Machine Learning 2020

Volker Roth

Department of Mathematics & Computer Science University of Basel

4th May 2020

Section 8

Gaussian Processes: probabilistic kernel models

Overview

- The use of the Gaussian distribution in ML
 - Properties of the multivariate Gaussian distribution
 - lacktriangleright Random variables o random vectors o stochastic processes
 - Gaussian processes for regression
 - Model Selection
 - Gaussian processes for classification
- Relation to kernel models (e.g. SVMs)
- Relation to neural networks.

Kernel Ridge Regression

- Kernelized ridge regression: $\hat{w} = (X^t X + \lambda I)^{-1} X^t y$.
- Matrix inversion lemma: $(I + UV)^{-1}U = U(I + VU)^{-1}$
- Define new variables α_i :

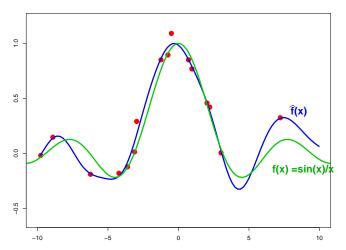
$$\hat{\boldsymbol{w}} = (X^t X + \lambda I)^{-1} X^t \boldsymbol{y}$$

$$= X^t \underbrace{(XX^t + \lambda I)^{-1} \boldsymbol{y}}_{\hat{\alpha}} = \sum_{i=1}^n \hat{\alpha}_i \boldsymbol{x}_i.$$

• Predictions for new x_{*}:

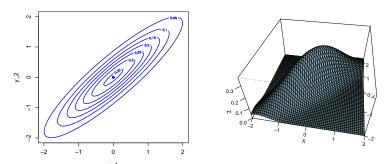
$$\hat{f}(\mathbf{x}_*) = \hat{\mathbf{w}}^t \mathbf{x}_* = \sum_{i=1}^n \hat{\alpha}_i \mathbf{x}_i^t \mathbf{x}_* = \sum_{i=1}^n \hat{\alpha}_i k(\mathbf{x}_i, \mathbf{x}_*).$$

Kernel Ridge Regression



Kernel function: $k(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{1}{2l^2} ||\mathbf{x}_i - \mathbf{x}_j||^2)$

How can we make use of the Gaussian distribution?



- Is it possible to fit a nonlinear regression line with the "boring" Gaussian distribution?
- Yes, but we need to introduce the concept of Gaussian Processes!

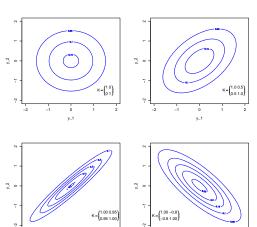
The 2D Gaussian distribution

2D Gaussian:
$$P(\mathbf{y}; \boldsymbol{\mu} = \mathbf{0}, \boldsymbol{\Sigma} = \mathcal{K}) = \frac{1}{\sqrt{2\pi|\mathcal{K}|}} \exp(-\frac{1}{2}\mathbf{y}^t \mathcal{K}^{-1}\mathbf{y})$$

Covariance

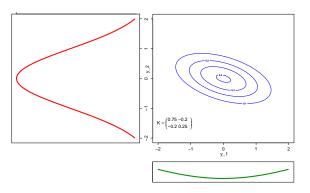
(also written "co-variance") is a measure of how much two random variables vary together:

- +1: perfect linear coherence,
- -1: perfect negative linear coherence,
- 0: no linear coherence.



Properties of the Multivariate Gaussian distribution

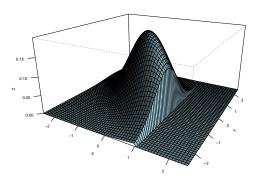
$$m{y} \sim \mathcal{N}(m{\mu}, m{K})$$
. Let $m{y} = \left(egin{array}{c} m{y}_1 \\ m{y}_2 \end{array}
ight)$ and $m{K} = \left(egin{array}{cc} K_{11} & K_{12} \\ K_{21} & K_{22} \end{array}
ight)$. Then $m{y}_1 \sim \mathcal{N}(m{\mu}_1, K_{11})$ and $m{y}_2 \sim \mathcal{N}(m{\mu}_2, K_{22})$.



