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Section 5

Neural Networks
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Subsection 1

Feed-forward Neural Networks
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Linear classifier
We can understand the simple linear classifier

ĉ = sign(w tx) = sign(w1x1 + · · ·+ wd xd )
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Additive models cont’d
View additive models graphically in terms of units and weights.
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In neural networks the basis functions themselves have adjustable
parameters.
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From Additive Models to Multilayer Networks

Separate units ( artificial neurons) with activation f(net activation),
where net activation is the weighted sum of all inputs, netj = w t

j x.

Hidden layer

Output layer

Bias

Input layer

xx1 2

w
t
x)

1

f( t
y)w

y = f( wm
t x)y = f(m

1

Volker Roth (University of Basel) Machine Learning 2020 6th April 2020 6 / 69



Biological neural networks
Neurons (nerve cells): core components of brain and spinal cord.
Information processing via electrical and chemical signals .
Connected neurons form neural networks .
Neurons have a cell body (soma), dendrites, and an axon.
Dendrites are thin structures that arise from the soma, branching
multiple times, forming a dendritic tree.
Dendritic tree collects input from other neurons.

Author: BruceBlaus, Wikipedia
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A typical cortical neuron
Axon: cellular extension, contacts dendritic trees at synapses.
Spike of activity in the axon
 charge injected into post-synaptic neuron
 chemical transmitter molecules released
 they bind to receptor molecules in-/outflow of ions.
The effect of inputs is controlled by a synaptic weight.
Synaptic weights adapt  whole network learns

Author: BruceBlaus, Wikipedia
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By user:Looie496 created file, US National Institutes of Health, National Institute on Aging created original -

http://www.nia.nih.gov/alzheimers/publication/alzheimers-disease-unraveling-mystery/preface, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=8882110
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Idealized Model of a Neuron

from (Haykin, Neural Networks and Learning Machines, 2009)
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Hyperbolic tangent / Rectified / Softplus Neurons
“Classical” activations are smooth and bounded, such as tanh.
In modern networks unbounded activations are more common, like
rectifiers (“plus”): f (x) = x+ = max(0, x) or
softplus f (x) = log(1 + exp(x)).
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Simple NN for recognizing handwritten shapes

Two classes 10 classes

majority rule
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Consider a neural network with two layers of neurons.
Each pixel can vote for several different shapes.
The shape that gets the most votes wins.
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Why the simple NN is insufficient
3 5 6 7 984210

Simple two layer network is essentially equivalent to having a
rigid template for each shape.
Hand-written digits vary in many complicated ways
 simple template matches of whole shapes are not sufficient.
To capture all variations we need to learn the features
 add more layers.
One possible way: learn different (linear) filters
 convolutional neural nets (CNNs).
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Convolutions

deeplearning.stanford.edu/wiki/index.php/Feature extraction using convolution
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Pooling the outputs of replicated feature detectors
Averaging neighboring detectors
 Some amount of translational invariance.
Reduces the number of inputs to the next layer.
Taking the maximum works slightly better in practice.

Source: deeplearning.stanford.edu/wiki/index.php/File:Pooling schematic.gif
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LeNet
Yann LeCun and his collaborators developed a really good recognizer for
handwritten digits by using backpropagation in a feedforward net with:

many hidden layers
many maps of replicated units in each layer.
pooling of the outputs of nearby replicated units.

On the US Postal Service handwritten digit benchmark dataset the error
rate was only 4% (human error ≈ 2− 3%).

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Original Image published in [LeCun et al., 1998]
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Network learning: Backpropagation
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FIGURE 6.4. A d-nH-c fully connected three-layer network and the notation we shall
use. During feedforward operation, a d-dimensional input pattern x is presented to the
input layer; each input unit then emits its corresponding component xi. Each of the nH

hidden units computes its net activation, netj, as the inner product of the input layer sig-
nals with weights wji at the hidden unit. The hidden unit emits yj = f (netj), where f (·)
is the nonlinear activation function, shown here as a sigmoid. Each of the c output units
functions in the same manner as the hidden units do, computing netk as the inner prod-
uct of the hidden unit signals and weights at the output unit. The final signals emitted by
the network, zk = f (netk), are used as discriminant functions for classification. During
network training, these output signals are compared with a teaching or target vector t,
and any difference is used in training the weights throughout the network. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.

