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Section 7

Support Vector Machines and Kernels
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Structure on canonical hyperplanes

Theorem (Vapnik, 1982)

Let R be the radius of the smallest ball containing the points x1,...,Xp:
Br(a) = {x ¢ RY: ||x — a|| < R, a € R?}. The set of canonical
hyperplane decision functions f(w, wy) = sign{w’x + wy} satisfying
|lw|| < A has VC dimension h bounded by

h< R?A® + 1.

Intuitive interpretation: margin = 1/||w/|
~> minimizing capacity(#) corresponds to maximizing the margin.

R[f3] < Remplfa] + \/z <capacity(’H) +1n g) J

~ Large margin classifiers.
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SVMs

@ When the training examples are linearly separable we can maximize
the margin by minimizing the regularization term

d
lwl?/2="2_wi/2
i=1

subject to the classification constraints
vilxiw] —1>0,i=1,...,n.

@ The solution is defined only on the basis of a subset of examples or
support vectors.
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SVMs: nonseparable case

@ Modify optimization problem slightly by adding a
penalty for violating the classification constraints:

n
minimize ||w|?/2 + CZ&
i=1

subject to relaxed constraints
y,[XfW]—l-f—f, 207 i:]-a"'an'

@ The & > 0 are called slack variables.
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SVMs: nonseparable case

o We can also write the SVM optimization problem more compactly as
&i

n P
CY_ (1 —ylxiw))® +[lw|?/2,
i=1

where (z)T = z if z > 0 and zero otherwise.

o This is equivalent to regularized empirical loss minimization

1 n
— > (1—yilxiw))" + w2,
i=1

Remp
where A = 1/(2nC) is the regularization parameter.
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SVMs and LOGREG

@ When viewed from the point of view of regularized empirical loss
minimization, SVM and logistic regression appear quite similar:

1 n
SVM: =3 (1 - yilxjw])" + Allw]®
i=1

P(}/i|xi7w)
n

1 t 2
LOGREG: — > —loga(yi[xfw]) + Allwl?,
i=1

where o(z) = (1 + e?)~ ! is the logistic function.
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SVMs and LOGREG

@ The difference comes from how we penalize errors:

z

1 n N
Both: =Y L [xt A wl[?
o n; oss(yi[x;w]) + Allw||%,

@ SVM: Loss(z) = (1 — 2)*
o LOGREG:
Loss(z) = log(1 + exp(—2z))
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SVMs: solution, Lagrange multipliers
@ Back to the separable case: how do we solve
minimize,, ||w|®*/2 st yixiw] -1>0,i=1,...,n.
@ Represent the constraints as individual loss terms:

0, if yj[xiw]—-12>0,

;>0 oo, otherwise.

sup a;(1 — yi[xiw]) = {
@ Rewrite the minimization problem:

minimize,, ||w|| /2+ZSUP ai(1 — yi[xjw])

=1 @i

= minimize, sup (\WH /2+Za: (1 — yi[x; W]))

;>
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SVMs: solution, Lagrange multipliers

@ Swap maximization and minimization (technically this requires that
the problem is convex and feasible ~» Slater’s condition):

minimize,, [sup0 (HWH2/2 +> ai(l- y,-[xfw]))]
o> i=1

= maximizey,; >0 [mni/n (||W”2/2 + Iz;:ai(l - y,-[xfw]))]

J(w;ax)

@ We have to minimize J(w; ) over parameters w for fixed
Lagrange multipliers «; > 0.
Simple, because J(w) is convex ~+ set derivative to zero
~> only one stationary point ~» global minimum.
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SVMs: solution, Lagrange multipliers

o Find optimal w by setting the derivatives to zero:

0 R
a—wJ(w;a) =w— zi:a,-y/x,- =0 = w= zj:a;y;xi.

@ Substitute the solution back into the objective and get
(after some re-arrangements of terms):

n
. 2 (1 — lat
mag i (IwI°/2 + 3 it~ ilefw)

:21’_%<||W||2/2 + Z ai(l — y,-[XFW])>

i=1

n n
1
t
=maxX E aj — = E YiyjoiogX; X;
@i20\ = 2

ij=1
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SVMs: summary
o Find optimal Lagrange multipliers &; by maximizing

Za; Z viyjaiaxix;  subject to a; > 0.
i= ij=1

(]

Only &;'s corresponding to support vectors will be non-zero.

