Machine Learning 2020

Volker Roth

Department of Mathematics & Computer Science
University of Basel

4th May 2020

Volker Roth (University of Basel) Machine Learning 2020 4th May 2020 1/36



Section 8

Gaussian Processes: probabilistic kernel models
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Overview

@ The use of the Gaussian distribution in ML

Properties of the multivariate Gaussian distribution
Random variables — random vectors — stochastic processes
Gaussian processes for regression

Model Selection

Gaussian processes for classification

v

v vy VvYy

o Relation to kernel models (e.g. SVMs)

@ Relation to neural networks.

Volker Roth (University of Basel) 4th May 2020 3/36



Kernel Ridge Regression

Kernelized ridge regression: w = (XtX + \/)~1Xty.
Matrix inversion lemma: (/ + UV)~tU = U(I + VU)!

Define new variables «;:
W= (XTX 4+ A)"Xty

= XY (XXt + AI)~ ly = Za,x,
—_—

Predictions for new x.:

7?( = = Zoz,x X, = Zdz,-k(x,-,x*).
i=1

Volker Roth (University of Basel) 4th May 2020 4/36



Kernel Ridge Regression

f(x) =sin(x)/.
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Kernel function: k(x;, x;) = exp(—5p|1xi — x;[|?)
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How can we make use of the Gaussian distribution?

-2

v . A . Nl
@ Is it possible to fit a nonlinear regression line with the “boring
Gaussian distribution?

@ Yes, but we need to introduce the concept of Gaussian Processes!
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The 2D Gaussian distribution

2D Gaussian: P(y;p=0,X =K) = 21|K| exp(—%ytK_ly)
vy
Covariance
(also written “co-variance”) 4203
is a measure of how much two B L T
random variables vary to- : -
gether: ¥ - "
o +1: perfect linear - -
coherence, - Y
o -1: perfect negative 2 I S I
. .95 1.00H] “=Bos 1008
linear coherence, S e B
@ 0: no linear coherence.
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Properties of the Multivariate Gaussian distribution

Kii Ko
SN K. Lety = Y1 Jand k= T T2 )
y ~N(w, K). Lety <y2 n Koy Kop
Then y; ~ N(py, K11) and y, ~ N (e, K22).

(L O75-021
“Hozo02s

Marginals of Gaussians are again Gaussian!
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Properties of the Multivariate Gaussian distribution (2)

K K
~N(p, K). Lety = | 1 dk=| "1 f2 )
Y (1, K). Let y <}’2 an Ko Kxo

Then y,ly: ~ N(pp + Ko Kt (y1 — 1), Koo — Ko Kii Kia).

Conditionals of Gaussians are again Gaussian!
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2D Gaussians: a new visualization

@ top left: mean and
tstd.dev. of p(ya|yr = 1).

1

@ bottom left: p(yz|y; = 1)
and samples drawn from it.

@ top right: x-axis: indices
(1,2) of dimensions,
y-axis: density in each
component. Shown are : [l
y1 = 1 and the conditional :

mean p(yz2|y1 = 1) and
std.dev.

@ bottom right: samples e
drawn from above model.
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Visualizing high-dimensional Gaussians

@ top left: 6 samples drawn
from 5-dimensional
Gaussian with zero mean
(indicated by blue line).

o =1 (magenta line).

@ bottom left: Conditional
mean and std.dev of

p(ya, ysly1 = =1,y = 0,y3 = 0.5). -
@ top right: contour lines of ’ N : /\
p(ya, ysly1 = —1,y» = 0,3 = 0.5). .

@ bottom right: samples
drawn from above model.
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From covariance matrices to Gaussian processes

@ top left: 8 samples, 6 dim. - . o
x-axis: dimension-indices. LSS e T

@ bottom left: 8 samples,
viewed as values y = f(x).
Construction: choose 6
input points x; at random
~> build covariance matrix K
with covariance function
k(x, x') = exp(— 3 [ x—x'|]2)
~ draw f ~ N(0, K) N
~> plot as function of inputs.  ° = ‘ z

o top right: same for 12 inputs | s

@ bottom right: 100 inputs
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This looks similar to Kernel Regression...

