Machine Learning 2020

Volker Roth

Department of Mathematics & Computer Science University of Basel

25th May 2020

Section 11

Non-linear latent variable models

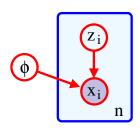
Non-linear latent variable models

Latent variable $z \rightsquigarrow$ Gaussian likelihood with nonlinearly transformed mean $\mu = f(z, \phi)$.

Prior and likelihood:

$$p(z) = N(0, I)$$

$$p(x|z, \phi) = N(f(z, \phi), \sigma^2 I).$$

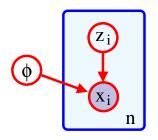


 Given observed x, we want to understand what possible values of the hidden variable z were responsible for it:

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}.$$

• No closed form expression available. Cannot evaluate denominator p(x) and so we can't even compute the numerical value of the posterior for a given pair z and x.

Sampling



- ullet ...but it is easy to generate a new sample $oldsymbol{x}^*$ using sampling:
 - ▶ Draw z^* from the prior p(z), pass this through $f(z^*, \phi)$ \rightsquigarrow mean of likelihood $p(x^*|z^*)$,
 - ▶ then draw **x*** from this distribution.

Evaluating marginal likelihood (evidence)

$$p(\mathbf{x}|\phi) = \int p(\mathbf{x}, \mathbf{z}|\phi) d\mathbf{z}$$

$$= \int p(\mathbf{x}|\mathbf{z}, \phi) p(\mathbf{z}) d\mathbf{z}$$

$$= \int N(\mathbf{f}[\mathbf{z}, \phi], \sigma^2 I) \cdot N(\mathbf{0}, I) d\mathbf{z}.$$

No closed form for this integral \rightsquigarrow lower bound (Jensen's inequality):

$$\log[p(\mathbf{x}|\phi)] = \log\left[\int p(\mathbf{x}, \mathbf{z}|\phi)d\mathbf{z}\right]$$

$$= \log\left[\int q(\mathbf{z})\frac{p(\mathbf{x}, \mathbf{z}|\phi)}{q(\mathbf{z})}d\mathbf{z}\right]$$

$$\geq \int q(\mathbf{z})\log\left[\frac{p(\mathbf{x}, \mathbf{z}|\phi)}{q(\mathbf{z})}\right]d\mathbf{z},$$

Known as the evidence lower bound ELBO, because $p(\mathbf{x}|\phi)$ is the evidence (= marginal likelihood) in the context of Bayes' rule.

ELBO

• In practice, the distribution q(z) will have some parameters θ :

$$\mathsf{ELBO}[m{ heta}, \phi] = \int q(m{z}|m{ heta}) \log \left[rac{p(m{x}, m{z}|m{\phi})}{q(m{z}|m{ heta})}
ight] dm{z}.$$

- ullet To learn the non-linear latent variable model, we'll maximize this quantity as a function of both ϕ and θ .
- We will see: the maximum is obtained (theoretically) if the variational distribution is the true posterior, $q(\mathbf{z}|\theta) = p(\mathbf{z}|\mathbf{x},\phi)$.
- In practice, we maximize ELBO over some tractable family of distributions $q(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})$ to obtain an approximation of the intractable posterior.
- The neural architecture that computes this is the variational autoencoder.

Tightness of ELBO

$$\begin{aligned} \mathsf{ELBO}[\theta, \phi] &= \int q(\mathbf{z}|\theta) \log \left[\frac{p(\mathbf{x}, \mathbf{z}|\phi)}{q(\mathbf{z}|\theta)} \right] d\mathbf{z} \\ &= \int q(\mathbf{z}|\theta) \log \left[\frac{p(\mathbf{z}|\mathbf{x}, \phi)p(\mathbf{x}|\phi)}{q(\mathbf{z}|\theta)} \right] d\mathbf{z} \\ &= \int q(\mathbf{z}|\theta) \log \left[p(\mathbf{x}|\phi) \right] d\mathbf{z} + \int q(\mathbf{z}|\theta) \log \left[\frac{p(\mathbf{z}|\mathbf{x}, \phi)}{q(\mathbf{z}|\theta)} \right] d\mathbf{z} \\ &= \log[p(\mathbf{x}|\phi)] + \int q(\mathbf{z}|\theta) \log \left[\frac{p(\mathbf{z}|\mathbf{x}, \phi)}{q(\mathbf{z}|\theta)} \right] d\mathbf{z} \\ &= \log[p(\mathbf{x}|\phi)] - \mathsf{D}_{\mathsf{KL}} \left[q(\mathbf{z}|\theta) \| p(\mathbf{z}|\mathbf{x}, \phi) \right]. \end{aligned}$$