Marginals of Gaussians are again Gaussian!

Properties of the Multivariate Gaussian distribution (2)

$$\begin{split} & \textbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}). \text{ Let } \textbf{y} = \left(\begin{array}{c} \textbf{y}_1 \\ \textbf{y}_2 \end{array} \right) \text{ and } \boldsymbol{K} = \left(\begin{array}{cc} K_{11} & K_{12} \\ K_{21} & K_{22} \end{array} \right). \end{split}$$
 Then $& \textbf{y}_2 | \textbf{y}_1 \sim \mathcal{N}(\boldsymbol{\mu}_2 + K_{21}K_{11}^{-1}(\textbf{y}_1 - \boldsymbol{\mu}_1), K_{22} - K_{21}K_{11}^{-1}K_{12}). \end{split}$

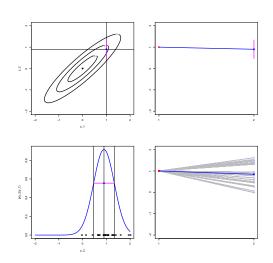


Conditionals of Gaussians are again Gaussian!

10 P 4 E P 4 E P 4 E P

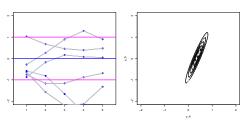
2D Gaussians: a new visualization

- top left: mean and \pm std.dev. of $p(y_2|y_1 = 1)$.
- **bottom left:** $p(y_2|y_1 = 1)$ and samples drawn from it.
- top right: x-axis: indices (1,2) of dimensions, y-axis: density in each component. Shown are $y_1 = 1$ and the conditional mean $\bar{p}(y_2|y_1 = 1)$ and std.dev.
- bottom right: samples drawn from above model.

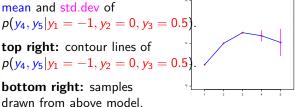


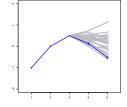
Visualizing high-dimensional Gaussians

• top left: 6 samples drawn from 5-dimensional Gaussian with zero mean (indicated by blue line). $\sigma = 1$ (magenta line).



bottom left: Conditional mean and std.dev of $p(y_4, y_5|y_1 = -1, y_2 = 0, y_3 = 0.5)$ • top right: contour lines of

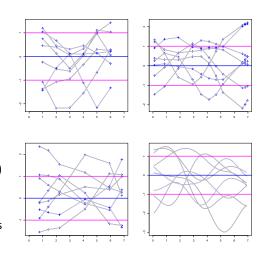




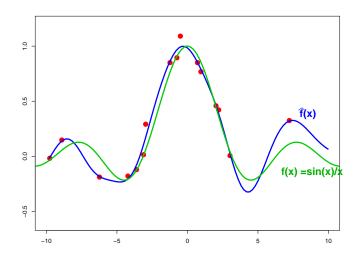
bottom right: samples drawn from above model.

From covariance matrices to Gaussian processes

- **top left:** 8 samples, 6 dim. *x*-axis: dimension-indices.
- **bottom left:** 8 samples, viewed as values y = f(x). **Construction:** choose 6 input points x_i at random \rightsquigarrow build covariance matrix K with **covariance function** $k(x, x') = \exp(-\frac{1}{2l^2}||x x'||^2)$ \rightsquigarrow draw $f \sim \mathcal{N}(\mathbf{0}, K)$ \rightsquigarrow plot as function of inputs.
- top right: same for 12 inputs
- **bottom right:** 100 inputs



This looks similar to Kernel Regression...