-0.5
I
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Gaussian Processes

o Gaussian Random Variable (RV): f ~ N (u, 0?).

@ Gaussian Random Vector: Collection of n RVs, characterized by
mean vector and covariance matrix: f ~ N (u,¥)

@ Gaussian Process: infinite Gaussian random vector, every finite
subset of which is jointly Gaussian distributed
Continuous index, e.g. time t ~» function f(t).
Fully specified by mean function m(t) = E[f(t)]
and covariance function k(t,t') = E[(f(t) — m(t))(f(t') — m(t'))].
o In ML, we will focus on more general index sets x € RY with mean
function m(x) and covariance function k(x, x’):

f(x) ~ GP(m(x), k(x, x')).
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Visualizing Gaussian Processes: Sampling

o Problem: working with infinite vectors and covariance matrices is not
very intuitive...

@ Solution: evaluate the GP at set of n discrete times
(or input vectors x € RY):
» Choose n input points x; at random ~» matrix X
> build covariance matrix K (X, X) with covariance function k(x;, x;)
» sample realizations of the Gaussian random vector
f ~ N(0,K(X, X))
» plot f as function of inputs.
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This is exactly what we have done here...
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From the Prior to the Posterior

GP defines distribution over functions ~» f evaluated at training points X
and f, evaluated at test points X, are jointly Gaussian:

Flon(o | KX:X) KX X)

f. KX, X)) K(Xs, Xi)
Posterior p(f.| X, X, f(X)): conditional of a Gaussian distribution.
Let x ~ N (p, K). Let x = ( X1 ) and K = < Kin Kio )

X2 Ko Ko
Then X2|X1 ~ N(uz + Kleﬂl(fl — [1,1), Kooy — KglKﬂlKlz).

fo X, X, F~ N( K(Xe, X)(K(X, X)),
K(X., X.) — K(X., X)(K(X, X)) 1K (X, X,))

For only one test case:

ful X, X, F ~ N(KEK T, ko — kKEK k)
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A simple extension: noisy observations

@ Assume we have access only to noisy versions of function values:
y = f(x)+n, n ~N(0,02) (cf. initial example of ridge regression).
@ Noise 1 does not depend on data!

@ Covariance of noisy observations y is sum of covariance of f and
variance of noise: cov(y) = K(X, X) + o2I.

K(X, X))+ 0%l K(X,X.)
(e S k)

fdXe, X,y ~N( KX, X)(K(X, X) +0?1) 7Ly,
K(X., X)) =KX, X)(K(X,X) 4+ o2)71K(X, X.))

f;<|X*,X, f NN(ki(K +O-2/)_1ya k** - ki(K +O’2/)_1k*)

= Posterior mean is solution of kernel ridge regression!
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Noisy observations: examples

f(x) =sin(x)’

-05

Noisy observations: y = f(x) + 7, 7 ~ N(0,0?)
Mean predictions: f, = K.(K + c2/)y.
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Gaussian processes for regression

now with some noise... Posterior sample Prior samples

@ Left: 11 training points generated as y = sin(x)/x + v, v ~ N(0,0.01)
Covariance k(x,,xq) = exp(— 55 [|Xp — X4[[2) + 020.4.
100 test points uniformly chosen from [—10, 10] ~~» matrix Xi,.
Mean prediction E[f.|X., X, y] and +std.dev.