ELBO is the log marginal likelihood minus $D_{KL}[q(z|\theta)||p(z|x,\phi)]$. D_{KL} zero when $q(z|\theta) = p(z|x,\phi) \rightsquigarrow \text{ELBO} = \log[p(x|\phi)]$.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ か Q (^)

ELBO as reconstruction loss minus KL to prior

$$\begin{aligned} \mathsf{ELBO}[\theta, \phi] &= \int q(\mathbf{z}|\theta) \log \left[\frac{p(\mathbf{x}, \mathbf{z}|\phi)}{q(\mathbf{z}|\theta)} \right] d\mathbf{z} \\ &= \int q(\mathbf{z}|\theta) \log \left[\frac{p(\mathbf{x}|\mathbf{z}, \phi)p(\mathbf{z})}{q(\mathbf{z}|\theta)} \right] d\mathbf{z} \\ &= \int q(\mathbf{z}|\theta) \log \left[p(\mathbf{x}|\mathbf{z}, \phi) \right] d\mathbf{z} + \int q(\mathbf{z}|\theta) \log \left[\frac{p(\mathbf{z})}{q(\mathbf{z}|\theta)} \right] d\mathbf{z} \\ &= \int q(\mathbf{z}|\theta) \log \left[p(\mathbf{x}|\mathbf{z}, \phi) \right] d\mathbf{z} - \mathsf{D}_{\mathsf{KL}}[q(\mathbf{z}|\theta), p(\mathbf{z})] \end{aligned}$$

- First term measures the average agreement $p(\mathbf{x}|\mathbf{z},\phi)$ of the hidden variable and the data (reconstruction loss)
- Second one measures the degree to which the auxiliary distribution $q(\mathbf{z}, \boldsymbol{\theta})$ matches the prior.

The variational approximation

- ELBO is tight when we choose $q(z|\theta) = p(z|x,\phi)$.
- Intractable \rightsquigarrow variational approximation: choose simple parametric form for $q(\mathbf{z}|\boldsymbol{\theta})$, use it as an approximation to the true posterior.
- Choose a normal distribution with parameters μ and $\Sigma = \sigma^2 I$.
- Optimization \rightsquigarrow find normal distribution closest to true posterior p(z|x). Corresponds to minimizing the KL divergence.
- True posterior p(z|x) depends on x
 → variational approximation should also depend on x:

$$q(\mathbf{z}|\boldsymbol{\theta}, \mathbf{x}) = N(g_{\mu}[\mathbf{x}|\boldsymbol{\theta}], g_{\sigma^2}[\mathbf{x}|\boldsymbol{\theta}]),$$

where $g[x, \theta]$ is a neural network with parameters θ .

The variational autoencoder

Recall

$$\mathsf{ELBO}[\boldsymbol{\theta}, \boldsymbol{\phi}] = \int q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\theta}) \log \left[p(\boldsymbol{x}|\boldsymbol{z}, \boldsymbol{\phi}) \right] d\boldsymbol{z} - \mathsf{D}_{\mathsf{KL}}[q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\theta}), p(\boldsymbol{z})]$$

Involves an intractable integral, but it is an expectation → approximate with samples:

$$E_{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\theta})}[\log[p(\boldsymbol{x}|\boldsymbol{z},\boldsymbol{\phi})]] \approx \frac{1}{N} \sum_{n=1}^{N} \log[p(\boldsymbol{x}|\boldsymbol{z}_{n}^{*},\boldsymbol{\phi})]$$

where \mathbf{z}_n^* is the *n*-th sample from $q(\mathbf{z}|\mathbf{x}, \theta)$. Limit: use a single sample:

$$\mathsf{ELBO}[heta, \phi] pprox \ \log\left[p(\pmb{x}|\pmb{z}^*, \phi)\right] - \mathsf{D}_{\mathit{KL}}[q(\pmb{z}|\pmb{x}, \theta), p(\pmb{z})]$$

The second term is just the KL divergence between two Gaussians and is available in closed form.

