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Section 4

Regression
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Regression basics

@ In regression we assume that a response variable y € R is a noisy
function of the input variable x € R,
y =f(x)+n.
@ We often assume that f is linear, f(x) = w'x, and that 7 has a

zero-mean Gaussian distribution with constant variance, n ~ N(0, 02).
@ This is can equivalently be written as
2 .
p(y|x) = N(u(x),0%), with u(x) = w'x.
@ In one dimension: p(x) = wp + wix and x = (1, x).
wp is the intercept or bias term and wj is the slope.

If wy > 0, we expect the output to increase as the input increases.
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Least Squares and Maximum Likelihood

e Fit n data points (x;,y;) to a model that has d + 1 parameters
wj, j=0,...,d.

Notation: x <— (1, x) ~> wy is the intercept.

Frequentist view: w is an unknown parameter vector, not a RV.

We assume that the n observations are iid.

e 6 o o

Linear model: y; = wix; +n;, n; ~ N(0,0?).
Observed y; generated from a normal distribution centered at wtx;.

@ Model predicts linear relationship between conditional expectation
of observations y; and inputs x;:

E[y,-]x,-] = WwWp + WiXj1 + -+ WgXjg = WtX,' = f(X,'; W)
Note: the expectation operator is linear and E[n;] = 0.
Regression function = conditional expectation.
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LS and Maximum Likelihood

o Likelihood function: conditional probability of all observed y; given
their explanation, treated as a function of the model parameters w:

1
L(w) o [Jexp [—%2(}4‘ — wix;)?

o Maximizing L = finding model that best explains observations:

A

W = argmax L(w) = arg min[—L(w)] = arg mMi/n[— log(L(w))]
= argmmz —wix;)?

Least-squares fit = ML solution under Gaussian error model.

@ Wy e minimizes the residual sum of squares

RSS(w) =D _rf =D i — flxiw)]* = |ly — Xw]/*.
i=1 i=1
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Least squares regression: Geometry

ORSS(w) 9. [y'y = 2y'Xw + w' X' Xw]
ow ow
= —2X'y +2X'Xw =0
= w = (X'X)"1Xty
= Xt(y — Xw) = X'F = 0.

If follows that >/, Xjr; =0, Vj=0,1,...,d.
Residual is orthogonal to 1 (j = 0) and to every input dimension X,;.

Y
'

X[.1]

X[..2]
Adapted from Fig. 3.2 in (Hastie, Tibshirani, Friedman)
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Least squares regression: Geometry

X[.1]

X[..2]
Adapted from Fig. 3.2 in (Hastie, Tibshirani, Friedman)

The fitted values at the training inputs are

(F(x1),..., F(xn))t =3 = X = X(XEX)"1Xty.
H = X(XtX)~1X" is called “hat” matrix (puts hat on y)
Column vectors of X span the column space of X C R".

Minimizing RSS(w) ~~ choose w such that r is orthogonal.

Fitted values y are orthogonal projection of y on column space.
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Least squares regression: Algebra

e H is orthogonal projection on column space of X:
HX = X(X'X)7IXtX = X.
o Fundamental theorem of linear algebra: the nullspace of X! is
the orthogonal complement of the column space of X.
e M = I, — H is orthogonal projection on nullspace of X*:
MX=(l,—H)X=X-X=0.
e H and M are symmetric (H* = H) and idempotent (MM = M)

The Algebra of Least Squares
o H creates fitted values: y = Hy ~» y € Col(X)
@ M creates residuals: r = My ~~ # € Null(X*) & Xtr =0
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Frequentist confidence limits

e Recall: y; = f(x;; w) + n;, with independent Gaussian noise.
@ In matrix-vector form: y = Xw + 1, with  ~ N(0, o?1,).
w = (X'X) Xty
= (XIX) X Xw + (XTX) "Xty
=w+ (XIX)"1Xp
= w-w=(XX)"1Xin= An
o Linear functions of normals are normal:
n ~ N(0,0°l,) = An~ N(0,0°AA?).
Here: A= (X'X)"1Xt = AAf=(XtX)!
o Conditioned on X and o?:
W — w|X, 0% ~ N (0,0%(X*X) 7).
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Frequentist confidence limits

@ Distribution completely specified ~~ confidence limits:
Wi — wi ~ N(0,0°54),

where SKk denotes the kth diagonal element of (XtX)~!

