbol{\theta}, \sigma^2) = N(y; \boldsymbol{\theta}^t \mathbf{x}, \sigma^2)$$

- ullet We will keep σ^2 fixed and only try to estimate $oldsymbol{ heta}.$
- Given data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, define likelihood

$$L(\boldsymbol{\theta}; \mathcal{D}) = \prod_{i=1}^{n} N(y_i; \boldsymbol{\theta}^t \boldsymbol{x}_i, \sigma^2) = \prod_{i=1}^{n} \frac{1}{Z} \exp\left(-\frac{1}{2\sigma^2} (y_i - \boldsymbol{\theta}^t \boldsymbol{x}_i)^2\right).$$

- ullet In classical regression we used the maximizing parameters $\hat{oldsymbol{ heta}}.$
- In Bayesian analysis we keep **all regression functions**, just weighted by their ability to explain the data.
- ullet Knowledge about $oldsymbol{ heta}$ after seeing the data defined by posterior $p(oldsymbol{ heta}|\mathcal{D})$.

Bayesian regression (again)

• We specify our **prior belief** about the parameter values as $p(\theta)$. For instance, we could prefer small parameter values:

$$p(\theta) = N(\theta; 0, \tau^2 I)$$

Small $\tau^2 \rightsquigarrow \text{small } \theta$ preferred **prior to seeing data.**

ullet Posterior proportional to prior p(heta) times likelihood:

$$p(\theta|\mathcal{D}) \propto L(\theta;\mathcal{D})p(\theta)$$

• Normalization constant, a.k.a. marginal likelihood:

$$p(\mathbf{y}|\mathcal{F},X) = \int \underbrace{L(\boldsymbol{\theta};\mathcal{D})}_{p(\mathbf{y}|\boldsymbol{\theta},X)} p(\boldsymbol{\theta}|\mathcal{F}) d\boldsymbol{\theta},$$

depends on model + data but **not on specific parameter values.**

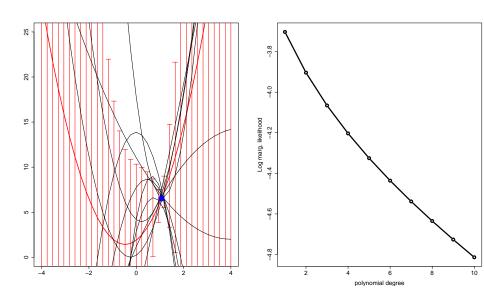
Example: Bayesian regression

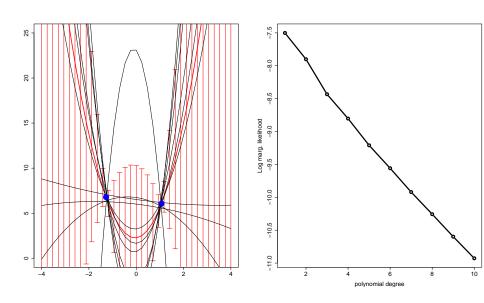
- Goal: choose among regression model families, specified by different feature mappings $\mathbf{x} \to \phi(\mathbf{x})$.
- Example: linear $\phi_1(\mathbf{x})$ and quadratic $\phi_2(\mathbf{x})$.
- The model families we compare are:

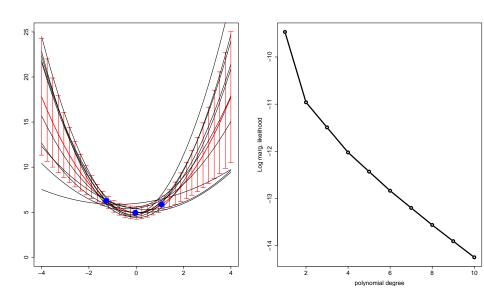
$$\mathcal{F}_1 : p(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_1, \sigma^2) = N(\mathbf{y}|\boldsymbol{\theta}_1^t \phi_1(\mathbf{x}), \sigma^2)$$

