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Section 9

Mixture Models
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Structure and mixtures

Assume that input examples come in different potentially
unobserved types (groups, clusters, etc.).
Assume that

1 there are m underlying types z = 1, . . . ,m;
2 each type z occurs with probability P(z);
3 examples of type z distributed according to p(x|z).

According to this model, each observed x comes from a
mixture distribution:

p(x) =
m∑

j=1
P(z = j)︸ ︷︷ ︸

πj

p(x|z = j ,θj)

In many practical data analysis problems (such as probabilistic
clustering), we want to estimate such parametric models from
samples {x1, . . . , xn}. In paticular, we are often interested in finding
the types that have generated the examples.
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Mixture of Gaussians
A mixture of Gaussians model has the form

p(x|θ) =
m∑

j=1
πjN (x|µj ,Σj),

where θ = π1, . . . , πm,µ1, . . . ,µm,Σ1, . . . ,Σm contains all the
parameters. {πj} are the mixing proportions .
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Mixture densities

Data generation process:

P(z)

p(x|z=1) p(x|z=2)

z = 2z = 1

2

1

p(x|θ) =
m∑

j=1
πjp(x|µj ,Σj)

Any data point x could have been generated in two ways .
 the responsible component needs to be inferred.

Volker Roth (University of Basel) Machine Learning 2020 11th May 2020 5 / 41



Mixtures as Latent Variable Models

In the model p(x|z = j ,θ) the class indicator variable z is latent.
This is an example of a large class of latent variable models (LVM).
Bayesian network (DAG) = graphical representation of the joint
distribution of RVs (nodes) as P(x1, . . . , xn) =

∏n
i=1 P(xi |parents(xi ))

x i

Σ

µ

π

z i

n

p(xi |θ) =
∑
zi

p(x i , zi |θ)

=
∑
zi

p(x i |µ,Σ, zi )p(zi |π).
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Mixture densities

Consider a two component mixture of Gaussians model.
p(x|θ) = π1p(x|µ1,Σ1) + π2p(x|µ2,Σ2)

If we knew the generating component zi = {1, 2} for each example
x i , then the estimation would be easy.

P(z)

p(x|z=1) p(x|z=2)

z = 2z = 1

2

1

In particular, we can estimate each Gaussian independently.
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Mixture density estimation

Let δ(j |i) be an indicator function of whether example i is labeled j .
Then for each j = 1, 2

π̂j ←
n̂j
n , where n̂j =

n∑
i=1

δ(j |i)

µ̂j ←
1
n̂j

n∑
i=1

δ(j |i)x i

Σ̂j ←
1
n̂j

n∑
i=1

δ(j |i)(x i − µj)(x i − µj)t
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Mixture density estimation

We don’t have such labels... but we can guess what the labels might
be based on our current distribution.
One possible choice: evaluate posterior probability that an observed x
was generated from first component

P(z = 1|x,θ) = P(z = 1) · p(x|z = 1)∑
j=1,2 P(z = j) · p(x|z = j)

= π1p(x|µ1,Σ1)∑
j=1,2 πjp(x|µj ,Σj)

 Information about the component responsible for generating x.
Soft labels or posterior probabilities

p̂(j |i)← P(zi = j |x i ,θ),
where

∑
j=1,2 p̂(j |i) = 1, ∀ i = 1, . . . , n.
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The EM algorithm: iteration k

E-step: softly assign examples to mixture components
p̂(j |i)← P(zi = j |x i ,θ

t), ∀j = 1, 2 and i = 1, . . . , n.
Note: superscript is time index.
M-step: estimate new mixture parameters θt+1 based on the soft
assignments (can be done separately for the two Gaussians)

π̂j ←
n̂j
n , where n̂j =

n∑
i=1

p̂(j |i)

µ̂j ←
1
n̂j

n∑
i=1

p̂(j |i)x i

Σ̂j ←
1
n̂j

n∑
i=1

p̂(j |i)(x i − µj)(x i − µj)t
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The EM-algorithm: Convergence
The EM-algorithm monotonically increases the log-likelihood of the
training data (we will show this later). In other words,

l(θ0) < l(θ1) < l(θ2) < . . . until convergence

l(θt) =
∑n

i=1
log p(x i |θt).

