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Section 11

Non-linear latent variable models
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Non-linear latent variable models

Latent variable z ~~ Gaussian likelihood with
nonlinearly transformed mean

p=1f(z, ). (23)
Prior and likelihood:

[~
p(z) = N(0.)) (x)
p(x|z, ¢) = N(f(z,¢),°1). n
o Given observed x, we want to understand what possible values of the
hidden variable z were responsible for it:
p(x|z)p(2)
p(x)
@ No closed form expression available. Cannot evaluate denominator
p(x) and so we can't even compute the numerical value of the
posterior for a given pair z and x.

p(z|x) =
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Sampling

KO

n

@ ...but it is easy to generate a new sample x* using sampling:
» Draw z* from the prior p(z), pass this through f(z*, ¢)

~» mean of likelihood p(x*|z*),

» then draw x* from this distribution.

@ Prior and likelihood are normal distributions ~» sampling is easy.
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Evaluating marginal likelihood (evidence)
p(xl#) = [ plx.2l¢)dz
— [ p(xlz. #)p(2)dz
= /N(f[z, @), 1) - N(0, /) dz.
No closed form for this integral ~ lower bound (Jensen’s inequality):
oglp(xi6)] = log | [ p(x.zl)de]

> /q(z) log {p(:’(g(b)} dz,

Known as the evidence lower bound ELBO, because p(x|¢) is the evidence
(= marginal likelihood) in the context of Bayes' rule.
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ELBO

In practice, the distribution g(z) will have some parameters 6:
p(x,z|¢)
ELBOI[@, ¢ :/qu log { dz.
0.91= [ a(zl6) 10g | P75
@ To learn the non-linear latent variable model, we'll maximize this
quantity as a function of both ¢ and 6.
o We will see: the maximum is obtained (theoretically) if the variational
distribution is the true posterior, q(z|0) = p(z|x, ¢).

@ In practice, we maximize ELBO over some tractable family of
distributions g(z|x, @) to obtain an approximation of the intractable
posterior.

@ The neural architecture that computes this is the
variational autoencoder.

Volker Roth (University of Basel) 25th May 2020 6 /20



Tightness of ELBO

ELBOI6, ¢] = /q(z|0) log [”g’z’zfg)b)] dz

= /q(z|0) log [P(Z”;(j)g)(qu dz

~ [ atzl6)log p(xI¢) dz + [ a(zl6) '°g{

— loglp(x|6)] + [ q(]9) og [”gz(’zx,;jf)} dz

= log[p(x|#)] — Dke [a(2|6)]Ip(2]x, #)] .

ELBO is the log marginal likelihood minus Dy, [q(z]0)| p(z|x, ¢)].
Dki zero when q(z|0) = p(z|x, ¢) ~» ELBO = log[p(x|¢)].

p(z|x, @)
4(216) J a2
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ELBO as reconstruction loss minus KL to prior

ELBO[6. ¢] = [ 4(216) '°g[ (( \g)b)]

~ o) |og[ x|z, ¢)p(z)} o

q(z|6)
:/q(ZIO) log [p(x|z, ¢)] d2+/q(2|9) log L,I();Zg))] dz
— / q(z|0) log [p(x|z, ¢)] dz — Dk1[q(z]0), p(2)]

o First term measures the average agreement p(x|z, ¢) of the hidden
variable and the data (reconstruction loss)

@ Second one measures the degree to which the auxiliary distribution
q(z, @) matches the prior.
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The variational approximation

e ELBO is tight when we choose q(z|0) = p(z|x, ¢).

@ Intractable ~~ variational approximation: choose simple parametric
form for q(z|@), use it as an approximation to the true posterior.

o Choose a normal distribution with parameters p and ¥ = o2/.

e Optimization ~~ find normal distribution closest to true posterior
p(z|x). Corresponds to minimizing the KL divergence.