Gaussian Processes

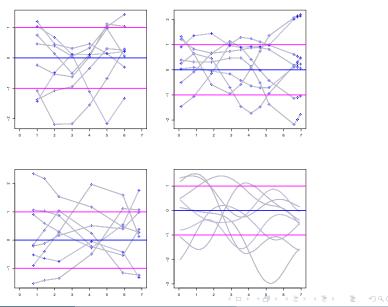
- Gaussian **Random Variable** (RV): $f \sim \mathcal{N}(\mu, \sigma^2)$.
- Gaussian **Random Vector**: Collection of n RVs, characterized by mean vector and covariance matrix: $f \sim \mathcal{N}(\mu, \Sigma)$
- Gaussian **Process**: infinite Gaussian random vector, every finite subset of which is jointly Gaussian distributed **Continuous index**, e.g. time $t \rightsquigarrow \text{function } f(t)$. Fully specified by **mean function** $m(t) = \mathbb{E}[f(t)]$ and **covariance function** $k(t, t') = \mathbb{E}[(f(t) m(t))(f(t') m(t'))]$.
- In ML, we will focus on more general index sets $x \in \mathbb{R}^d$ with mean function m(x) and covariance function k(x, x'):

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')).$$

Visualizing Gaussian Processes: Sampling

- **Problem:** working with infinite vectors and covariance matrices is not very intuitive...
- **Solution:** evaluate the GP at set of n discrete times (or input vectors $\mathbf{x} \in \mathbb{R}^d$):
 - ▶ Choose n input points x_i at random ~> matrix X
 - ▶ build covariance matrix K(X,X) with covariance function $k(x_i,x_j)$
 - ▶ **sample** realizations of the Gaussian random vector $f \sim \mathcal{N}(\mathbf{0}, K(X, X))$
 - plot f as function of inputs.

This is exactly what we have done here...



From the Prior to the Posterior

GP defines distribution over functions $\leadsto \mathbf{f}$ evaluated at training points X and \mathbf{f}_* evaluated at test points X_* are jointly Gaussian:

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right)$$

Posterior $p(f_*|X_*, X, f(X))$: conditional of a Gaussian distribution.

Let
$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, K)$$
. Let $\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}$ and $K = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix}$. Then $\mathbf{x}_2 | \mathbf{x}_1 \sim \mathcal{N}(\boldsymbol{\mu}_2 + K_{21}K_{11}^{-1}(\mathbf{f}_1 - \boldsymbol{\mu}_1), K_{22} - K_{21}K_{11}^{-1}K_{12})$.

$$f_*|X_*,X,f\sim \mathcal{N}(\qquad \mathcal{K}(X_*,X)(\mathcal{K}(X,X))^{-1}f, \ \mathcal{K}(X_*,X_*)-\mathcal{K}(X_*,X)(\mathcal{K}(X,X))^{-1}\mathcal{K}(X,X_*))$$

For only one test case:

$$f_*|\mathbf{x}_*, X, \mathbf{f} \sim \mathcal{N}(\mathbf{k}_*^t \mathcal{K}^{-1} \mathbf{f}, k_{**} - \mathbf{k}_*^t \mathcal{K}^{-1} \mathbf{k}_*)$$

A simple extension: noisy observations

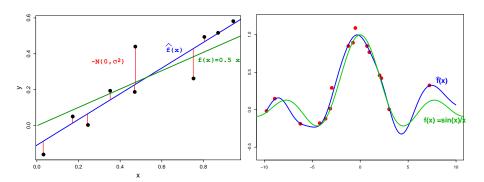
- Assume we have access only to noisy versions of function values: $y = f(\mathbf{x}) + \eta$, $\eta \sim \mathcal{N}(0, \sigma^2)$ (cf. initial example of **ridge regression**).
- Noise η does not depend on data!
- Covariance of noisy observations y is sum of covariance of f and variance of noise: $cov(y) = K(X,X) + \sigma^2 I$.