@ Thus, both z, and zx = —z, are standard normal:

zp = (wx — Wk)/V 2S5k ~ N(0,1)

o CDF:
P(Zk < k

o Upper limit for wy:

P(Zk < kc) =

Volker Roth (University of Basel)
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Frequentist confidence limits

Least-squares fit (red) and two lines with slopes according to upper (lower)
95% confidence limit (green).
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Standard parametric rate

@ Assume we have estimated the parameters based on n samples:
(Wp—w) ~ N(0,02(XX)h)
= N(0,062 (XtX/n)""-1/n)
(W, —w) ~ N(0,02(XtX/n)" )
=

@ Since for n — oo, X*X/n — ¥ = const, this means that
W, converges to w at a rate of 1/\/n.

o This is a very general result that holds in an asymptotic sense even
without assuming normality ~~ central limit theorem.

@ Due to its universality, it is called the standard parametric rate.
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Basis functions

@ Can be generalized to model non-linear relationships by replacing x

with some non-linear function of the inputs, ¢(x):
p(y]x) = N(w'p(x), o).

@ Predictions can be based on a linear combination of a set of basis
functions ¢(x) = {go(x), g1(x), ..., gm(x)}, with gi(x) : R? = R.
Can model the intercept by setting go(x) = 1:

f(x; w) = wo + wigi(x) + -+ - + Wmgm(x).
~> additive models

degree 1 degree 2

Fig 1.7 in K.Murphy
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Additive models

@ Examples:
If x c RYand m=d+1, go(x) =1and gi(x) = x;,i = 1,...,d, then
f(x;w)=wy+ wixy + - + Wyxqg.
If x €R, go(x) =1 and gi(x) =x",i=1,...,m, then
Fx; w) = wo + wixt 4+ -+ wpx™.
@ Basis functions can capture various properties of the inputs.
Example: Document analysis

x = text document (collection of words)
1, if word i appears in the document
gi(x) = .
0, otherwise

fx;w) = wo+ Z wigi(x).

i€words
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Additive models cont’d

@ We can also make predictions by gauging the
similarity of examples to prototypes.

o For example, our additive regression function could be
f(x;w) = wo + wig1(x) + - + Wimgm(x),
where the basis functions are radial basis functions

gi(x) = exp(— 55 Ix — xk|?)
measuring the similarity to the prototypes xy.

o The variance o2 controls how quickly the basis function vanishes as a
function of the distance to the prototype.

o Training examples themselves could serve as prototypes.
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Additive models cont'd
Can view additive models graphically in terms of units and weights.

f(x, w)

0

g.(x)/ gm(X)
In neural networks the basis functions have adjustable parameters.
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Example: Polynomial regression

Polynomial basis functions. Degree = 1 Polynomial basis functions. Degree = 3
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Complexity and overfitting

With limited training examples our polynomial regression model may
achieve zero training error but nevertheless has a large expected error.

training = Z f(xi; w)? =0
expectation E(x,y)Np (y — fOx; w)?> >0

We suffer from over-fitting
~~ should reconsider our model ~~ model selection.

We will discuss model selection from a Bayesian perspective first.
A frequentist approach will follow later in the chapter on
statistical learning theory.
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Subsection 1

Bayesian Regression
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Bayesian interpretation: priors

@ Suppose our generative model takes an input x € R? and maps it to
a real valued output y according to
p(ylx, w,0%) = N(y|w'x, o%)
o We will keep o2 fixed and only try to estimate w.
e Given data D = {(x1,¥1),...,(Xn, yn)}, the likelihood function is
n n 1 1
Lw; D) = T] Mlw'xi.0) = [T 5 exp (5550 — w'x?).
i=1 i—1Z 20
@ In classical regression we used the maximizing parameters w.

o In Bayesian analysis we keep all regression functions,
just weighted by their ability to explain the data.

