n Zeiger & Co

1. Zeiger

3 Verwendung und Zeigerarithmetik

2. Referenzen

3. Arrays

4. Zeigertabellen
5. Funktionszeiger

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Wiederholung: Das Typsystem in C++

Elementare Strukturen Adressen
Datentypen
Referenzen
enum struct union class Zeiger
Ganzzahlig Gleitkommazahlen
char / bool
short 1 long
int
float double long double

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Wiederholung: Speichermodell

s C++ Programme enthalten

drei Arten von Variablen:

1 Variablen

1 Variablen

0 allokierte Variablen
Beispiel:

int n=1; —

static int m = 2;
int main ()

{

float x, *y;
static int y = 2;

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf

>

¢ 006 — > «

stack

free

heap

global

text

03. April 2020

Freispeicher: Nutzung & Verwaltung

= Problem: Wie kbnnen dynamische Daten im Speicher
gehalten werden, deren Lebenszeit nur zur Laufzeit
bestimmt werden kann (also beim Kompilieren noch nicht
bekannt ist)?

m Globale oder lokale Variablen funktionieren nicht.

= |dee:
m Zeiger verwenden, um auf diese dynamischen Daten zu zeigen
= Heap mit new und delete (reservierte Schliisselworter in C++)

= hew: Speicheranforderung fur Zeigervariable
= delete: Speicherfreigabe von Zeigervariable

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Der new-Operator

// Anlegen einer einzigen Zeigervariable von ,,Type®
Type* x = Type;
// Anlegen eines Arrays von ,,Type*

Type* x = Type[intexpr];
Type* x = Type(arglist); // Initial. iiber Konstruktor
int* i = int, *j = int(4);

= Mit new werden neue Instanzen von Elementartypen, Strukturen, oder
Klassen angelegt bzw. der benotigte Speicher reserviert

= Bei Elementartypen erfolgt per Default keine Initialisierung; wenn gewtinscht
dann durch z.B. int(n) wobei n der Initialwert ist

= Bei Klassen kann Konstruktor angeben werden; ansonsten erfolgt
Initialisierung via Standardkonstruktor

m intexpr kann jeder Ausdruck sein, der einen positiven int zuriickliefert

= hew reserviert bendtigten Speicher konsekutiv und liefert die Adresse des
ersten Elementes zurlick: (intexpr x sizeof(Type)) Bytes

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Der delete-Operator

= Syntax, um Zeigervariablen freizugeben

// Freigabe einer einzigen Zeigervariable
zeiger;
// Freigabe eines Arrays
zeiger;

= Bei Freigabe einer Zeigervariable vom Typ einer Klasse wird deren
Destruktor aufgerufen, sofern vorhanden

= Achtung: der Inhalt der Zeigers wird durch delete nicht verandert,
aber der Speicher, auf den er verweist, ist danach ,,ungultig, d.h. er
kann wieder neu allokiert werden

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Interne Ablaufe bei new bzw. delete

= nNew
m Speicher der Grosse sizeof (T) auf Heap suchen
m Eventuell Heap nach oben grosser machen

m Zeiger auf Objekt (= Speicherblock) zuriickgeben

s delete

s Nimmt Zeiger auf Objekt entgegen

: . delete
m Speicher freigeben

m Eventuell Speicherblocke zusammenlegen

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Speicherknappheit

#include <new>
Foo { long a,b,c,d,e,f,g,h,1i,j,k,1; };

()
{
{
for (;;) Foo;
}
(bad_alloc&) {
cerr << "Speicher erschopft!" << endl;
}
}

= Egal wieviel Speicher zur Verfuigung steht, dieses Beispiel wird
irgendwann den bad _alloc Handler aufrufen.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Definition eines Arrays (Feldes)

Beispiel:
a[8]; // 8 Integer
a[2*4]; // dito
Danach sieht a im Speicher so aus:

a[o] a[7]

2P| 22 (22 | 2| 22 | 22| P2 | 22

m Der Speicher ist also allokiert, aber nicht initialisiert.

= Im Allgemeinen erfolgt der Zugriff Gber nichtkonstante Integer-Werte,
deren Werte der Compiler nicht kennt; z.B. wobei 1 eine beliebige

Integer-Variable ist.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf

03. April 2020

Statische Initialisierung von Arrays

Syntax:

smallPrimes[7] = {2, 3, 5, 7, 11, 13, 17};

rotmatrix[2][2] = // zweidimensionales Array
{
{ cos(a), sin(a)}, // [e,0], [O,1]
{-sin(a), cos(a)} // [1:6]1 [131]
}s

vectr[100] = {1, 2}; // alle anderen Werte a[2-99]
// sind dann 0 initialisiert

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Beziehung zw. Arrays und Zeigern

= Arrays gibt es eigentlich gar nicht in C/C++!

= Arrays werden mit konstanten Zeigern und Zeiger-Arithmetik
implementiert.

Deklaration/Definition:
Was macht ?

m Reserviert zusammenhdngenden Speicherblock fiir 8 int-Zahlen.

m Deklariert
und initialisiert mit Adresse des ersten Elements.

m Elementzugriff ist Zeiger-Arithmetik:
Ausdruck ist aquivalent zu

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Beispiel — Zeiger und Felder

.