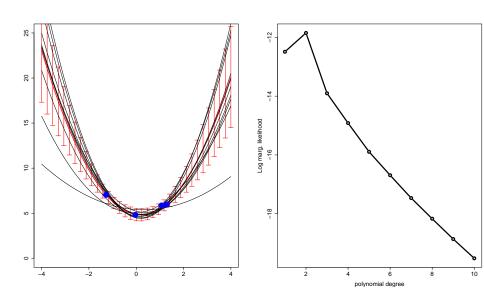
$$\mathcal{F}_2 : p(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_2, \sigma^2) = N(\mathbf{y}|\boldsymbol{\theta}_2^t \phi_2(\mathbf{x}), \sigma^2).$$

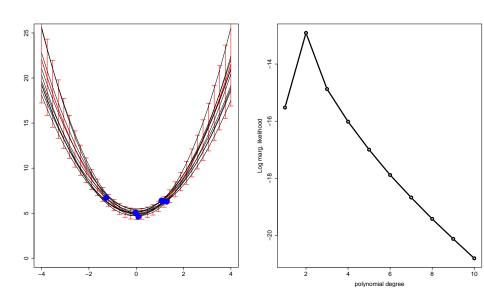
- Focusing on $p(y|\mathcal{F},X) = \int L(\theta;\mathcal{D})p(\theta)d\theta$, two possibilities:
 - ▶ \mathcal{F} too flexible: posterior $p(\theta|\mathcal{D})$ requires many training examples before it focuses on useful parameter values;
 - F too simple: posterior concentrates quickly but the predictions remain poor.
- Pragmatic choice: Select the family whose marginal likelihood (a.k.a. Bayesian score) is larger.
- After seeing data \mathcal{D} we would select model \mathcal{F}_1 if $p(\mathbf{y}|\mathcal{F}_1,X) > p(\mathbf{y}|\mathcal{F}_2,X)$.

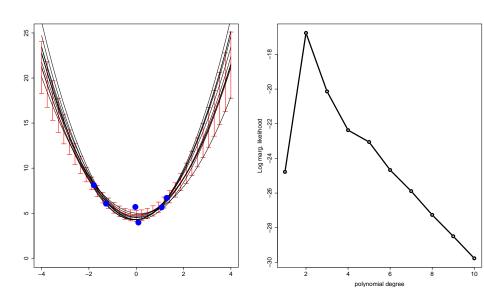


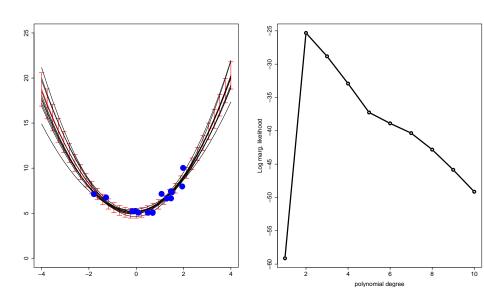












Approximating the marginal likelihood

- Problem: In most cases we cannot compute the marginal likelihood in closed form → approximations are needed.
- A specific approximation will lead to the Bayesian Information Criterion (BIC).
- Key insight: when computing

$$p(\mathbf{y}|\mathcal{F},X) = \int p(\mathbf{y}|\mathbf{\theta},X)p(\mathbf{\theta}|\mathcal{F})d\mathbf{\theta},$$

the integrand is a product of two densities \leadsto integrand itself is an unnormalized density.

• Laplace's approximation uses a clever trick to approximate such integrals...

Approximation details: Laplace's Method

• Assume unnormalized density $p^*(\theta)$ has peak at $\hat{\theta}$. Goal: calculate normalizing constant

$$Z_p = \int p^*(\theta) d\theta$$

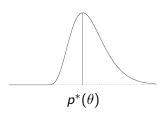
• Taylor-expand logarithm around $\hat{\theta}$:

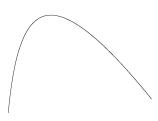
$$\ln p^*(\theta) \approx \ln p^*(\hat{\theta}) - \frac{c}{2}(\theta - \hat{\theta})^2 + \cdots,$$

where

$$c := -\frac{\partial^2}{\partial \theta^2} \ln p^*(\theta) \big|_{\theta = \hat{\theta}}.$$