@ Our knowledge about w after seeing the data is defined by the
posterior distribution p(w|D).
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Bayesian regression: Prior and posterior

e We specify our prior belief about the parameter values as p(w).
For instance, we could prefer small parameter values:

p(w)=N (w\0,7‘21>
The smaller 72 is, the smaller values of w we prefer
prior to seeing the data.
e Posterior proportional to prior p(w) times likelihood:
p(w|D) o L(w; D)p(w)
o Here: posterior is Gaussian p(w|D, 02?) = N(w|wy, V) with mean
wy and covariance V) given by

wy = (XX +A)IXy,  Vy = o?(XEX + A1),

with A = 2.
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Bayesian regression: Posterior computation

Given variables x € R% and y € R%, assume linear Gaussian system:

p(x) = N(X|pty, T)  (~ prior)
p(y|x) = N(y|Ax+ b,%,) (~ likelihood)

o The posterior is also Gaussian:

p(X’y) = N(X“’l’x|y7 zX|y)

-1 _ y-1 tg—1
T =T AT A

By = Tugy (AT (y = B) + T, )
Gaussian likelihood and Gaussian prior form a conjugate pair.
@ The normalization constant (denominator in Bayes formula) is
p(y) = N(y|Ap, + b, Ty + AL AY).
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Bayesian regression: Posterior predictive

@ Prediction of y for new x: use posterior as weights for predictions
based on individual w's ~~ Posterior predictive:

plyIx.D.0%) = [ plylx, w.o?)p(w|D) dw

:/N(yyxfw,a2)/\/(wyw,v, Vi)

t 2 .
= N(y’WNxa JN(X))a with
o (x) = 0% + x*Vyx.
@ The variance in this prediction, 03(x), depends on two terms:
» the variance of the observation noise, o2
> the variance in the parameters, Vy
~» depends on how close x is to training data D
~~ error bars get larger as we move away from training points.

Volker Roth (University of Basel) 19th March 2020 23 /70



Bayesian regression: Posterior predictive

o By contrast, the plugin approximation uses only the ML-parameter
estimate with the degenerate distribution p(w|D, 02) = 85 (w):
p(y|x,D,0?) ~ [ p(y|x, w,0?)ds(w)dw = p(y|x, w,0?) = N(y|x‘w, o?).

plugin approximation (MLE)

601 Posterior predictive (known variance)
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Fig. 7.12 in (K. Murphy). Example with quadratic basis functions: posterior predictive distribution (mean and £10).
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Sampling from posterior predictive

Left: plugin approximation: f(y) = ¢(x)'w
where ¢(x) is the expanded input vector (1, x, x?)t.

Right: sampled functions ¢(x)tw(s), where W(S) are samples from the
posterior

functions sampled from plugin approximation to posterior

functions sampled from posterior
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Fig. 7.12 in (K. Murphy)
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MAP approximation and ridge regression

e Posterior proportional to prior p(w) = N (w|0, 72/) times likelihood.
@ The MAP estimate is
wmap = arg max{log[L(w; D)] + log[p(w)]}
= gmin{ loglL(w: )] - gl ()}

1
_argmm{2 22 — wix;) +2—T2wtw}

2
o
=argmin{> (yi — w'x;)’> + ﬁwtw}
i

= arg min{Z(y,- —w'x;)? + Awiw}
i
@ In classical statistics, this is called ridge regression:
WNMAP = Wridge = (XTX + )1 Xty.

@ In regularization theory, this is an example of
Tikhonov Regularization.
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Subsection 2

Bayesian model selection
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Example: Polynomial regression

Polynomial basis functions. Degree = 1 Polynomial basis functions. Degree = 3
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Bayesian regression (again)

@ Suppose our parametrized model Fy takes an input x € R and maps
it to a real valued output y according to

p(y|x,8,0%) = N(y; 6°x,07)
We will keep o2 fixed and only try to estimate 6.
Given data D = {(x1,)1),---,(Xn, ¥n)}, define likelihood

n 1 1
L(6;D) = H N(y;; 0'x;,0%) = H = exp <_M(Yi - 9txi)2) .
=1 =1

In classical regression we used the maximizing parameters 6.