Fig 6.4 in (Duda, Hart & Stork)
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Network learning: Backpropagation

Mean squared training error: J(w) = 1
2n
∑n

l=1 ‖t l − z l (w)‖2

 all derivatives will be sums over the n training samples.
In the following, we will focus on one term only.
Gradient descent: w ← w + ∆w , ∆w = −η ∂J

∂w .
Hidden-to-output units:

∂J
∂wkj

= ∂J
∂netk

∂netk
∂wkj

=: δk
∂netk
∂wkj

= δk
∂w t

ky
∂wkj

= δk yj .

The sensitivity δk = ∂J
∂netk

describes how the overall error
changes with the unit’s net activation netk = w t

ky :

δk = ∂J
∂zk

∂zk
∂netk

= −(tk − zk)f ′(netk).

In summary: ∆wkj = −η ∂J
∂wkj

= −ηδk yj = η(tk − zk)f ′(netk)yj .
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Backpropagation: Input-to-hidden units
Output of hidden units:

yj = f (netj) = f (w t
j x), j = 1, . . . , nH .

Derivative of loss w.r.t. weights at hidden units:
∂J
∂wji

= ∂J
∂netj

∂netj
∂wji

=: δj
∂netj
∂wji

= δj xi .

Sensitivity at hidden unit:

δj = ∂J
∂netj

= ∂J
∂yj

∂yj
∂netj

=
[ c∑

k=1

∂J
∂netk

∂netk
∂yj

]
f ′(netj)

=
[ c∑

k=1
δk wkj

]
f ′(netj)

Interpretation: Sensitivity at a hidden unit is proportional to
weighted sum of sensitivities at output units
 output sensitivities are propagated back to the hidden units.
Thus, ∆wji = −η ∂J

∂wji
= −ηδj xi = −η

[∑c
k=1 δk wkj

]
f ′(netj)xi .
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Backpropagation: Sensitivity at hidden units

w
kj
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ω2 ω3 ωk ωc

output

hidden

input

w
ij

δ1 δ2 δ3 δk δc

δj

FIGURE 6.5. The sensitivity at a hidden unit is proportional to the weighted sum of the
sensitivities at the output units: δj = f ′(netj)

∑c
k=1 wkjδk . The output unit sensitivities are

thus propagated “back” to the hidden units. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Fig 6.5 in (Duda, Hart & Stork)

Sensitivity at a hidden unit is proportional to weighted sum of sensitivities
at output units
 output sensitivities are propagated back to the hidden units.
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Stochastic Backpropagation
In the previous algorithm (batch version), all gradient-based updates ∆w
were (implicitly) sums over the n input samples.
But there is also a sequential “online” variant:

Initialize w ,m← 1.
Do

xm ← randomly chosen pattern
wkj ← wkj − ηδm

k ym
j

wji ← wji − ηδm
j xm

i

m← m + 1
until ‖∇J(w)‖ < ε.

Many (!) variants of this basic algorithm have been proposed.
Mini-batches are usually better than this “online” version.
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Expressive Power of Networks

two layer

three layer

x1 x2

x1

x2

...

x1 x2

R1

R2

R1

R2

R2

R1

x2

x1

FIGURE 6.3. Whereas a two-layer network classifier can only implement a linear deci-
sion boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex or simply connected. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Fig 6.3 in (Duda, Hart & Stork)
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Expressive Power of Networks

Question: can every decision be implemented by a
three-layer network?
Answer: Basically yes – if the input-output relation is continuous and
if there are sufficiently many hidden units.
Theorem (Kolmogorov 61, Arnold 57, Lorentz 62): every continuous
function f (x) on the hypercube Id (I = [0, 1], d ≥ 2) can be
represented in the form

f (x) =
2d+1∑
j=1

Φ
( d∑

i=1
ψji (xi )