(note that first order term vanishes)





 $\ln p^*(\theta)$

Laplace's Method (cont'd)

• Approximate $p^*(\theta)$ by unnormalized Gaussian

$$Q^*(\theta) := p^*(\hat{\theta}) \exp\left[-c/2 \cdot (\theta - \hat{\theta})^2\right]$$

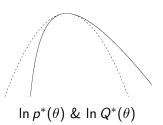
A normalized Gaussian would be:

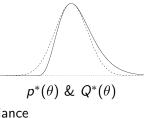
$$Q(\theta \mid \mu = \hat{\theta}, \sigma^2) = \frac{1}{Z_Q} \exp \left[-\frac{(\theta - \hat{\theta})^2}{2\sigma^2} \right],$$

with
$$Z_Q = \sqrt{2\pi\sigma^2} = \int \exp\left[-\frac{(\theta-\hat{\theta})^2}{2\sigma^2}\right] d\theta$$

• Approximate $Z_p = \int p^*(\theta) d\theta$ by

$$\begin{split} Z_p &\approx \int Q^*(\theta) \, d\theta \\ &= p^*(\hat{\theta}) \int \exp\left[-c/2 \cdot (\theta - \hat{\theta})^2\right] \, d\theta \\ &= p^*(\hat{\theta}) \sqrt{2\pi/c} \ \, \leadsto c \text{ is the inverse variance} \end{split}$$





Laplace's Method (cont'd)

 Multivariate generalization in d dimensions: second derivative → Hessian matrix

$$\begin{split} H_{ij} &= \frac{\partial^2 \ln p^*(\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j} \bigg|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} \\ Z_p &\approx p^*(\hat{\boldsymbol{\theta}}) \int \exp \left[-\frac{1}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^t H(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) \right] d\boldsymbol{\theta} \\ &= p^*(\hat{\boldsymbol{\theta}}) \sqrt{\frac{(2\pi)^d}{|H|}} = p^*(\hat{\boldsymbol{\theta}}) \left| \frac{H}{2\pi} \right|^{-\frac{1}{2}}, \end{split}$$

where the last equation follows from the properties of the determinant: $|aM| = a^d |M|$ for $M \in \mathbb{R}^{d \times d}$, $a \in \mathbb{R}$.

• Another interpretation: complicated distribution $p(\theta)$ is approximated by Gaussian centered at the mode $\hat{\theta}$:

$$p(\theta) \approx \mathcal{N}(\theta|\mu = \hat{\theta}, \Sigma = H^{-1}).$$

Example: Bayesian logistic regression

- ullet Linear logistic regression: model parameters are simply the weights $oldsymbol{w}$.
- Likelihood: $p(y|\mathbf{x}, \mathbf{w}) = \text{Ber}(y|\text{sigm}(\mathbf{w}^t \mathbf{x}))$
- Unfortunately, there is no convenient conjugate prior. Let's use a standard Gaussian prior: $p(\mathbf{w}) = N(\mathbf{w}|\mathbf{0}, V_0)$
- Laplace's approximation of posterior:

$$p(\mathbf{w}|\mathcal{D}) \approx N(\mathbf{w}|\mathbf{w}^*, H^{-1})$$

$$\mathbf{w}^* = \arg\max J[\mathbf{w}], \quad J[\mathbf{w}] = \log \underbrace{p(y|\mathbf{x}, \mathbf{w})}_{\text{likelihood}} + \log \underbrace{p(\mathbf{w})}_{\text{prior}}$$

$$H = \nabla^2 J(\mathbf{w}) \bigg|_{\mathbf{w}^*}$$

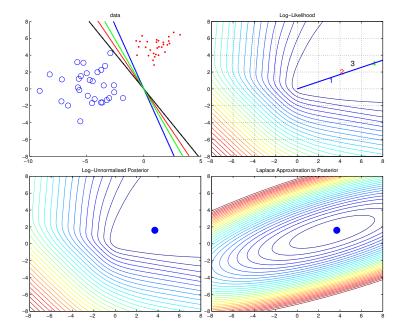


Fig 8.5 in K.Murphy

Bayesian LOGREG: Approximating the posterior predictive

- Posterior → can compute credible intervals etc.
- But in machine learning, interest usually focuses on prediction.
- The posterior predictive distribution has the form

$$p(y|\mathbf{x}, \mathcal{D}) = \int p(y|\mathbf{x}, \mathbf{w})p(\mathbf{w}|\mathcal{D}) d\mathbf{w}.$$

Here (and in most cases), this integral is intractable.