@ Middle: samples drawn from posterior .| X, X, y.
@ Right: samples drawn from prior f ~ N(0, K(X, X)).
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Covariance Functions

o A GP specifies a distribution over functions f(x), characterized by
mean function m(x) and covariance function k(xj, x;).

o Finite subset evaluated at n inputs ~» Gaussian distribution:
FX) = (F(x2), o F(xa)) ~ N (1K),
where K is the covariance matrix with entries Kj; = k(x;, x;).
o Covariance matrices are symmetric positive semi-definite:
Kij = Kji and x'Kx >0, Vx.

o We already know that Mercer kernels have this property
~> all Mercer kernels define proper covariance functions in GPs.

o Kernels frequently have additional parameters.

@ The noise variance in the observation model
y = f(x) +n,1m ~ N(0,02) is another parameter.

@ How should we choose these parameters? ~» model selection.
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Model Selection

@ top left: sample function from
prior f ~ N(0, K(X, X)) with
covariance function
k(x,x') = exp(— 5 1x — x'|P).
Length scale / = 1079 small
~> highly varying function.

length scale: 10°0.5, sample no. 1

@ bottom left: same for / = 10°
~~ smoother function

@ top right: same for / = 10%5
~~ even smoother...

@ bottom right: almost linear
function for / = 10

length scale: 10°0, sample no. 1 length scale: 10°1, sample no. 1
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Model Selection (2)

@ How to select the parameters?

@ One possibility: maximize marginal likelihood:

pyIX) = [ pyIF X)p(FIX) of.
@ We do not need to integrate: we know that
fIX ~N(0,K) and y =f +n, n~N(0,0%).
Since 1 does not depend on X, the variances simply add:
yIX ~N(0,K +o?1).

@ Possible strategy:
Select parameters on a grid and choose maximum.

@ Or: Compute derivatives of marginal likelihood and use gradient
descent.
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Model Selection (3)

e Example problem: y = sin(x)/x +n, n ~ N(0,0.01).
o Log marg. likeli. = log N'(0, K + o?1) =

1 1
—o¥ (K +0?) Ty~ log|K +I| - glog(27r) .

data fit complexity penalty =~ norm. constant
o 2d-Example with Gaussian RBF:
(K+o2l) = ( 1*;’2 14502 > = |K+all=(1+0%)?-a*>>0
Note that a — 0 if length scale | — 0
~ complexity penalty has high values for small length scales.
Matrix inverse includes a dominating factor |K + o2/| 71
~> data fit term also high for small /.
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Model Selection (4)

Fixing 02 = 0.01 and varying length scale /:

o |
N neg. complexity penalty
o |
N
B marg. likelihood
£
© o -
k4
[=2
o
o
Q
I
data fit
o
S
! T T T T T T T T T T T T T T T T T T T T
-1 -08 -06 -04 -02 0 02 04 06 08 1

log(length scale), log(noise variance) = 0.01
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Model Selection (5)

Fixing length scale / = 0.5 and varying the noise level o2:

o |
<
neg. complexity penalty
o |
N
'§ marg. likelihood
< data fit
O O+
4
j=2
o
o
Q
]
o
S
! T T T T T T T T T T T T T T T T T T T
-3 -26 -22 -18 -14 -1 -06 0 04 08

log(noise variance), log(length scale) = 0.5
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Model Selection (6)
Varying both o2 and /:

log(noise variance)
1

-1.0 -0.5 0.0 0.5 1.0

log(length scale)
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Classification: Basket Ball Example

v
-
linear activation
=
—
g
1%}
9
E
5 © ]
a logistic transfer function
E
=
o
0
S 4
[
T T T T T
0 10 20 30 40
distance

Adapted from Fig. 7.5.1 in (B. Flury)
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Classical Logistic Regression

o Targets y € {0,1}
~~ Bernoulli RV with “success probability” m(x) = P(1]x).

o Likelihood: P(y|X, f) = [Tr; (m(xi))” (1 — me(x;))

e Linear logistic regression: unbounded f(x) = w’x (“activation”)
Bounded estimates: pass f(x) through logistic transfer function
o(F(x)) = Ty = 1 and set mr(x) = o(f(x)).

o Newton method for maximizing the log posterior
J(w) := log p(y|X, w) + log p(w):

r r — a
w1 — w() — LE[H]} la—WJ(w)

o Kernel trick: expand w = X', substitute dot products by kernel
function k(x, x’) ~~ kernel logistic regression.
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GP Classification

@ Place GP prior over “latent” function f(x) ~ GP(0, k(x, x")).

e “Squash” it through logistic function ~~ prior on w(x) = o(f(x)).