)
,

for properly chosen functions Φ, ψji .
Note that we can always rescale the input region to lie in a hypercube.
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Expressive Power of Networks

Relation to three-layer network:

Each of 2d + 1 hidden units takes as
input a sum of d nonlinear functions,
one for each input feature xi .
Each hidden unit emits a nonlinear
function Φ of its total input.
The output unit emits the sum of all
contributions of the hidden units.
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Problem: Theorem guarantees only existence
 might be hard to find these functions.
Are there “simple” function families for Φ, ψji?
Let’s review some classical function approximation results...
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Polynomial Function Approximation

Theorem (Weierstrass Approximation Theorem)
Suppose f is a continuous real-valued function defined on the real interval
[a, b], i.e. f ∈ C([a, b]). For every ε > 0, there exists a polynomial p such
that ‖f − p‖∞,[a,b] < ε.

In other words: Any given real-valued continuous function on [a, b] can be
uniformly approximated by a polynomial function.
Polynomial functions are dense in C([a, b]).
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Ridge functions

Ridge function (1d):
f (x) = ϕ (wx + b) , ϕ : R→ R, w , b ∈ R.
General form: f (x) = ϕ (w tx + b) ,
ϕ : R→ R, w ∈ Rd , b ∈ R.
Assume ϕ(·) is differentiable at
z = w tx + b
 ∇x f (x) = ϕ′(z)∇x(w tx + b) = ϕ′(z)w .
Gradient descent is simple: direction
defined by linear part.

x

x

Σ

1

2

1

w
  
x φ

2

2

1
1

c 1

x 1

w
  1

φ 1

t(w x)

Relation to function approximation:
(i) polynomials can be represented arbitrarily well by combinations of ridge
functions  ridge functions are dense on C([0, 1]).
(ii) “Dimension lifting” argument (Hornik 91, Pinkus 99):
density on the unit interval also implies density on the hypercube.
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Universal approximations by ridge functions

Theorem (Cybenko 89, Hornik 91, Pinkus 99)
Let ϕ(·) be a non-constant, bounded, and monotonically-increasing
continuous function. Let Id denote the unit hypercube [0, 1]d , and C(Id )
the space of continuous functions on Id . Then, given any ε > 0 and any
function f ∈ C(Id ), there exist an integer N, real constants vi , bi ∈ R and
real vectors w i ∈ Rd , i = 1, · · · ,N, such that we may define:

F (x) =
N∑

i=1
viϕ

(
w t

i x + bi
)

as an approximate realization of the function f , i.e. ‖F − f ‖∞,Id < ε.

In other words, functions of the form F (x) are dense in C(Id ).
This still holds when replacing Id with any compact subset of Rd .
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Artificial Neural Networks: Rectifiers

Classic activation functions are indeed bounded and
monotonically-increasing continuous functions like tanh.
In practice, however, it is often better to use “simpler” activations.
Rectifier: activation function defined as:

f (x) = x+ = max(0, x),
where x is the input to a neuron.
Analogous to half-wave rectification in electrical engineering.
A unit employing the rectifier is called rectified linear unit (ReLU).
What about approximation guarantees?
Basically, we have the same guarantees,
but at the price of wider layers...
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Universal Approximation by ReLu networks

Any f ∈ C [0; 1] can be uniformly approximated to arbitrary precision
by a polygonal line (cf. Shekhtman, 1982)
Lebesgue (1898): polygonal line on [0, 1] with m pieces can be written

g(x) = ax + b +
m−1∑
i=1

ci (x − xi )+,

with knots 0 = x0 < x1 < · · · < xm−1 < xm = 1,
and m + 1 parameters a, b, ci ∈ R.
We might call this a ReLU function approximation in 1d.
A dimension lifting argument similar to above leads to:

Theorem
Networks with one (wide enough) hidden layer of ReLU are universal
approximators for continuous functions.
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Universal Approximation by ReLu networks
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Why should we use more hidden layers?