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) + \sigma^2 I & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right)$$

$$egin{aligned} oldsymbol{f}_*|X_*,X,oldsymbol{y}\sim\mathcal{N}(& oldsymbol{\mathcal{K}}(X_*,X)(oldsymbol{\mathcal{K}}(X,X)+\sigma^2I)^{-1}oldsymbol{y}, \ & oldsymbol{\mathcal{K}}(X_*,X_*) & -oldsymbol{\mathcal{K}}(X_*,X)(oldsymbol{\mathcal{K}}(X,X)+\sigma^2I)^{-1}oldsymbol{\mathcal{K}}(X,X_*)) \ & f_*|oldsymbol{x}_*,X,oldsymbol{f}\sim\mathcal{N}(oldsymbol{k}_*^t(K+\sigma^2I)^{-1}oldsymbol{y},k_{**}-oldsymbol{k}_*^t(K+\sigma^2I)^{-1}oldsymbol{k}_*) \end{aligned}$$

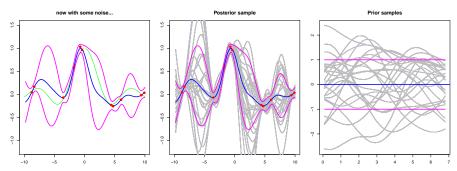
⇒ Posterior mean is solution of **kernel ridge regression**!

Noisy observations: examples



Noisy observations: $y = f(x) + \eta$, $\eta \sim \mathcal{N}(0, \sigma^2)$ Mean predictions: $\hat{f}_* = K_*(K + \sigma^2 I)^{-1}y$.

Gaussian processes for regression



- Left: 11 training points generated as $y = \sin(x)/x + \nu$, $\nu \sim \mathcal{N}(0, 0.01)$ Covariance $k(\mathbf{x}_p, \mathbf{x}_q) = \exp(-\frac{1}{2l^2} ||\mathbf{x}_p - \mathbf{x}_q||^2) + \sigma^2 \delta_{p,q}$. 100 test points uniformly chosen from $[-10, 10] \rightsquigarrow \text{matrix } X_*$. Mean prediction $E[\mathbf{f}_*|X_*, X, \mathbf{y}]$ and $\pm \text{std.dev}$.
- Middle: samples drawn from posterior $f_*|X_*, X, y$.
- **Right:** samples drawn from prior $f \sim \mathcal{N}(\mathbf{0}, K(X, X))$.

Covariance Functions

- A GP specifies a distribution over functions f(x), characterized by mean function m(x) and covariance function $k(x_i, x_j)$.
- Finite subset evaluated at n inputs \rightsquigarrow Gaussian distribution:

$$f(X) = (f(x_1), \dots, f(x_n))^t \sim \mathcal{N}(\mu, K),$$

where K is the covariance matrix with entries $K_{ij} = k(x_i, x_j)$.

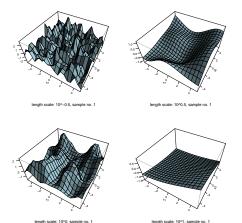
Covariance matrices are symmetric positive semi-definite:

$$K_{ij} = K_{ji}$$
 and $\mathbf{x}^t K \mathbf{x} \geq 0$, $\forall \mathbf{x}$.

- We already know that Mercer kernels have this property
 all Mercer kernels define proper covariance functions in GPs.
- Kernels frequently have additional parameters.
- The **noise variance** in the observation model $y = f(\mathbf{x}) + \eta, \eta \sim \mathcal{N}(0, \sigma^2)$ is another parameter.
- How should we choose these parameters? → model selection.

Model Selection

- **top left:** sample function from prior $f \sim \mathcal{N}(\mathbf{0}, K(X, X))$ with **covariance function** $k(\mathbf{x}, \mathbf{x}') = \exp(-\frac{1}{2l^2} \|\mathbf{x} \mathbf{x}'\|^2)$. Length scale $l = 10^{-0.5}$ small \rightarrow highly varying function.
- **top right:** same for $I = 10^{0.5}$ \rightsquigarrow even smoother...
- **bottom right:** almost linear function for $l = 10^{1}$.