• The simplest approximation is the plug-in approximation

$$p(y=1|\boldsymbol{x},\mathcal{D}) \approx p(y=1|\boldsymbol{x},\boldsymbol{w}^*)$$

- But such a plug-in estimate underestimates the uncertainty.
- Better: Monte Carlo approximation

$$p(y|\mathbf{x}, \mathcal{D}) \approx \frac{1}{S} \sum_{s=1}^{S} \operatorname{sigm}((\mathbf{w}^{s})^{t}\mathbf{x}),$$

where $\mathbf{w}^s \sim p(\mathbf{w}|\mathcal{D})$ are samples from the Gaussian approximation to the posterior.



Fig 8.6 in K.Murphy

Approximating the marginal likelihood

$$\begin{split} \rho(\mathcal{D}|\mathcal{F}) &= \int \rho(\mathcal{D}|\boldsymbol{\theta}) \cdot p(\boldsymbol{\theta}|\mathcal{F}) d\boldsymbol{\theta} \\ &\approx \quad p(\mathcal{D}|\boldsymbol{\theta}^*) \cdot p(\boldsymbol{\theta}^*|\mathcal{F}) |H/(2\pi)|^{-\frac{1}{2}} \stackrel{\mathsf{flat prior}}{\approx} p(\mathcal{D}|\boldsymbol{\hat{\theta}}) |H/(2\pi)|^{-\frac{1}{2}} \\ \log p(\mathcal{D}|\mathcal{F}) &\approx \quad \log p(\mathcal{D}|\boldsymbol{\hat{\theta}}) - \frac{1}{2} \log |H| + C, \quad \text{with} \quad \boldsymbol{\hat{\theta}} = \boldsymbol{\theta}_{\mathit{MLE}} \text{ in } \mathcal{F}. \end{split}$$

Focus on last term:

$$H = \sum_{i=1}^{n} H_i$$
, with $H_i = \nabla_{\boldsymbol{\theta}} \nabla_{\boldsymbol{\theta}} \log p(\mathcal{D}_i | \boldsymbol{\theta})$.

Let's approximate each H_i with a **fixed** matrix H' $\log |H| = \log |nH'| = \log (n^d |H'|) = d \log n + \log(|H'|)$.

• For model selection, last term can be dropped, because it is independent of \mathcal{F} and n.

$$\log p(\mathcal{D}|\mathcal{F}) \approx \log p(\mathcal{D}|\hat{\theta}) - \frac{d}{2}\log n + C = \mathrm{BIC}(\mathcal{F}, n|\mathcal{D}) + C.$$

Intuitive interpretation of BIC

• The **Shannon information content** of a specific outcome a of a random experiment is

$$h(a) = -\log_2 P(a) = \log \frac{1}{P(a)}.$$

It measures the "surprise" (in bits):

Outcomes that are less probable have larger values of surprise.

- Information theory: Can find a code so that the number of bits used to encode each symbol $a \in \mathcal{A}$ is essentially $-\log_2 P(a)$.
- Here:

DL of observations given model

$$-\mathsf{BIC}(\mathcal{F}, n | \mathcal{D}) = \sum_{i=1}^{n} \left(\underbrace{-\log_2 p(y_i | \boldsymbol{x}_i, \hat{\boldsymbol{w}})}_{\text{surprise of } y_i} \right) + \frac{d}{2} \log_2(n)$$

• The sum of surprises of all observations is the **description length** of the observations given the (most probable) model in \mathcal{F} .