Input OutputHidden

Idea: characterize the expressive power by counting into how many
cells we can partition Rd with combinations of rectifying units.
A rectifier is a piecewise linear function. It partitions Rd into two
open half spaces (and a border face):

H+ = x : w tx + b > 0 ∈ Rd

H− = x : w tx + b < 0 ∈ Rd

Question: by linearly combining m rectified units, into how many cells
is Rd maximally partitioned?
Explicit formula (Zaslavsky 1975): An arrangement of m hyperplanes
in Rn has at most

∑n
i=0

(m
i
)

regions.
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Linear Combinations of Rectified Units and Deep Learning

Applied to ReLu networks (Montufar et al, 2014):

Theorem
A rectifier neural network with d input units and L hidden layers of width
m ≥ d can compute functions that have Ω

((m
d
)(L−1)d md

)
linear regions.

Important insights:
The number of linear regions of deep models grows
exponentially in L and polynomially in m .
This growth is much faster than that of shallow networks with the
same number mL of hidden units in a single wide layer.
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Implementing Deep Network Models

Modern libraries like TensorFlow/Keras or PyTorch make
implementation simple:

Libraries provide primitives for defining functions and automatically
computing their derivatives.
Only the forward model needs to be specified,
gradients for backprop are computed automatically!
GPU support.
See PyTorch examples in the exercise class.
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Subsection 2

Recurrent Neural Networks
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Unfolding Computational Graphs

Computational graph
 formalize structure of a set of computations,
e.g. mapping inputs and parameters to outputs and loss.
Classical form of a dynamical system:

s(t) = f (s(t−1); θ),
where s(t) is the state of the system.

f f ff
s s(...) (...)s(t−1) s s(t) (t+1)

For a finite number of time steps τ , the graph can be unfolded by
applying the definition τ − 1 times, e.g. s(3) = f (f (s(1))).
Often, a dynamical system is driven by an external signal:

s(t) = f (s(t−1), x(t); θ).
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Unfolding Computational Graphs

State is the hidden units of the network:
h(t) = f (h(t−1), x(t); θ),

ff f f

f Unfold

(t)x

(...) (...)h h

(t−1) (t+1)x x

(t−1) (t+1)h hh

x

(t)h

A RNN with no outputs. It just incorporates information about x by
incorporating into h. This information is passed forward through time.
(Left) Circuit diagram. Black square: delay of one time step.
(Right) Unfolded computational graph.
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Unfolding Computational Graphs

The network typically learns to use the fixed length state h(t) as a
lossy summary of the task-relevant aspects of x(1:t).

UUUUU

V

WWWWW

(...)h

(t−1) (t+1)x x

(t−1) (t+1)h h

(τ)o

y

(τ)L

(τ)

(τ)h

(τ)x

(t)h

(t)x

(...)h

(...)x

Time-unfolded RNN with a single output at the end of the sequence.
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Unfolding Computational Graphs

We can represent the unfolded recurrence after t steps with a
function g (t) that takes the whole past sequence as input:

h(t) = g (t)(x(t), x(t−1), . . . , x(1)) = f (h(t−1)x(t); θ)
Recurrent structure
 can factorize g (t) into repeated application of function f .
The unfolding process has two advantages:
(i) Learned model specified in terms of transition from one state to
another state  always the same size.
(ii) We can use the same transition function f at every time step.
Possible to learn a single model f that operates on
all time steps and all sequence lengths.
A single shared model allows generalization to sequence lengths that
did not appear in the training set , and requires fewer training
examples.
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Recurrent Neural Networks

Unfold

W W W W

W

U U U U

V V VV

(t)x

(t−1)

(t−1)

(t−1)

o

L

y

(...) (...)h hh

x (t−1) (t+1)x x

(t−1) (t+1)h h(t)h

(t+1)(t)

(t+1)

(t+1)(t)