Model Selection (2)

- How to select the parameters?
- One possibility: maximize marginal likelihood:

$$p(\mathbf{y}|X) = \int p(\mathbf{y}|\mathbf{f}, X)p(\mathbf{f}|X) d\mathbf{f}.$$

We do not need to integrate: we know that

$$\mathbf{f}|X \sim \mathcal{N}(\mathbf{0}, K)$$
 and $\mathbf{y} = \mathbf{f} + \eta, \ \eta \sim \mathcal{N}(\mathbf{0}, \sigma^2).$

Since η does not depend on X, the variances simply add:

$$\mathbf{y}|X \sim \mathcal{N}(\mathbf{0}, K + \sigma^2 I).$$

- Possible strategy:
 Select parameters on a grid and choose maximum.
- Or: Compute derivatives of marginal likelihood and use gradient descent.

Model Selection (3)

- Example problem: $y = \sin(x)/x + \eta$, $\eta \sim \mathcal{N}(0, 0.01)$.
- Log marg. likeli. = $\log \mathcal{N}(\mathbf{0}, K + \sigma^2 I) =$

$$\underbrace{-\frac{1}{2} \textbf{\textit{y}}^t (\textbf{\textit{K}} + \sigma^2 \textbf{\textit{I}})^{-1} \textbf{\textit{y}}}_{\text{data fit}} - \underbrace{\frac{1}{2} \log |\textbf{\textit{K}} + \sigma^2 \textbf{\textit{I}}|}_{\text{complexity penalty}} - \underbrace{\frac{n}{2} \log (2\pi)}_{\text{norm. constant}}.$$

2d-Example with Gaussian RBF:

$$(K + \sigma^2 I) = \begin{pmatrix} 1 + \sigma^2 & a \\ a & 1 + \sigma^2 \end{pmatrix} \Rightarrow |K + \sigma^2 I| = (1 + \sigma^2)^2 - a^2 > 0$$

Note that $a \rightarrow 0$ if length scale $l \rightarrow 0$

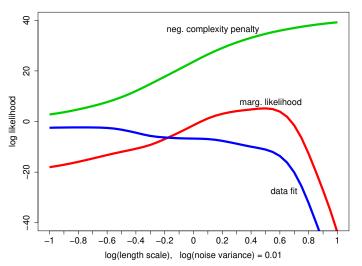
→ complexity penalty has high values for small length scales.

Matrix inverse includes a dominating factor $|K + \sigma^2 I|^{-1}$

 \rightsquigarrow data fit term also high for small I.

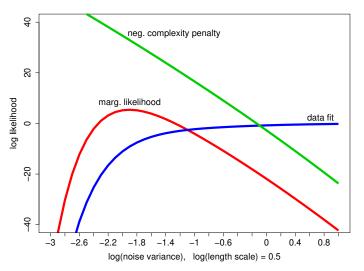
Model Selection (4)

Fixing $\sigma^2 = 0.01$ and varying length scale *l*:



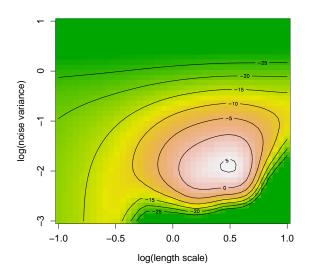
Model Selection (5)

Fixing length scale I = 0.5 and varying the noise level σ^2 :

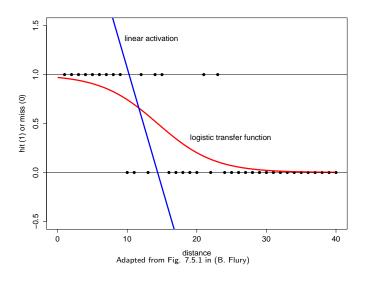


Model Selection (6)

Varying both σ^2 and I:



Classification: Basket Ball Example



Classical Logistic Regression

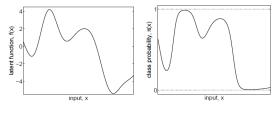
- Targets $y \in \{0, 1\}$ \leadsto Bernoulli RV with "success probability" $\pi(\mathbf{x}) = P(1|\mathbf{x})$.
- Likelihood: $P(y|X, f) = \prod_{i=1}^{n} (\pi_f(x_i))^{y_i} (1 \pi_f(x_i))^{1-y_i}$
- Linear logistic regression: unbounded $f(\mathbf{x}) = \mathbf{w}^t \mathbf{x}$ ("activation") Bounded estimates: pass $f(\mathbf{x})$ through logistic transfer function $\sigma(f(\mathbf{x})) = \frac{e^{f(\mathbf{x})}}{1 + e^{f(\mathbf{x})}} = \frac{1}{1 + e^{-f(\mathbf{x})}}$ and set $\pi_f(\mathbf{x}) = \sigma(f(\mathbf{x}))$.
- Newton method for maximizing the log posterior $J(\mathbf{w}) := \log p(\mathbf{y}|X, \mathbf{w}) + \log p(\mathbf{w})$:

$$\mathbf{w}^{(r+1)} = \mathbf{w}^{(r)} - \{E[H]\}^{-1} \frac{\partial}{\partial \mathbf{w}} J(\mathbf{w})$$

• Kernel trick: expand $\mathbf{w} = X^t \alpha$, substitute dot products by kernel function $k(\mathbf{x}, \mathbf{x}') \rightsquigarrow$ kernel logistic regression.

GP Classification

- Place GP prior over "latent" function $f(x) \sim \mathcal{GP}(0, k(x, x'))$.
- "Squash" it through logistic function \rightsquigarrow prior on $\pi(\mathbf{x}) = \sigma(f(\mathbf{x}))$.



(Rasmussen & Williams, 2006)

- **Problem:** Bernoulli likelihood \leadsto predictive distribution $p(y_* = 1|X, y, x_*)$ cannot be calculated analytically.
- Possible solution: use Laplace approximation.
- **Observation:** MAP classification boundary is identical with boundary obtained from **kernel logistic regression**.

GP Classification using Laplace's approximation

• Prior $f|X \sim \mathcal{N}(\mathbf{0}, K)$. Bernoulli likelihood:

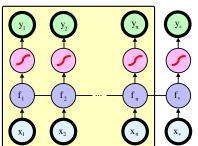
$$p(\mathbf{y}|X,\mathbf{f}) = \prod_{i=1}^{n} (\sigma(f(\mathbf{x}_i)))^{y_i} (1 - \sigma(f(\mathbf{x}_i)))^{1-y_i}.$$

• Gaussian approximation of posterior:

$$p(\mathbf{f}|X,\mathbf{y}) \approx \mathcal{N}(\hat{\mathbf{f}},H^{-1}).$$

Predictions: compute

$$p(y_* = 1 | \boldsymbol{y}, \boldsymbol{x}_*, X) = \int \sigma(f_*) p\underbrace{(f_* | \boldsymbol{y}, \boldsymbol{x}_*, X)}_{\text{latent function at } \boldsymbol{x}_*} df_* = \mathbb{E}_{p(f_* | \boldsymbol{y}, \boldsymbol{x}_*, X)}(\sigma)$$



GP Classification using Laplace's approximation

• First **predict latent function** at test case x_* :

$$\begin{split} \rho(f_*|\boldsymbol{y},\boldsymbol{x}_*,X) &= \int \underbrace{\rho(f_*|\boldsymbol{f},\boldsymbol{x}_*,X)}_{\text{Gaussian}} \underbrace{\frac{\rho(\boldsymbol{f}|X,\boldsymbol{y})d\boldsymbol{f}}{\text{Gaussian}}}_{\text{approx. Gaussian }\mathcal{N}(\boldsymbol{\hat{f}},H^{-1}) \\ &\approx \mathcal{N}(\mu_*,\sigma_*), \text{ with} \\ \mu_* &= \boldsymbol{k}_*^t K^{-1} \boldsymbol{\hat{f}}, \\ \sigma_* &= k_{**} - \boldsymbol{k}_*^t \tilde{K}^{-1} \boldsymbol{k}_* \end{split}$$