Intuitive interpretation of BIC

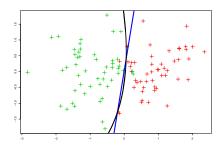
- Second term: description length of the model. Intuitive explanation:
 - ▶ The model, i.e. $\hat{\boldsymbol{w}} \in \mathbb{R}$, was estimated based on *n* samples.
 - ▶ Can quantize every component into \sqrt{n} levels. Why?
 - Remember the **standard parametric rate:** $1/\sqrt{n}$ represents the magnitude of the estimation error \rightarrow **no need for encoding with greater precision.**
 - ▶ Grid of $(\sqrt{n})^d$ possible values for describing a model.
 - We need $\log_2((\sqrt{n})^d) = \log_2 n^{(d/2)} = (d/2) \log_2 n$ bits to encode $\hat{\boldsymbol{w}}$.
- In summary: -BIC = DL(data|model) + DL(model).
- ullet Maximizing BIC = minimizing joint DL of data and model
 - **→ Minimum Description Length principle.**

Example: Bayesian logistic regression

Example: polynomial logistic regression, n = 100.

$$\phi_1(\mathbf{x}) = (1, x_1, x_2)^t, \ \phi_2(\mathbf{x}) = (1, x_1, x_2, (x_1 + x_2)^2)^t.$$

$$-\mathsf{BIC} = \sum_{i=1}^{n} \left(-\log_2 p(y_i|\boldsymbol{x}_i, \hat{\boldsymbol{w}}) \right) + \frac{d}{2} \log_2(n)$$



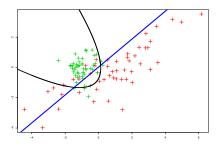
degree	#(param)	DL(data)	DL(model)	BIC score
1	3	16.36 bits	9.97 bits	-26.33
2	4	15.77 bits	13.29 bits	-29.06

Example: Bayesian logistic regression

Example: polynomial logistic regression, n = 100.

$$\phi_1(\mathbf{x}) = (1, x_1, x_2)^t, \ \phi_2(\mathbf{x}) = (1, x_1, x_2, (x_1 + x_2)^2)^t.$$

$$-\mathsf{BIC} = \sum_{i=1}^{n} \left(-\log_2 p(y_i|\boldsymbol{x}_i, \hat{\boldsymbol{w}}) \right) + \frac{d}{2} \log_2(n)$$



degree	#(param)	DL(data)	DL(model)	BIC score
1	3	58.56 bits	9.97 bits	-68.53
2	4	38.05 bits	13.29 bits	-51.34

◆ロト ◆個 ト ◆ 達 ト ◆ 達 ・ 夕 Q C ・

Subsection 3

Sparse models

Sparse Models

- \bullet Sometimes, we have many more dimensions d than training cases n.
- Corresponding design matrix X is "short and fat", rather than "tall and skinny".
- This is called **small** n , **large** d **problem**.
- For example, with **gene microarrays**, it is common to measure the expression levels of $d \approx 20,000$ genes, but to only get $n \approx 100$ samples (for instance, from 100 patients).
- Q: what is the smallest set of features that can accurately predict the response in order to prevent overfitting, to reduce the cost of building a diagnostic device, or to help with scientific insight into the problem?

- Let $\gamma_j = 1$ if feature j is **relevant**, and let $\gamma_j = 0$ otherwise.
- Our goal is to compute the posterior over models

$$p(\gamma|\mathcal{D}) = \frac{\exp(-f(\gamma))}{\sum_{\gamma'} \exp(-f(\gamma'))},$$

where $f(\gamma)$ is the cost function:

$$f(\gamma) = -[\log p(\mathcal{D}|\gamma) + \log p(\gamma)].$$

- For example, suppose we generate n=20 samples from a d=10 dimensional linear regression model, $y_i \sim N(w^t x_i, \sigma^2)$, in which K=5 elements of w are non-zero.
- ullet Enumerate all $2^{10}=1024$ models and compute $p(\gamma|\mathcal{D})$ for each one.