(t) oo

LL

y y

o

L

y

This general RNN maps an input sequence x to the output sequence o.
Universality: any function computable by a Turing machine can be computed by
such a network of finite size.
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Recurrent Neural Networks

Hyperbolic tangent activation function  forward propagation:
a(t) = b + W h(t−1) + Ux(t),

h(t) = tanh(a(t)),
o(t) = c + V h(t),

ŷ (t) = softmax(o(t)).
Here, the RNN maps the input sequence to an output sequence of the
same length. Total loss = sum of the losses over all times ti .
Computing the gradient is expensive: forward propagation pass
through unrolled graph, followed by backward propagation pass.
It is called back-propagation through time (BPTT).
Runtime is O(τ) and cannot be reduced by parallelization
because the forward propagation graph is inherently sequential.
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Simpler RNNs

UnfoldU U U U

V V VV W W W W

W

(t)x

(t−1)

(t−1)

(t−1)

o

L

y

(...)hh

x (t−1) (t+1)x x

(t−1) (t+1)h h(t)h

(t+1)(t)

(t+1)

(t+1)(t)

(t) oo

LL

y y

o

L

y

(...)o

An RNN whose only recurrence is the feedback connection from the output to the
hidden layer. The RNN is trained to put a specific output value into o, and o is
the only information it is allowed to send to the future.
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Networks with Output Recurrence

Recurrent connections only from the output at one time t to the
hidden units at time t + 1  simpler, but less powerful.
Lacks hidden-to-hidden recurrence  requires that output units
capture all relevant information about the past.
Advantage: for any loss function based on comparing the o(t) to the
target y (t), all the time steps are decoupled.
Training can be parallelized:
Gradient for each step t can be computed in isolation: no need to
compute the output for the previous time step first, because training
set provides the ideal value of that output  Teacher forcing.
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Teacher Forcing
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(Left) At train time, we feed the correct output y (t) as input to h(t+1). (Right)
When the model is deployed, the true output is not known. In this case, we
approximate the correct output y (t) with the model’s output o(t).
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Sequence-to-sequence architectures

So far: RNN maps input to output sequence of same length.
What if these lengths differ?
 speech recognition, machine translation etc.
Input to the RNN called the context . Want to produce a
representation of this context, C : a vector summarizing the input
sequence X = (x (1), . . . , x (nx )).
Approach proposed in [Cho et al., 2014]:
(i) Encoder processes the input sequence and emits the context C ,
as a (simple) function of its final hidden state.
(ii) Decoder generates output sequence Y = (y (1), . . . , y (ny )).
The two RNNs are trained jointly to maximize the average of
log P(Y |X ) over all the pairs of x and y sequences in the training set.
The last state hnx of the encoder RNN is used as the
representation C .
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Sequence-to-sequence architectures

Fig 10.12 in (Goodfellow, Bengio, Courville)
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Long short-term memory (LSTM) cells
Theory: RNNs can keep track of
arbitrary long-term dependencies.
Practical problem: computations in finite-precision:
 Gradients can vanish or explode.
RNNs using LSTM units partially solve this problem: LSTM units
allow gradients to also flow unchanged.
However, exploding gradients may still occur.
Common architectures composed of a cell and three regulators or
gates of the inflow: input, output and forget gate.
Variations: gated recurrent units (GRUs) do not have an output gate.
Input gate controls to which extent a new value flows into the cell
Forget gate controls to which extent a value remains in the cell
Output gate controls to which extent the current value is used to
compute the output activation.
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Recall: RNNs

tanhtanh

Vector Transfer Concatenate CopyNeural Network Layer

h
(t−1)

h
(t)

x
(t) (t+1)

xx
(t−1)

h(t) = tanh(W [h(t−1), x(t)] + b)

RNN cell takes current input x(t) and outputs the hidden state h(t)

 pass to the next RNN cell.
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Long short-term memory (LSTM) cells
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Cell states allows flow of unchanged information
 helps preserving context, learning long-term dependencies.
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LSTM cells: Forget gate
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f (t) = σ(W f [h(t−1), x(t)] + bf )