Make predictions on any new example x according to:

sign(xW) = sign(x Za,y,x, = sign Z aiyixtx;)
iesSv

Observation: dependency on input vectors only via dot products.

o Later we will introduce the kernel trick for efficiently computing
these dot products in implicitly defined feature spaces.
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SVMs: formal derivation
o Convex optimization problem: an optimization problem

minimize f(x) (1)

subject to gi(x) <0, i=1,...,m (2)

is convex if the functions f,g1...gn : R” — R are convex.

@ The Lagrangian function for the problem is
L(%, X0, s Am) = Aof (X) + A181(X) + ... + Amgm(X).

o Karush-Kuhn-Tucker (KKT) conditions: For each point X that
minimizes f, there exist real numbers Ag, ..., A\m,
called Lagrange multipliers, that simultaneously satisfy:
@ X minimizes L(x, Ao, A1, .., Am),
Q N>0,2>0,...,\, >0, with at least one Ay > 0,
© Complementary slackness: g;(x) <0=X;=0,1<i<m.
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SVMs: formal derivation

o Slater’s condition: If there exists a strictly feasible point z
satisfying g1(z) < 0,...,8m(z) <0, then one can set Ao = 1.

@ Assume that Slater’s condition holds. Minimizing the supremum
L*(x) = supy>o L£(x, A), is the primal problem P:

X = argmin L*(x).
X

Note that

£7(x) = sup (f(x) 3 A,-g,-<x>> - {
i=1

A>0

f(x) ,ifgi(x)<0Vi

00 , else.

~» Minimizing £*(x) is equivalent to minimizing f(x).

@ The maximizer of the dual problem D is

A= argmax L.(X), where L, (A) = inf L(x,A).
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SVMs: formal derivation

@ The non-negative number min(P) — max(D) is the duality gap.
o Convexity and Slater’s condition imply strong duality:

© The optimal solution (%, X) is a saddle point of £(x, \)
© The duality gap is zero.

e Discussion: For any real function f(a, b)
ming[maxy f(a, b)] > maxp[min, f(a, b)] .
Equality ~~ saddle value exists.
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By Nicoguaro - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=20570051
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Kernel functions

@ A kernel function is a real-valued function of two arguments,
k(x,x") € R, for x,x" € X.
@ Typically the function is symmetric, and sometimes non-negative.
@ In the latter case, it might be interpreted as a measure of similarity.
e Example: isotropic Gaussian kernel:
/12
k(x,x") = exp <_”X2_U’2‘H>

Here, 02 is the bandwidth. This is an example of a
radial basis function (RBF) kernel (only a function of |[x — x'||2).
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Mercer kernels

@ A symmetric kernel is a Mercer kernel, iff the Gram matrix

k(x1,x1) ... k(x1,xn)
K= :
k(xn,x1) ... k(xn,xn)
is positive semidefinite for any set of inputs {x;,...,xn}.

o Mercer’s theorem: Eigenvector decomposition
K = VAVE = (VAY2)(VAY2)t =: oot
Eigenvectors: columns of V. Eigenvalues: entries of diagonal matrix
A = diag(A1,...,A,). Note that A; € R and \; > 0.
Define ¢(x;)t = i-th row of ® = Vj;qAl/2
= k(xi, 1) = B(x) plxi).
o Entries of K: inner product of some feature vectors,
implicitly defined by eigenvectors V.
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Mercer kernels

o If the kernel is Mercer, then there exists ¢ : x — R such that
k(x,x') = ¢(x)"d(x'),
where ¢ depends on the eigenfunctions of k (d might be infinite).
o Example: Polynomial kernel
k(x,x") = (14 x'x")™.
Corresponding feature vector contains terms up to degree m.
Example: m =2, x € R%:
(1 4+ x"x)? = 1+ 2x1] + 2xax5 + (x1x])? + (x2x5)? + 2x1.] x2 5.
Thus,
d(x) = [1,V2x1, V2x0, X2, x2,V/2x1 0] .
Equivalent to working in a 6-dim feature space.

o Gaussian kernel: feature map lives in an infinite dimensional space.
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Kernels for documents

@ In document classification or retrieval, we want to compare two
documents, x; and x;.