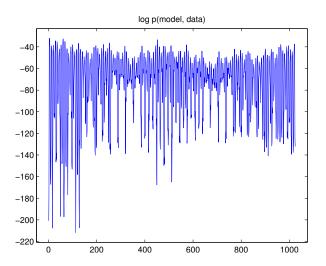


Fig 13.1 in K. Murphy: Score function $f(\gamma)$ for all possible models.

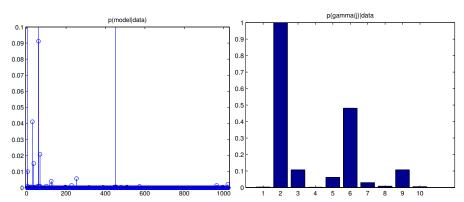


Fig 13.1 in K. Murphy. Left: Posterior over all 1024 models. Vertical scale has been truncated at 0.1 for clarity. Right: Marginal inclusion probabilities $p(\gamma_j=1|\mathcal{D})$. The true model is $\{2,3,6,8,9\}$

- Interpreting the posterior over a large number of models is difficult

 ⇒ seek summary statistics.
- A natural one is the posterior mode, or MAP estimate

$$\hat{\gamma} = \operatorname{arg\,max} p(\gamma | \mathcal{D}) = \operatorname{arg\,min} f(\gamma).$$

 However, the mode is often not representative of the full posterior mass. A better summary is the median model, computed using

$$\hat{\gamma} = \{j : p(\gamma_j = 1|\mathcal{D}) > 0.5\}$$

This requires computing the **posterior marginal inclusion** probabilities $p(\gamma_j = 1|\mathcal{D})$.

- The above example illustrates the **gold standard** for variable selection: the problem was small (d=10)
 - → we were able to compute the full posterior exactly.
- Of course, variable selection is most useful in the cases where the number of dimensions is large.
- There are 2^d possible models (bit vectors) \rightsquigarrow **impossible** to compute the full posterior in general.
- Even finding summaries (MAP, or marginal inclusion probabilities) is intractable
 - → algorithmic speedups necessary.
- But first, focus on the computation of $p(\gamma|\mathcal{D})$.

The spike and slab model

• The posterior is given by

$$p(\gamma|\mathcal{D}) \propto p(\gamma)p(\mathcal{D}|\gamma)$$

• It is common to use the following prior:

$$p(\gamma) = \prod_{j=1}^{d} Ber(\gamma_{j}|\pi_{0}) = \pi_{0}^{\|\gamma\|_{0}} (1 - \pi_{0})^{d - \|\gamma\|_{0}},$$
 $\log p(\gamma|\pi_{0}) = -\lambda \|\gamma\|_{0} + const.,$

where π_0 is the probability that a feature is relevant, and $\|\gamma\|_0 = \sum_{j=1}^d \gamma_j$ is the ℓ_0 pseudo-norm, i.e., the **number of non-zero elements**.

- $\lambda = \log \frac{1-\pi_0}{\pi_0}$ controls the **sparsity** of the model.
- Setting $\sigma^2 = 1$, we can write the likelihood as follows:

$$p(\mathcal{D}|\gamma) = p(\mathbf{y}|X,\gamma) = \int p(\mathbf{y}|X,\mathbf{w},\gamma)p(\mathbf{w}|\gamma) d\mathbf{w}$$

←□▶←□▶←□▶←□▶←□▼
←□▶←□▶←□▶←□▶
□
●

The spike and slab model

- Prior $p(w|\gamma)$. If $\gamma_j = 0$, feature j is **irrelevant**, so we expect $w_j = 0$. If $\gamma_j = 1$, we expect w_j to be non-zero.
- Standardized inputs \rightsquigarrow reasonable **prior** is $N(0, \sigma_w^2)$, where σ_w^2 reflects our expectation of the coefficients associated with the **relevant variables**:

$$p(w_j|\gamma_j) = egin{cases} \delta_0(w_j) & ext{, if } \gamma_j = 0 \ N(w_j|0,\sigma_w^2) & ext{, else} \end{cases}$$

- The first term is a spike at the origin.
- As $\sigma_w^2 \to \infty$, the distribution $p(w_j | \gamma_j = 1)$ approaches a **uniform** distribution \leadsto **slab** of constant height.
- Spike and slab model (Mitchell and Beauchamp 1988).
- Full Bayesian treatment is computationally challenging!