Then use Monte Carlo approximation

$$p(y_*|\mathbf{y},\mathbf{x}_*,X) = \mathbb{E}_{p(f_*|\mathbf{y},\mathbf{x}_*,X)}(\sigma) \approx \frac{1}{S} \sum_{s=1}^{S} \sigma(f_*^s(\mathbf{x}_*)),$$

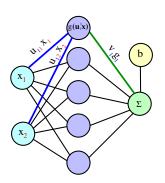
where f_*^s are samples from the (approximated) distribution over latent function values.

GPs and Neural networks

Consider a neural network for regression (square loss) with one hidden layer:

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(f(\mathbf{x}; \boldsymbol{\theta}), \sigma^2),$$

$$f(\mathbf{x}) = b + \sum_{j=1}^{n_H} v_j g(\mathbf{x}; \mathbf{u}_j).$$



Bayesian treatment: i.i.d. prior assumptions over weights:

indep. zero-mean Gaussian priors for b and v, with variance σ_b^2 and σ_v^2 , and independent (arbitrary) priors for components of the weight vector \boldsymbol{u}_j at the j-th hidden unit.

GPs and Neural networks

• Mean and covariance:

$$\begin{split} m(\boldsymbol{x}) &= \mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{x})] = \overbrace{\mathbb{E}[b]}^{=0} + \sum_{j=1}^{n_H} \mathbb{E}[v_j g(\boldsymbol{x}; \boldsymbol{u}_j)] \\ &\stackrel{(v \text{ indep. of } \boldsymbol{u})}{=} \sum_{j=1}^{n_H} \underbrace{\mathbb{E}[v_j]}_{=0} \mathbb{E}[g(\boldsymbol{x}; \boldsymbol{u}_j)] = 0. \\ k(\boldsymbol{x}, \boldsymbol{x}') &= \mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{x})f(\boldsymbol{x}')] = \sigma_b^2 + \sum_{i=1}^{n_H} \sigma_v^2 \mathbb{E}_{\boldsymbol{u}}[g(\boldsymbol{x}; \boldsymbol{u}_j)g(\boldsymbol{x}'; \boldsymbol{u}_j)]. \end{split}$$

- All hidden units are identically distributed
 - \leadsto the sum is over n_H i.i.d. RVs. Assume activation g is bounded
 - → all moments of the distribution will be bounded
 - → central limit theorem applicable

GPs and Neural networks

Suppose
$$\{X_1, \ldots, X_n\}$$
 is a sequence of i.i.d. RVs with $\mathbb{E}[X_i] = \mu$ and $\text{Var}[X_i] = \sigma^2 < \infty$. Then $\sqrt{n}(S_n - \mu) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2)$ as $n \to \infty$.

- The covariance between any pair of function values (f(x), f(x')) converges to the covariance of two Gaussian RVs \rightarrow Joint distribution of n function values is multivariate Gaussian \rightarrow we get a GP as $n_H \rightarrow \infty$.
- For specific activations, the **neural network covariance function** can be computed analytically (Williams 1998).
- A three-layer network with and infinitely wide hidden layer can be interpreted as a GP.

Summary

- GPs: fully probabilistic models

 → posterior p(f_{*}|X, y, x_{*}).
- Uniquely defined by specifying covariance function.
- Mathematically simple:
 we only need to calculate conditionals of Gaussians!
- Connections:

regression: $MAP(GP_r) = kernel ridge reg.$ classification: $MAP(GP_c) = kernel logistic reg.$ $GP_c \approx probabilistic version of SVM.$

A three-layer network with an infinitely wide hidden layer can be interpreted as a GP with the neural network covariance function.