5 10 15 20 25 30 350
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Mixture density estimation: example

−2 0 2

−2

0

2

Fig. 11.11 in K. Murphy
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Mixture density estimation: example

Fig. 11.11 in K. Murphy
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EM example: Iris data
The famous (Fisher’s or Anderson’s) iris data set gives the
measurements in centimeters of the variables sepal length and
width and petal length and width, respectively, for 50 flowers from
each of 3 species of iris.
The species are Iris setosa, versicolor, and virginica.
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Bayesian model selection for mixture models

As a simple strategy for selecting the appropriate number of mixture
components, we can find m that minimizes the overall description length
(cf. BIC):

DL ≈ − log p(data|θ̂m) + dm
n log(n)

n is the number of training points,
θ̂m are the maximum likelihood parameters for the m-component
mixture, and
dm is the number of parameters in the m-component mixture.
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Model selection example: Iris data, m = 2
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Model selection example: Iris data, m = 3
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Model selection example: Iris data, m = 4
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Model selection example: Iris data, m = 5
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Model selection example: Iris data, BIC
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The EM-algorithm: Convergence

Step 0: specify the initial setting of the parameters θ = θ0.
E-step: complete the incomplete data (missing z) with the posterior
probabilities (“soft labels”)

P(z = j |x i ,θ
t), j = 1, . . . ,m, i = 1, . . . , n.

M-step: find the new setting of the parameters θt+1 by maximizing the
log-likelihood of the inferred (or “expected complete”) data

θt+1 = arg max
θ

n∑
i=1

m∑
j=1

P(z = j |x i ,θ
t) log[pjp(x i |θj)]

︸ ︷︷ ︸
inferred (= expected complete) log-likelihood Q(θ,θt)

.

The expected complete log-likelihood Q(θ,θt) is called
auxiliary objective.
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The EM-algorithm: Convergence
The EM-algorithm monotonically increases the log-likelihood of the
training data. In other words,

l(θ0) < l(θ1) < l(θ2) < . . . until convergence

l(θt) =
∑n

i=1
log p(x i |θt).

5 10 15 20 25 30 350
iterations

lo
g
 l

ik
el

ih
o
o
d
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Jensen’s inequality

Convex function: secant line above graph of the function
 Jensen’s inequality for two points.
Secant line consists of weighted means of the convex function.
For a ∈ [0, 1]:

af (x1) + (1− a)f (x2).
Graph: convex function of the weighted means:

f (ax1 + (1− a)x2) .
Thus, Jensen’s inequality is

f (ax1 + (1− a)x2) ≤ af (x1) + (1− a)f (x2).
Probability theory: if X is a RV and ϕ a convex function, then

ϕ (E[X ]) ≤ E [ϕ(X )] .
ϕ convex  ψ := −ϕ concave:

ψ (E[X ]) ≥ E [ψ(X )] . Example: log (E[X ]) ≥ E [log(X )] .
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Jensen’s inequality

f(x)

x1 x2

1

f(ax + (1−a)x )21

af(x ) + (1−a) f(x )2

2ax + (1−a)x1
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Non-negativity of KL divergence

−KL(p(x)‖q(x)) =
∫

p(x) log
(q(x)

p(x)

)
dx

(Jensen’s inequality) ≤ log
(∫

p(x)q(x)
p(x) dx

)
= log

(∫
q(x) dx

)
= log(1) = 0

This is also called Gibbs’ inequality.
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The EM-algorithm: Theoretical basis
Consider distribution q(zi ) over latent assignment variables.
Log-likelihood:

l(θ) =
n∑

i=1
log p(x i |θ)

=
n∑

i=1
log
∑
zi

p(x i , zi |θ)

=
n∑

i=1
log
∑
zi

q(zi )
p(x i , zi |θ)

q(zi )

=
n∑

i=1
logEqi

p(x i , zi |θ)
q(zi )

(Jensen’s inequality) ≥
n∑

i=1

∑
zi

q(zi ) log p(x i , zi |θ)
q(zi )

=: Q(θ, q).
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Lower bound

l(θ) ≥ Q(θ, q) :=
n∑

i=1

∑
zi

q(zi ) log p(x i , zi |θ)
q(zi )

valid for any positive distribution q. Which one should we choose?
Intuition: pick the q that yields the tightest lower bound.
This will be the E-step.
At time t, assume we have chosen qt based on current parameters θt .
In the next M-step we maximize the
expected complete log-likelihood:

θt+1 = arg max
θ

Q(θ,θt) = arg max
θ

n∑
i=1

Eqt
i

log p(x i , zi |θ)

Last equation follows from

Q(θ, q) =
n∑

i=1
Eqi log p(x i , zi |θ)︸ ︷︷ ︸

Expected complete log-l

+
n∑

i=1
[ −

∑
zi

q(zi ) log q(zi )︸ ︷︷ ︸
h(qi ), independent of θ

].
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The E-step
Re-write lower bound as

Q(θ, q) =
∑

i
L(θ, qi ),

with

L(θ, qi ) =
∑
zi

q(zi ) log p(x i , zi |θ)
q(zi )

=
∑
zi

q(zi ) log p(zi |x i ,θ)p(x i |θ)
q(zi )

=
∑
zi

q(zi ) log p(zi |x i ,θ)
q(zi )

+
∑
zi

q(zi ) log p(x i |θ)