In Bayesian analysis we keep all regression functions, just weighted
by their ability to explain the data.

Knowledge about @ after seeing the data defined by posterior p(6|D).
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Bayesian regression (again)

o We specify our prior belief about the parameter values as p(8).
For instance, we could prefer small parameter values:

p(8) = N(6;0,721)
Small 72 ~» small @ preferred prior to seeing data.
o Posterior proportional to prior p(8) times likelihood:
p(8|D) o L(6; D)p(6)
@ Normalization constant, a.k.a. marginal likelihood:
p(yIF.X) = [ L(6:D)p(6]F)db.
——

p(y|6,X)
depends on model + data but not on specific parameter values.
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Example: Bayesian regression

@ Goal: choose among regression model families, specified by different
feature mappings x — ¢(x).
e Example: linear ¢1(x) and quadratic ¢»(x).
@ The model families we compare are:
Fi o plylx,01,0%) = N(y|6i¢1(x),0%)
Fa o pylx,02,0%) = N(y|8562(x), 0%).
e Focusing on p(y|F,X) = [ L(6; D)p(0)d0, two possibilities:
» F too flexible: posterior p(8|D) requires many training examples
before it focuses on useful parameter values;

» F too simple: posterior concentrates quickly but the predictions
remain poor.

@ Pragmatic choice: Select the family whose marginal likelihood
(a.k.a. Bayesian score) is larger.

o After seeing data D we would select model F7 if
p(y|F1, X) > p(y|F2, X).
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Approximating the marginal likelihood

@ Problem: In most cases we cannot compute the marginal likelihood in
closed form ~~ approximations are needed.

@ A specific approximation will lead to the
Bayesian Information Criterion (BIC).

@ Key insight: when computing

pIF.X) = [ plyl6. X)p(617)de,

the integrand is a product of two densities ~~ integrand itself is an
unnormalized density.

o Laplace’s approximation uses a clever trick to approximate such
integrals...
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Approximation details: Laplace’'s Method

@ Assume unnormalized density p*(6) has peak
at 6. Goal: calculate normalizing constant

4:/f@w

: A p*(0)
@ Taylor-expand logarithm around 6:

Inp(6) ~ Inp" () = 50— 07 +- -

where
0? N

C = _W |np (9)}929

(note that first order term vanishes)
In p*(6)
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Laplace's Method (cont'd)

@ Approximate p*(#) by unnormalized
Gaussian

Q'(0):=p* (D) exp [~c/2- (0~ 0)]

@ A normalized Gaussian would be:

o L [0
Q| p=10,07)= Zo exp 52 o
with ZQ — \/ﬁ fexp [ (6‘ 0) :| do In p*(@) & In Q*(ﬁ)
e Approximate Z, = [ p*(0) df by
Zp = / Q*(0) db

— p*(h) / exp [~c/2- (0~ )] do

pO) & Q)

= p*(0)\/27/c ~» c is the inverse variance
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Laplace's Method (cont'd)

o Multivariate generalization in d dimensions:
second derivative ~» Hessian matrix
o — 02 1In p*(0)
Y 00,00,

0=06

(27)? H|

— (B
H P (0) |5
where the last equation follows from the properties of the
determinant: |aM| = a9|M| for M € R¥*9 2 € R.

@ Another interpretation: complicated distribution p(@) is approximated
by Gaussian centered at the mode 6:

p(0) ~ N(O|lp=0,x = H1).

= p*(9)

9
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Example: Bayesian logistic regression

Linear logistic regression: model parameters are simply the weights w.

Likelihood: p(y|x, w) = Ber(y|sigm(w'x))

Unfortunately, there is no convenient conjugate prior. Let's use a
standard Gaussian prior: p(w) = N(w|0, Vo)

Laplace's approximation of posterior:
p(w|D) ~ N(w|w*, H?)
w* = argmax J[w], J[w] = logp(y|x,w) + log p(w)
——— ——
likelihood prior

H=vV?J(w)

w*
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Fig 8.5 in K.Murphy
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Bayesian LOGREG: Approximating the posterior predictive

@ Posterior ~» can compute credible intervals etc.
@ But in machine learning, interest usually focuses on prediction.