Simplifying the model

• Assume $\sigma_w^2 \to \infty$ (\leadsto uniform prior $p(w_j|\gamma_j)$ over nonzero components) and approximate the likelihood using **BIC**:

$$\log p(\mathcal{D}|\gamma) = \int p(\mathbf{y}|X, \mathbf{w}, \gamma) p(\mathbf{w}|\gamma) d\mathbf{w}$$

$$\approx \log p(\mathbf{y}|X, \hat{\mathbf{w}}_{\gamma}) - \frac{1}{2} \underbrace{\|\hat{\mathbf{w}}_{\gamma}\|_{0}}_{\text{degrees of freedom}} \log n$$

where $\hat{\boldsymbol{w}}_{\gamma}$ is the ML estimate.

• Another view of this model: minimize the negative log likelihood under a ℓ_0 constraint (or penalty in the Lagrangian form) minimize $-\log p(\mathbf{v}|X,\mathbf{w}) + \lambda ||\mathbf{w}||_0$.

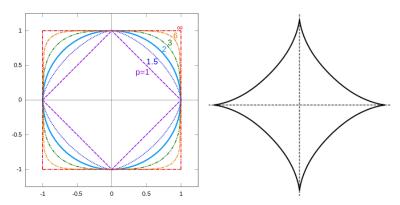
• Practical problem: ℓ_0 is highly non-convex!

Vector norms

The **vector** p**-norms** (ℓ_p **norms**) are defined by

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}, \quad 1 \leq p \leq \infty,$$

$$\|\boldsymbol{x}\|_{\infty} = \max(|x_1|, \cdots |x_n|).$$



Quartl, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17428655 🗆 🔻 🔗 🔻 👙 🔻 💈 🔻 🔗 🔾

Simplifying the model further

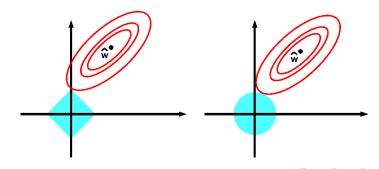
- When we have many variables, it is computationally difficult to find the posterior mode
- Idea: replace discrete variables with continuous ones. Use continuous priors that "encourage" $w_j=0$ by putting a lot of probability density near the origin, such as a zero-mean Laplace distribution.

$$p(\mathbf{w}|\lambda) = \prod_{j=1}^{d} Lap(w_j|0, 1/\lambda) \propto \prod_{j=1}^{d} \exp(-\lambda|w_j|)$$

Let us perform MAP estimation with this prior:

$$f(\mathbf{w}) = -\log p(\mathcal{D}|\mathbf{w}) - \log p(\mathbf{w}|\lambda) = \mathit{NLL}(\mathbf{w}) + \lambda ||\mathbf{w}||_1.$$
 where $||\mathbf{w}||_1 = \sum_{j=1}^d |w_j|$ is the ℓ_1 norm of \mathbf{w} and NNL means negative log-likelihood.

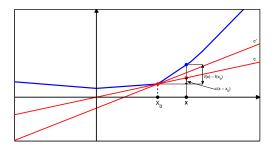
- ullet For suitably large λ , the estimate $\hat{oldsymbol{w}}$ will be sparse.
- Can be thought of as a convex approximation to the non-convex ℓ_0 objective.
- This model has the colorful name least absolute shrinkage and selection operator.
- For linear regression, $NLL(\mathbf{w}) = RSS(\mathbf{w})$, a.k.a. **basis pursuit denoising** (Chen et al. 1998).



- Unfortunately, the $\|\boldsymbol{w}\|_1$ term is not differentiable at 0 → non-smooth optimization problem.
- The **subderivative or subgradient** of a (convex) function $f: \mathcal{I} \to \mathbb{R}$ at a point x_0 is a scalar c such that $f(x) - f(x_0) \ge c(x - x_0), \ \forall x \in \mathcal{I}$

where \mathcal{I} is some interval containing x_0 .