Bag of words representation:
xjj is the number of times word j occurs in document /.

@ One possible choice: Cosine similarity:
xExp
k(xi,xip) = —=0 — = o(x;) p(x;1).
B xi) = g — P #0xr)

o Problems:

» Popular words (like “the” or “and") are not discriminative
~> remove these stop words.

» Bias: once a word is used in a document,
it is very likely to be used again.

@ Solution: Replace word counts with “normalized” representation.
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Kernels for documents

o TF-IDF “term frequency inverse document frequency”:
Term frequency is log-transform of the count:

tf(X,'j) = |0g(1 + X,:,')
Inverse document frequency:

d t 1
idf(j) = log #{ ocumen S) — = log —.
#(documents containing term j) b

~» Shannon information content:
idf is a measure of how much information a word provides

@ Combine with tf ~» counts weighted by information content:
tf-idf(x;) = [tf(x;) - idf(j)]}/zl, where V' = size of vocabulary.
@ We then use this inside the cosine similarity measure.
With ¢(x) = tf-idf(x):
N b xi
k(xi, xir) = Plxi) Plxr) :
lo(xi)lllp(xi)l]
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String kernels

Real power of kernels arises for structured input objects.

Consider two strings x, and x’ of lengths d, d’, over alphabet A.
Idea: define similarity as the number of common substrings.

(]

If s is a substring of x ~» ¢s(x) = number of times s appears in x.

(]

String kernel

k(x,x") = Z Wshs(x)ds(x'),
scA*
where wg > 0 and A* = set of all strings (any length) from A.

One can show: Mercer kernel, can be computed in O(|x| + |x']) time
using suffix trees (Shawe-Taylor and Cristianini, 2004).

(]

Special case: ws = 0 for |s| > 1: bag-of-characters kernel:
¢(x) is the number of times each character in A occurs in x.
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The kernel trick

@ Idea: modify algorithm so that it replaces all inner products x‘x’

with a call to the kernel function k(x, x’).
o Kernelized ridge regression: w = (XX + \/)~1Xty.
Matrix inversion lemma:
(I+uv)ytu=u(+wvu)!
Define new variables «;:
w= (XX +A)"tXty

= XH(XXT+ ANty = Za,x,
—,_/
&

~ solution is linear sum of the n training vectors.
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The kernel trick

@ Use this and the kernel trick to make predictions for x:

?( —Wx—Za,xx—Za, Xi, X
@ Same for SVMs:
wix = Z Qiyixix = Z &tk(x;, x)

iesv iesv
@ ...and for most other classical algorithms in ML!
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Some applications in bioinformatics

@ Bioinformatics: often non-vectorial data-types:

Human

tonkey Cow
juman

> interaction graphs

Soybean

» phylogenetic trees T
> strings GSAQVKGHGKKVADALTNAVAHV

o Data fusion: convert data of each type into kernel matrix
= fuse kernel matrices
= “common language” for heterogeneous data.
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RBF kernels from expression data

e Measurements (for each gene): vector of expression values under
different experimental conditions

o “classical” RBF kernel k(xi,x2) = exp(—c||x1 — x2||?)

LR

AT
Hhia
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Diffusion kernels from interaction-graphs

(]

A: Adjacency matrix, D: node degrees, L = D — A.

°o K= ﬁ exp(—pFL) with transition probabilities 3.

Physical interpretation (random walk):
randomly choose next node among neighbors.

@ Self-transition occurs with prob. 1 — d;3

Kjj: prob. for walk from i to j.

(Kondor and Lafferty, 2002)
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Alignment kernels from sequences

Alignment with Pair HMMs
~» Mercer kernel (Watkins, 2000).

Image source: Durbin, Eddy, Krogh, Mitchison. Biological Se-

quence Alignment. Cambridge.

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL
++ ++++H+ KV + +A  ++ +L+ L+++H+ K
LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG
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Combination of heterogeneous data

Adding kernels = new kernel:

ki(x,y) = ¢1(x) - d1(y).

ka(x,y) = ¢2(x) - d2(y) é2(x)

Fusion & relevance determination: kernel-combinations

S K =k ke = (200) - (20

+ Co
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