The reparameterization trick

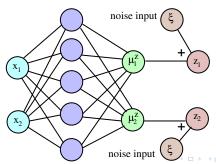
Recall: Want to sample from

$$q(\mathbf{z}|\boldsymbol{\theta}, \mathbf{x}) = N(g_{\mu}[\mathbf{x}|\boldsymbol{\theta}], g_{\sigma^2}[\mathbf{x}|\boldsymbol{\theta}]),$$

To let PyTorch / Tensorflow perform automatic differentiation via backpropagation, we must avoid the sampling step. Simple solution: draw a sample $\xi \sim N(0, I)$ and use

$$\mathbf{z}^* = \mathbf{g}_{\boldsymbol{\mu}} + \sigma^{1/2} \boldsymbol{\xi}.$$

Now "the gradient can flow through the network". **Encoder network:**

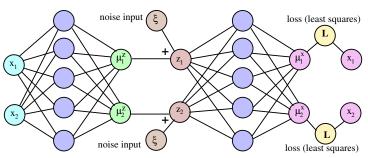


VAE

- Finally, minimize negative expectation of ELBO over $p(\mathbf{x})$: $\min_{\phi,\theta} -E_{p(\mathbf{x})} E_{q(\mathbf{z}|\mathbf{x},\theta)} [\log [p(\mathbf{x}|\mathbf{z},\phi)]] + E_{p(\mathbf{x})} D_{KL} [q(\mathbf{z}|\mathbf{x},\theta),p(\mathbf{z})]$
- The first term is approximated as

$$E_{p(\mathbf{x})}E_{q(\mathbf{z}|\mathbf{x},\theta)}[\log[p(\mathbf{x}|\mathbf{z},\phi)]] \approx \frac{1}{n}\sum_{i=1}^{n}\log[p(\mathbf{x}_{i}|\mathbf{z}_{i}^{*},\phi)].$$

We assume $p(\mathbf{x}_i|\mathbf{z}_i^*, \phi) = \mathcal{N}(f_{\phi}(\mathbf{z}_i^*), \sigma^2)$, where f is implemented via a neutral net: \leadsto **Decoder network**

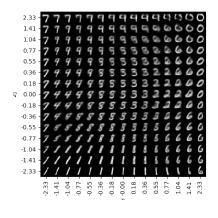


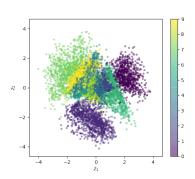
Further Variations

- For maximizing ELBO, we jointly optimize over the parameters of encoder and decoder network.
- When adjusting the decoder, we also change the "true" posterior that we are going to approximate!
- So approximation quality should not be our only goal...
 need "tuning knob" for steering the model into a desired direction.
- Solution: introduce parameter $\beta > 0$ that controls the relative importance of the two loss terms:

$$\min_{\boldsymbol{\theta}, \boldsymbol{\phi}} \frac{1}{n} \sum_{i=1}^{n} \mathsf{D}_{KL}[q(\boldsymbol{z}|\boldsymbol{x}_{i}, \boldsymbol{\theta}), p(\boldsymbol{z})] - \beta \frac{1}{n} \sum_{i=1}^{n} \mathsf{log}\left[p(\boldsymbol{x}_{i}|\boldsymbol{z}_{i}^{*}, \boldsymbol{\phi})\right]$$

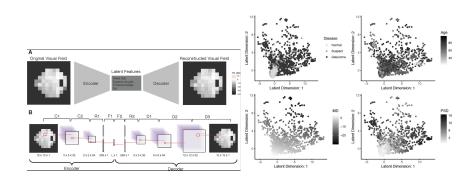
Applications: MNIST example





Taken from Louis Tiago: A Tutorial on Variational Autoencoders with a Concise Keras Implementation

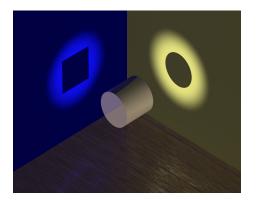
Applications: Medical example



Berchuck, S.I., Mukherjee, S. & Medeiros, F.A. Estimating Rates of Progression and Predicting Future Visual Fields in Glaucoma Using a Deep Variational Autoencoder. Sci Rep 9, 18113 (2019). https://doi.org/10.1038/s41598-019-54653-6

Multiple Views: Deep Information Bottleneck

- Consider paired samples from different views.
- What is the dependency structure between the views ?
- Nonlinear model: dependency detected by deep IB.