@ The posterior predictive distribution has the form

plyIx. D) = [ p(ylx, w)p(w|D) dw.
Here (and in most cases), this integral is intractable.

@ The simplest approximation is the plug-in approximation

p(y = 1|x,D) =~ p(y = 1|x, w")
@ But such a plug-in estimate underestimates the uncertainty.

o Better: Monte Carlo approximation

(v|x,D) Z&gm (w®)tx),

where w® ~ p(w\D) are samples from the Gaussian approximation to
the posterior.
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Approximating the marginal likelihood

p(DIF) = [ pDl6): pl61F)de

1 flat prior

p(DI6%) - p(67|F)|H/(2m)| "2 "= p(DIB)|H/(2m)| 2
A 1 A
Iogp(D|6’)—§Iog|H|—i—C7 with 8 = Oy in F.

Q

Q

log p(D|F)

o Focus on last term:
H=> H; with H;=VyVglogp(D;i|6).
i=1
Let's approximate each H; with a fixed matrix H’
log |H| = log |nH'| = log(n9|H'|) = dlog n + log(|H'|).
@ For model selection, last term can be dropped, because it is
independent of F and n.
A d
log p(D|F) = log p(D|6) — > logn+ C = BIC(F,n|D) + C.
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Intuitive interpretation of BIC

@ The Shannon information content of a specific outcome a of a
random experiment is

h(a) = —log, P(a) = log P(la)'
It measures the “surprise” (in bits):
Outcomes that are less probable have larger values of surprise.
o Information theory: Can find a code so that the number of bits
used to encode each symbol a € A is essentially — log, P(a).

o Here:
DL of observations given model

n

. d
~BIC(F,n[D) = 3 | —loga pyilxi, W) | + 7 loga(n)
i=1

surprise of y;

@ The sum of surprises of all observations is the description length of
the observations given the (most probable) model in F.
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Intuitive interpretation of BIC

@ Second term: description length of the model. Intuitive explanation:
» The model, i.e. w € R, was estimated based on n samples.
» Can quantize every component into /n levels. Why?
» Remember the standard parametric rate:
1/4/n represents the magnitude of the estimation error
~> no need for encoding with greater precision.
» Grid of (y/n)9 possible values for describing a model.
» We need log,((y/n)?) = log, nt?/?) = (d/2) log, n bits to encode W.
@ In summary: -BIC = DL(data|model) + DL(model).

@ Maximizing BIC = minimizing joint DL of data and model
~» Minimum Description Length principle.
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Example: Bayesian logistic regression
Example: polynomial logistic regression, n = 100.
¢1(x) = (17X1aX2)tv ¢2(X) = (17X17X2a (Xl +X2)2)t_

n . d
—BIC =3 (~ log; p(yilxi, W)) + 7 logz(n)
i=1

++

+

degree | #(param) | DL(data) | DL(model) | BIC score
1 3 16.36 bits | 9.97 bits -26.33
2 4 15.77 bits | 13.29 bits | -29.06
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Example: Bayesian logistic regression
Example: polynomial logistic regression, n = 100.
¢1(x) = (17X1aX2)tv ¢2(X) = (17X17X2a (Xl +X2)2)t_

n . d
—BIC =3 (~ log; p(yilxi, W)) + 7 logz(n)
i=1

degree ‘ #(param) ‘ DL(data) ‘ DL(model) ‘ BIC score

1 3 58.56 bits | 9.97 bits -68.53
2 4 38.05 bits | 13.29 bits | -51.34
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Subsection 3

Sparse models

o = = = ae
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Sparse Models

(]

Sometimes, we have many more dimensions d than training cases n.
@ Corresponding design matrix X is “short and fat”, rather than
“tall and skinny".
o This is called small n , large d problem.
@ For example, with gene microarrays, it is common to measure the

expression levels of d =~ 20,000 genes, but to only get n ~ 100
samples (for instance, from 100 patients).