Note that c is a **linear lower bound** to f at x_0 .



- The set of all subderivatives is called the subdifferential
- For the **absolute value function** f(x) = |x|:

$$\partial f(x) = \begin{cases} -1 & \text{, if } x < 0 \\ [-1, 1] & \text{, if } x = 0 \\ +1 & \text{, if } x > 0 \end{cases}$$

For least-squares regression, it is easy to show that

$$\frac{\partial}{\partial w_j} RSS(\mathbf{w}) = a_j w_j - c_j$$

$$a_j = 2 \sum_{i=1}^n x_{ij}^2$$

$$c_j = 2 \sum_{i=1}^n x_{ij} (y_i - \mathbf{w}_{-j}^t \mathbf{x}_{i,-j}).$$

where \mathbf{w}_{-i} is \mathbf{w} without component j.

- c_j is (proportional to) the correlation between the j'th feature \mathbf{x}_j and the residual due to other features, $r_{-j} = y \mathbf{x}_{-i}^t \mathbf{w}_{-j}$.
- The magnitude of c_j is an indication of how relevant feature j is for predicting y.
- Adding the ℓ_1 penalty term:

$$\begin{array}{lll} \partial_{w_j} f(\boldsymbol{w}) & = & (a_j w_j - c_j) + \lambda \partial_{w_j} \|\boldsymbol{w}\|_1 \\ \\ & = & \begin{cases} a_j w_j - c_j - \lambda & \text{, if } w_j < 0 \\ [-c_j - \lambda, -c_j + \lambda] & \text{, if } w_j = 0 \\ a_j w_j - c_j + \lambda & \text{, if } w_j > 0 \end{cases}$$

• Depending on the value of c_j , the solution to $\partial_{w_j} f(\mathbf{w}) = 0$ can occur at 3 different values of w_j :

$$\hat{w}_j = egin{cases} (c_j + \lambda)/a_j & ext{, if } c_j < -\lambda \ 0 & ext{, if } c_j \in [-\lambda, \lambda] \ (c_j - \lambda)/a_j & ext{, if } c_j > \lambda \end{cases}$$

• We can write this as follows:

$$\hat{w}_j = \operatorname{soft}\left(\frac{c_j}{a_j}; \frac{\lambda}{a_j}\right),$$

where $soft(a; \delta) = sign(a)(|a| - \delta)_+$ and $x_+ = max(x, 0)$ is the positive part of x.

• This is called **soft thresholding**.

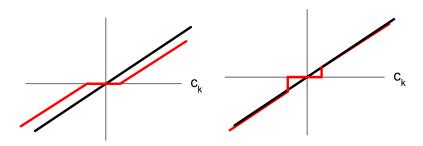


Fig. 13.5 in (K. Murphy). Black line: **Least squares fit** $w_k = c_k/a_k$. The red line (the regularized estimate) $\hat{w}_k(c_k)$, shifts the black line down (or up) by λ , except when $-\lambda \leq c_k \leq \lambda$, in which case it sets $w_k = 0$. By contrast, **hard thresholding** sets values of w_k to 0 if $-\lambda \leq c_k \leq \lambda$, but it **does not shrink the values of** w_k **outside of this interval.**

Lasso Algorithms: Coordinate-wise Descent

Sometimes it is hard to optimize all variables simultaneously, but it is easy to optimize them one by one.

Can solve for j-th coefficient w_j with all other coefficients held fixed:

$$\hat{w}_j = \arg\min_{z} f(\boldsymbol{w} + z\boldsymbol{e}_j),$$

where e_j is the j-th unit vector. Cycle (potentially many times) through these component-wise updates:

for j = 1, ..., d do:

$$a_{j} = 2\sum_{i=1}^{n} x_{ij}^{2}$$

$$c_{j} = 2\sum_{i=1}^{n} x_{ij} (y_{i} - \boldsymbol{w}_{-j}^{t} \boldsymbol{x}_{i,-j})$$

$$w_{j} = \operatorname{soft} \left(\frac{c_{j}}{a_{i}}; \frac{\lambda}{a_{j}}\right).$$