4 1

~

|
~

latent function, f(x)
=
class probability, (x)

!
IS

input, x input, x
(Rasmussen & Williams, 2006)

@ Problem: Bernoulli likelihood ~~ predictive distribution
p(v« = 1|X,y, x,) cannot be calculated analytically.

@ Possible solution: use Laplace approximation.

o Observation: MAP classification boundary is identical with boundary
obtained from kernel logistic regression.
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GP Classification using Laplace’'s approximation
@ Prior f|X ~ N(0, K). Bernoulli likelihood:

n

p(y[X, F) = [T (c(F(xi)))" (1 = o(F(xi))) ™,
i=1
@ Gaussian approximation of posterior:
p(FIX,y) =~ N(F,H™).
@ Predictions: compute

p(ye = 1|y, x., X) =

—

o-(ﬂk)p (f:k | Y, Xx, X) df, = ]Ep(f*|y,x*,X)(0-)

latent function at x.
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GP Classification using Laplace’'s approximation

o First predict latent function at test case x,:

plEly.x..X) = [ plEIF.x.X)  plFIX.y)df
Gaussian  approx. Gaussian N(f, H™1)
~ N (pis, 04), with
e = kEKTLE,
0y = ke — kEK Lk,

@ Then use Monte Carlo approximation

1 S
Plyly, x:, X) = Ep(tlyx. x)(0) < > o(f(x.)),
s=1

where £ are samples from the (approximated) distribution over latent
function values.
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GPs and Neural networks

Consider a neural network for regression (square
loss) with one hidden layer:

ply|x,0) = N(f(x;8),07),

f(x)=b+ ZH vig(x; uj).

Bayesian treatment: i.i.d. prior assumptions over weights:

indep. zero-mean Gaussian priors for b and v, with variance ag and o2,
and independent (arbitrary) priors for components of the weight vector u;
at the j-th hidden unit.
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GPs and Neural networks

@ Mean and covariance:
=0

m(x) = EolF(x)] = BB+ E[vig(x; )]
j=1
(v inde:p. of u) ;ERE\’;A E[g(x; uj)] =0.

Ny
k(x,X') = Eg[f(x)f(x)] = o2 + > 02Eulg(x; u))g (X uy)].
j=1
o All hidden units are identically distributed
~> the sum is over ny i.i.d. RVs. Assume activation g is bounded
~ all moments of the distribution will be bounded
~ central limit theorem applicable
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GPs and Neural networks

Suppose {Xi, ..., Xy} is a sequence of i.i.d. RVs with E[X;] = i and
Var[X;] = 02 < co. Then /n(Sp—p) % N (0,02) as n — 0.

@ The covariance between any pair of function values (f(x), f(x))
converges to the covariance of two Gaussian RVs
~ Joint distribution of n function values is multivariate Gaussian
~ we get a GP as ny — oo.

@ For specific activations, the neural network covariance function
can be computed analytically (Williams 1998).

@ A three-layer network with and infinitely wide hidden layer can
be interpreted as a GP.
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Summary

o GPs: fully probabilistic models
~+ posterior p(f.|X,y, xs).
@ Uniquely defined by specifying covariance function.
o Mathematically simple:
we only need to calculate conditionals of Gaussians!
o Connections:
regression: MAP(GP,) = kernel ridge reg.
classification: MAP(GP.) = kernel logistic reg.
GP. = probabilistic version of SVM.

A three-layer network with an infinitely wide hidden layer can be
interpreted as a GP with the neural network covariance function.
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