@ Q: what is the smallest set of features that can accurately predict
the response in order to prevent overfitting, to reduce the cost of
building a diagnostic device, or to help with scientific insight into
the problem?
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Bayesian variable selection

o Let 7; = 1 if feature j is relevant, and let 7; = 0 otherwise.
@ Our goal is to compute the posterior over models
exp(—f(~
p(yID) = PO
E’y’ exp(— (7 ))
where f (=) is the cost function:
f(v) = —llog p(Dl7) + log p(7)]-
o For example, suppose we generate n = 20 samples from a d = 10
dimensional linear regression model, y; ~ N(wtx;, o2), in which
K =5 elements of w are non-zero.

o Enumerate all 21% = 1024 models and compute p(~|D) for each one.
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Bayesian variable selection

log p(model, data)
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Fig 13.1 in K. Murphy: Score function f(«y) for all possible models.
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Bayesian variable selection

p(modelldata) ; plgammapidata

0.1 T T T

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

0 200 400 600 800 1000 0 1 2 3 4 5 6 7 8 9 10

Fig 13.1 in K. Murphy. Left: Posterior over all 1024 models. Vertical scale has
been truncated at 0.1 for clarity. Right: Marginal inclusion probabilities

p(v; = 1|D). The true model is {2, 3,6,8,9}
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Bayesian variable selection

@ Interpreting the posterior over a large number of models is difficult
~ seek summary statistics.

o A natural one is the posterior mode, or MAP estimate
4 = arg max p(|D) = arg min £ (7).
@ However, the mode is often not representative of the full posterior
mass. A better summary is the median model, computed using

4 ={:p(y =1/D) > 0.5}
This requires computing the posterior marginal inclusion
probabilities p(vy; = 1|D).

Volker Roth (University of Basel) 19th March 2020 57 / 70



Bayesian variable selection

@ The above example illustrates the gold standard for variable
selection: the problem was small (d = 10)
~ we were able to compute the full posterior exactly.

o Of course, variable selection is most useful in the cases where the
number of dimensions is large.

o There are 29 possible models (bit vectors) ~ impossible to compute
the full posterior in general.

e Even finding summaries (MAP, or marginal inclusion probabilities) is
intractable
~> algorithmic speedups necessary.

o But first, focus on the computation of p(vy|D).
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The spike and slab model

@ The posterior is given by

p(7|D)  p(v)p(Dlv)

@ It is common to use the following prior:
d

p(v) = [] Ber(vjlmo) =y 1o(1 — mo)?~ I,
j=1
log p(v|m0) = —Allv[lo + const.,

where 7q is the probability that a feature is relevant,
and ||v|lo = Zle ~j is the £y pseudo-norm, i.e., the number of
non-zero elements.

o A=log 1;—:" controls the sparsity of the model.

@ Setting 02 =1, we can write the likelihood as follows:

p(DI) = plyIX,7) = [ p(y|X, w.7)p(wly) dw
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The spike and slab model

@ Prior p(w|vy). If 4; = 0, feature j is irrelevant, so we expect w; = 0.
If v; = 1, we expect w; to be non-zero.

o Standardized inputs ~+ reasonable prior is N(0,02), where o2,

reflects our expectation of the coefficients associated with the
relevant variables:

do(w;) ,ify =0
p(wjlv) = o ’
N(w;|0,07,)  else
@ The first term is a spike at the origin.

e As 02, — oo, the distribution p(w;|y; = 1) approaches a uniform
distribution ~~ slab of constant height.

o Spike and slab model (Mitchell and Beauchamp 1988).
o Full Bayesian treatment is computationally challenging!
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Simplifying the model

o Assume 02, — oo (~ uniform prior p(w;|y;) over nonzero
components) and approximate the likelihood using BIC:

log p(Dy) = [ plyIX, w,)p(wly) dw
. 1 .
~ log p(y|X,wa) — o |y llo  logn,
——
degrees of freedom

where W, is the ML estimate.