Two-view version: The deep information bottleneck

- So far we argued that since the true posterior p(z|x) depends on x, the variational approximation should also depend on x.
- Restricted setting: explain posterior **only by external variable** \tilde{x} : $q = q(z|\theta, \tilde{x})$.

$$\begin{aligned} \mathsf{ELBO}[\boldsymbol{\theta}, \boldsymbol{\phi}] &= \int q(\boldsymbol{z}|\tilde{\boldsymbol{x}}, \boldsymbol{\theta}) \log \left[p(\boldsymbol{x}|\boldsymbol{z}, \boldsymbol{\phi}) \right] d\boldsymbol{z} - \mathsf{D}_{KL}[q(\boldsymbol{z}|\tilde{\boldsymbol{x}}, \boldsymbol{\theta}), p(\boldsymbol{z})] \\ &= E_{q(\boldsymbol{z}|\tilde{\boldsymbol{x}}, \boldsymbol{\theta})} \log \left[p(\boldsymbol{x}|\boldsymbol{z}, \boldsymbol{\phi}) \right] - \mathsf{D}_{KL}[q(\boldsymbol{z}|\tilde{\boldsymbol{x}}, \boldsymbol{\theta}), p(\boldsymbol{z})] \end{aligned}$$

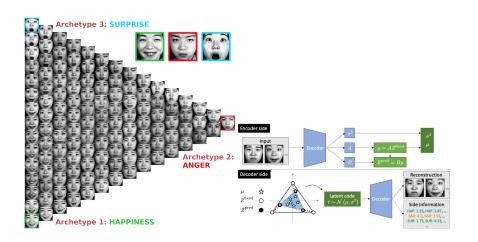
- Connection to IB:
 - Assume (or define) $q(z|\tilde{x},\theta) := p(z|\tilde{x},\theta)$
 - ▶ Take expectation w.r.t. joint data distribution $p(\tilde{x}, x)$:

$$E_{p(\tilde{\boldsymbol{x}},\boldsymbol{x})}E_{p(\boldsymbol{z}|\tilde{\boldsymbol{x}},\boldsymbol{\theta})}\log\left[p(\boldsymbol{x}|\boldsymbol{z},\boldsymbol{\phi})\right]-E_{p(\tilde{\boldsymbol{x}})}\mathsf{D}_{KL}[p(\boldsymbol{z}|\tilde{\boldsymbol{x}},\boldsymbol{\theta}),p(\boldsymbol{z})]$$

- ▶ First term $\leq \mathcal{I}_{\theta,\phi}(\mathbf{z};\mathbf{x}) + const.$ Second term $= \mathcal{I}_{\theta}(\tilde{\mathbf{x}};\mathbf{z}),$
- This defines the deep information bottleneck (with weight β) $\min_{\phi} \mathcal{I}_{\theta}(\tilde{\mathbf{x}}; \mathbf{z}) \beta \mathcal{I}_{\theta,\phi}^{\text{low}}(\mathbf{z}; \mathbf{x}), \quad \text{where } \mathcal{I}^{\text{low}} \text{ is a lower bound of } \mathcal{I}.$

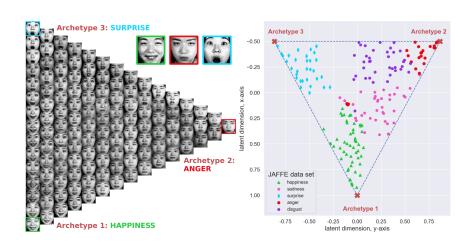
ロト 4月ト 4 三 ト 4 三 ト 9 0 0

Applications: Face images



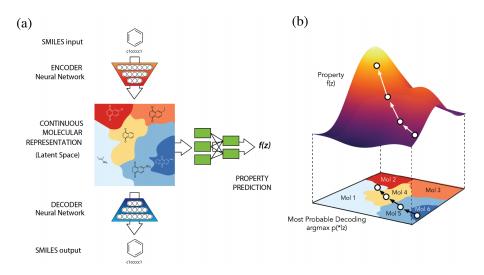
Keller et al. 2020: Learning Extremal Representations with Deep Archetypal Analysis

Applications: Face images



Keller et al. 2020: Learning Extremal Representations with Deep Archetypal Analysis

Applications: Deep Chemical Variational Autoencoders



(Gomez-Bombarelli et al., ACS Cent Sci, 2018)