= −KL(q(zi )‖p(zi |x i ,θ))︸ ︷︷ ︸
always ≥0, and =0, if q=p

+ log p(x i |θ)︸ ︷︷ ︸
independent of qi

.
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The E step

For qt
i (zi ) = p(zi |x i ,θ

t), the KL divergence is zero, and L(θt , qi ) is
maximized over all possible distributions qi :

qt
i (zi ) = p(zi |x i ,θ

t) = arg max
qi

L(θt , qi ) ( E-step)

L(θt , qt
i ) = log p(x i |θt)

Q(θt ,θt) =
∑

i
log p(x i |θt) = l(θt)

 lower bound “touches” the log-likelihood
 after the E-step, the auxiliary objective equals the log-likelihood
 lower bound is tight after the E-step.
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The E step

 

 

Q(θ,θ
t
)

Q(θ,θ
t+1

)

l(θ)

θ
t

θ
t+1

θ
t+2

Fig 11.16 in K. Murphy
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EM-algorithm: max-max and monotonicity

We can now rewrite the EM-algorithm in terms of two maximization steps
involving the auxiliary objective:
E-step: qt = arg maxq Q(θt ,q)
M-step: θt+1 = arg maxθ Q(θ,θt).
The monotonic increase of the log-likelihood now follows from

l(θt+1) ≥ Q(θt+1,θt)︸ ︷︷ ︸
Q(θt+1,•) is lower bound on l(θt+1)

≥ Q(θt ,θt) = l(θt).

Second inequality: Q(θt+1,θt) = maxθ Q(θ,θt) ≥ Q(θt ,θt).
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Conditional mixtures

Some regression or classification problems can be decomposed into
easier sub-problems.
Examples:

I style in handwritten character recognition
I dialect/accent in speech recognition, etc.

Each sub-problem could be solved by a specific “expert”.
The selection of which expert to rely on now depends on the position
x in the input space. Mixtures of experts models.
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Experts (regression)

Suppose we have several regression “experts”
generating conditional Gaussian outputs

p(y |x, z = j ,θ) = N (y |βt
j x, σ2

j )
δj = {βj , σ

2
j }: Parameters of j-th expert.

Need to find a way of allocating tasks to these
experts.
Parameter vector θ contains the means and
variances of the m experts and the additional
parameters η of this allocation mechanism:
θ = {δj ,ηj}mj=1.

jδ

x i

z i

y
i

n

η j

m
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Joint distribution

jδ

x i

z i

y
i

n

η j

m

From the DAG we conclude:

p(y , z = j |x) = p(y |δ, z = j , x)P(z = j |η, x)
= p(y |δj , x)P(z = j |η, x)
= N (y |βt

j x, σ2
j )P(z = j |η, x)

Thus, the overall prediction is

p(y |x,θ) =
∑

j
p(y , z = j |x,η, δ)

=
∑

j
P(z = j |x,η)p(y |x, δj)

=
∑

j
P(z = j |x,η)p(y |x,βj , σ

2
j ).
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Mixtures of experts
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Mixing probabilities

Here we need to switch from one linear regression model to another:
p(y |x, z = j ,θ) = N (y |βt

j x, σ2
j ). The switch can be probabilistic

 probabilistic gating function P(z |x,η) (right).
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Gating network

A gating network specifies a distribution over m experts, conditionally
on the input x.
Example: when there are just two experts the gating network can be
a logistic regression model

P(z = 1|x,η) = σ(ηtx),
where σ(z) = (1 + e−z)−1 is the logistic function.
For m > 2, the gating network can be a softmax model

P(z = j |x,η) =
exp(ηt

j x)∑m
j′=1 exp(ηt

j′x) ,

where η = {η1, . . . ,ηm} are the parameters of the gating network.
Overall prediction
p(y |x,θ) =

∑
j p(y , z = j |x,η, δ) =

∑
j P(z = j |x,η)p(y |x, δj).
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A mixture of experts model: estimation

“Soft labels”: Conditional probability that (x i , yi ) came from expert j :

P̂(j |i) = P(z = j |x i , yi ,θ)

=
P(z = j |x i ,η

t)p(yi |x i , (βj , σ
2
j ))∑m

j′=1 P(z = j ′|x i ,ηt)p(yi |x i , (βj′ , σ2
j′))
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EM for mixtures of experts

E-step: compute soft labels P̂(j |i)
M-step: separately re-estimate the experts and the gating network based
on these soft assignments:

1 For each expert j : find (β̂j , σ̂
2
j ) that maximize

n∑
i=1

P̂(j |i) log p(yi |x i , (βj , σ
2
j ))

 linear regression with weighted training set.
2 For the gating network: find η̂ that maximize

n∑
i=1

m∑
j=1

P̂(j |i) log P(j |x i ,ηj)

 logistic regression with weighted training set.
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Real World Example
Global annual temperature anomalies (degrees C) computed using data
from land meteorological stations, 1880-2015. Anomalies are relative to
the 1951-1980 base period means.
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