@ True posterior p(z|x) depends on x
~> variational approximation should also depend on x:

q(216,x) = N(gu[x|6], g,2(x]6]),

where g[x, 0] is a neural network with parameters 6.
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The variational autoencoder
Recall
ELBOIB. ¢] = | q(z[x,0)l0g [p(x|z, #)] dz — Dicla(z|x. 6). p(2)]

Involves an intractable integral, but it is an expectation
~~ approximate with samples:

z|x 9)[|Og [p(X|Z ¢ Zbg [P X|Zna¢)]

where z* is the n-th sample from g(z|x, 8). Limit: use a single sample:
ELBO[, ¢] ~ log [p(x|z", #)] — Drela(z]x,8), p(2)]

The second term is just the KL divergence between two Gaussians and is
available in closed form.

Volker Roth (University of Basel) 25th May 2020 10 / 20



The reparameterization trick
Recall: Want to sample from

q(z|0,x) = N(gy[x|6], g,2[x|6]),
To let PyTorch / Tensorflow perform automatic differentiation via
backpropagation, we must avoid the sampling step.
Simple solution: draw a sample & ~ N(0, /) and use

=g, + ot/2¢.

Now “the gradient can flow through the network”™ Encoder network:
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VAE

e Finally, minimize negative expectation of ELBO over p(x):
rg,ierr] _Ep(x) Eq(z|x,9) [|Og [p(X‘Z, d))]] + Ep(x)DKL[q(Z‘xa 0)7 p(Z)]
@ The first term is approximated as

1 n
Ep(x)Eq(z|x.0)llog [P(x|Z, @)]] = . > log[p(xilz}, )]
=1

We assume p(x;|z}F, ) = N (fs(z}), 02),
where f is implemented via a neutral net: ~» Decoder network

loss (least squares)

loss (least squares)
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Further Variations

@ For maximizing ELBO, we jointly optimize over the parameters of
encoder and decoder network.

@ When adjusting the decoder, we also change the “true” posterior that
we are going to approximate!

@ So approximation quality should not be our only goal...
need “tuning knob” for steering the model into a desired direction.

@ Solution: introduce parameter 8 > 0 that controls the relative
importance of the two loss terms:

- ZDKL[q Z|X,, ), Z)] - Zlog [,D xl|zl7 )]
i=1
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Applications: MNIST example
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Applications: Medical example
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Berchuck, S.I., Mukherjee, S. & Medeiros, F.A. Estimating Rates of Progression and Predicting Future Visual Fields in

Glaucoma Using a Deep Variational Autoencoder. Sci Rep 9, 18113 (2019). https://doi.org/10.1038/s41598-019-54653-6
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Multiple Views: Deep Information Bottleneck

o Consider paired samples from different views.
@ What is the dependency structure between the views ?

@ Nonlinear model: dependency detected by deep IB.
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Two-view version: The deep information bottleneck

@ So far we argued that since the true posterior p(z|x) depends on x,
the variational approximation should also depend on x.

@ Restricted setting: explain posterior only by external variable x:

q= q(z|0, ;()
ELBOIB. ¢] = [ q(z[%.6)log [p(x|z, #)] dz ~ Diela(z|x. 6). p(2)]

= Eq(z1z.0) l0g [P(x|2, $)] — Dila(2]%, 0), p(2)]
@ Connection to IB:
» Assume (or define) q(z|x,0) := p(z|x, )
» Take expectation w.r.t. joint data distribution p(%, x):
Ep()"(,x) Ep(ZIf(,H) log [p(X|Z, (»b)] - EP(i)DKL[p(Z‘)N(’ 0)7 p(Z)]
» First term < Zg 4(z; x) + const. Second term = Zy(X; z),
@ This defines the deep information bottleneck (with weight ()

rgigl To(%; 2) — 61'};"7‘9;(2; x), where 7" is a lower bound of Z.

)
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Applications: Face images
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Keller et al. 2020: Learning Extremal Representations with Deep Archetypal Analysis
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Latent code

Reconstruction
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Side Information
0 HAP: 133, HAP: 287, .
SAD: 4.2, SAD: 153, .
SUR: 173, SUR:
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Applications: Face images

@ :Archetype 3: SURPRISE
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Keller et al. 2020: Learning Extremal Representations with Deep Archetypal Analysis
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Applications: Deep Chemical Variational Autoencoders
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(Gomez-Bombarelli et al., ACS Cent Sci, 2018)
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