@ Another view of this model: minimize the negative log likelihood
under a {y constraint (or penalty in the Lagrangian form)

minimize — log p(y|X, w) + A||w||o.
@ Practical problem: ¢y is highly non-convex!
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Vector norms
The vector p-norms (¢, norms) are defined by
n 1/p
Ixllp =D xlP] , 1<p<oo,
i=1

Ixl[oo = max(|xal, -~ - [a])-

05 (-

-05 |-

Quartl, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17428655
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Simplifying the model further

@ When we have many variables, it is computationally difficult to find
the posterior mode

o ldea: replace discrete variables with continuous ones. Use continuous
priors that “encourage” w; = 0 by putting a lot of probability density
near the origin, such as a zero-mean Laplace distribution.

d d
p(wlA) = [T Lap(w[0.1/2) o« T] exp(~Alwj))
j=1 j=1
o Let us perform MAP estimation with this prior:
f(w) = —log p(D|w) — log p(w|\) = NLL(w) + Allw|1.
where ||w|1 = Zj’zl |w;j| is the ¢1 norm of w and NNL means
negative log-likelihood.
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The Lasso

o For suitably large A, the estimate w will be sparse.

@ Can be thought of as a convex approximation to the non-convex {g
objective.

@ This model has the colorful name least absolute shrinkage and
selection operator.

@ For linear regression, NLL(w) = RSS(w),
a.k.a. basis pursuit denoising (Chen et al. 1998).

Za
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The Lasso

o Unfortunately, the ||w||; term is not differentiable at 0
~> non-smooth optimization problem.
e The subderivative or subgradient of a (convex) function
f:Z — R at a point xp is a scalar ¢ such that
f(x)—f(x0) > c(x —x0), Vx €T
where Z is some interval containing xg.
Note that c is a linear lower bound to 7 at xp.

Fig. 13.4 in (K. Murphy)
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The Lasso

@ The set of all subderivatives is called the subdifferential

o For the absolute value function f(x) = |x|:

-1 Lifx <0
0f(x)=141[-1,1] ,ifx=0
+1 ,if x>0

o For least-squares regression, it is easy to show that

O RSs(w) = aw;— g

Iw;
n
_ Z 2
i=1

n
G = 2Zx,-j(y;—wt,jx,-7_j).
i=1

where w_; is w without component j.
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The Lasso

@ ¢j is (proportional to) the correlation between the j'th feature x; and
the residual due to other features, r_; =y — xﬂjw,j.

@ The magnitude of ¢; is an indication of how relevant feature j is for

predicting y.
o Adding the /1 penalty term:
Ow;f(w) = (ajwj — G) + Aw||wl|x
ajw; — ¢ — A cifw; <0
= ql-g—A—-¢+A] ,ifw=0
ajwj — ¢+ A cifwp >0
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The Lasso

@ Depending on the value of ¢;, the solution to dy,f(w) = 0 can occur
at 3 different values of w;:
(c+AN)/a ,ifg<—A
wj =410 if g e [=A ]
(cg—AN)/a; ,ifg>A

@ We can write this as follows:

. ci A
W; = soft (J; > ,
dj 4

where soft(a; 0) = sign(a)(]a] — )+ and x4 = max(x, 0) is the
positive part of x.
o This is called soft thresholding.
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The Lasso

/ C
/ o k

Fig. 13.5 in (K. Murphy). Black line: Least squares fit wy = cx/ax.

The red line (the regularized estimate) Wy (ck), shifts the black line down (or up)

by A, except when —X < ¢, < A, in which case it sets wy = 0.

By contrast, hard thresholding sets values of wy to 0 if =\ < ¢, < A,
but it does not shrink the values of w, outside of this interval.
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Lasso Algorithms: Coordinate-wise Descent

Sometimes it is hard to optimize all variables simultaneously, but it is easy
to optimize them one by one.

Can solve for j-th coefficient w; with all other coefficients held fixed:
W = argmin f(w + ze;),
where e; is the j-th unit vector. Cycle (potentially many times) through

these component-wise updates:
for j=1,...,d do:

n
aj = 2ZX5
i=1
n
G = 2 xjlyi—wixi_j)
i=1

w; = soft <Cj;)\>.
9 g
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