Forget gate alters cell state based on current input x(t) and output
h(t−1) from previous cell.
Volker Roth (University of Basel) Machine Learning 2020 6th April 2020 49 / 69



LSTM cells: Input gate
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i (t) = σ(W i [h(t−1), x(t)] + bi )
c̃(t) = tanh(W c [h(t−1), x(t)] + bc)

Input gate decides and computes values to be updated in the cell state.
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LSTM cells: Input gate (cont’d)
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c(t) = f (t) ◦ c(t−1) + i (t) ◦ c̃(t)

Forget and input gate together update old cell state.
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LSTM cells: Output gate
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o(t) = σ(W o[h(t−1), x(t)] + bo)
h(t) = tanh(c(t)) ◦ o(t)

Output gate computes output from cell state to be sent to next cell.
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LSTM example: movie review
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best movie

Inputs: words in a movie review
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Word embeddings
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Multidimensional, distributed representation of words in a vector space.
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Subsection 3

Interpretability in deep learning models
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Interpretability in deep learning models

Input OutputHidden

Deep neural networks are accurate but difficult to understand.
Can we directly optimise deep models for interpretability?
(M Wu, MC Hughes, S Parbhoo, M Zazzi, V Roth, F Doshi-Velez, AAAI 2018)
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Existing Methods for Interpretability
Current methods try to interpret trained models.
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Small Trees are interpretable

Decisions may be simulated.
Decisions may be understood directly in terms of feature space.
Ave. path length: cost of simulating ave. example.

But decision trees produce less accurate predictions.
Can we optimise a neural network to be interpretable and accurate?
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RNNs
Timeseries data: N, Tn timesteps each, binary outputs.
Train a recurrent neural network (RNN) with loss:

λψ(W ) +
N∑

n=1

Tn∑
t=1

loss(ynt , ŷnt(xnt ,W ))

where ψ is a regularizer (i.e. L1 or L2), λ is a regularization strength
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Tree Regularisation for Interpretability

Pass training data X through the RNN to make predictions ŷ .
Train DT on X , ŷ to try to match the RNN predictions.

At any point in the optimization, approximate partially trained RNN with
simple DT.
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Tree Regularisation for Interpretability

Use average path length of DT to constrain predictions
Interpretation: cost for a human to simulate the average example.
Redefine loss function:

λ
N∑

n=1

Tn∑
n=1

pathlength(xnt , ŷnt) +
N∑

n=1

Tn∑
n=1

loss(ynt , ŷnt(xnt ,W ))
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Optimizing a Surrogate of the Tree
But DTs aren’t differentiable  use a surrogate network to mimic the tree:
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Toy dataset
Parabolic decision function y = 5 ∗ (x − 0.5)2 + 0.4
Points above parabola are positive, points below negative.
Tree regularization produces axis aligned boundaries.
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Results: High Accuracy Predictions

Better performance in high regularization (human-simulatable) regimes:
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Real-word Data: Sepsis (Johnson et. al. 2016)
Time-series data for 11k septic intensive-care-unit (ICU) patients.
35 hourly features: respiration rate (RR), blood oxygen levels (paO2) etc.
Binary outcome: if a ventilation was used.
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Important features (FiO2, RR, CO2, and paO2) are medically valid
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Real-word Data: EuResist (Zazzi et. al. 2012)
Time-series data for 50k patients diagnosed with HIV.
Time steps: 4-6 month intervals (hospital visits).
40 input features (blood counts, viral load, viral genotype etc.)
15 output features (viral load reduction, adherence issues, etc.)
The average sequence length is 14 steps.
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(Langford et al. 2007, Socas et al. 2011): high baseline viral loads
 faster disease progression  need multiple drug cocktails
 harder for patients to adhere to prescription.
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Summary of Tree Regularisation
Regularise deep models such that they have
high-accuracy and low complexity.
Axis-aligned decision boundaries that are
easy to interpret and explain decisions.
Decision trees that make faithful predictions and can be used to
personalise therapies.
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