(i)

Ox471100: |1f

new [5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann.
32 4d ef |26|/7e f0|2e |37|75/al|ab| |c3|5d/d5/76 2c a0 d2|14
thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

-

0x471100:

d

new

Beispiel — Zeiger und Felder

[5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.

(ii)

1f

32

4d

ef

26

/e

fo

2e

37

75

al

ab

c3

5d

d5

76

2C

a0

d214

a:

00

47

11

00

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf

03. April 2020

Beispiel — Zeiger und Felder (iii)

a = new [5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.

= 42; // schreibe 42 in das erste Element

Ox471100: |00 00 00 2a |26 7e fO|2e| |37|75|al ab| [c3|/5d|d5/76 |2c|a@ d2 14

a: |00 47 11 o0

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

0x471100:

Beispiel — Zeiger und Felder

(iv)

a:

a = new [5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.
= 42; // schreibe 42 in das erste Element
= 65535; // schreibe 65535 in das letzte Element
00 00 00 2a |26|7e|fO|2e| |37|75/al/ab| c3/5d/d5/76 |00 @0 ff ff
0047 11 00
thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Beispiel — Zeiger und Felder (V)

a = new [5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.
a[o] = 42; // schreibe 42 in das erste Element

al4]

65535; // schreibe 65535 in das letzte Element

> b =a+ 1; // Rechenoperationen bei Zeigern bericksichtigen
// deren Datentyp! b zeigt 4 Bytes hinter a

Ox471100: |00 00 00 2al 26|7e fO 2e| |37 75/al ab |c3|/5d/d5|76 00 00 ff| ff

a: 00 47 11 00

b: 00 47 11 04

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Beispiel — Zeiger und Felder (Vi)

a = new [5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.

a[o] = 42; // schreibe 42 in das erste Element

al[4] 65535; // schreibe 65535 in das letzte Element

b =a+ 1; // Rechenoperationen bei Zeigern bericksichtigen
// deren Datentyp! b zeigt 4 Bytes hinter a

> *b = 1234; // schreibe 1234 in das 2. Element des Feldes

Ox471100: |00 00 00 2a 00 00 04 d2 |37 75/al ab |c3|/5d/d5|76 00 00 ff| ff

a: 00 47 11 00

b: |00/47 11 04

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

a[o]

a[4]

*p =

>

Ox471100: 00 00 00 2a| V0 00 04 d2| (3775 al ab| |[c3 5d/d5/76| (00 00 ff ff
a: [00/47 11 o0
b: 0047 11 04
thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

d

b =

new

42;

65535;

a+ 1;

1234;

delete[] a;

Beispiel — Zeiger und Felder

[5]; // Reserviere einen Speicherbereich, der

// schreibe 42 in das erste Element

// schreibe 65535 in das letzte Element

(Vii)

// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.

// Rechenoperationen bei Zeigern beriicksichtigen
// deren Datentyp! b zeigt 4 Bytes hinter a

// schreibe 1234 in das 2. Element des Feldes

// gibt den Speicherbereich wieder frei

Beispiel — Zeiger und Felder

int* a = new int[5];

int b[5];

(v

// Reserviere einen Speicherbereich, der
// 5 integers aufnehmen kann. In a wird die

// Anfangsadresse dieses Bereichs gespeichert
// Reserv. Speicherbereich fiir 5 int auf Stack.
// In b wird Anfangsadresse von diesem Bereich
// gespeichert.

)

Ox471100: |1f|32/4d ef| 26 7e|f0|2e| |37|75|al|ab |c3/5d d5|76| |2c|a0|d2 14
Ox001900: e3|10 43 ef| 26/9e|80|2e| 17 75 a1l a3| |93 5d/d5|/96| |2c|a0|d2 94
a: 00 47 11 00
b: 00 00 19 00
thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Beispiel — Zeiger und Felder (ix)

int* a = new int[5]; // Reserviere einen Speicherbereich, der
// 5 integers aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert
int b[5]; // Reserv. Speicherbereich fiir 5 int auf Stack.
// In b wird Anfangsadresse von diesem Bereich
// gespeichert.

Q
—
)
—

1

42; // schreibe 42 in das erste Element
42; // schreibe 42 in das erste Element

o
—
)
—
1

Ox471100: |00 00 00 2a |26 7e fO|2e| |37|75 al ab| c3|5d|d5/76| |2c|a@ d2 14
Ox001900: 00 00 00 2a |26 9e 80 2e| |17 75 al a3| |93 /5d|/d5/96| |2c a0 | d2 94

a: 0047 11 00,
b: 00 60 19 00

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

int* a = new int[5];

Beispiel — Zeiger und Felder

// Reserviere einen Speicherbereich, der
// 5 integers aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert

()

int b[5]; // Reserv. Speicherbereich fur 5 int auf Stack.
// In b wird Anfangsadresse von diesem Bereich
// gespeichert.
a[o] = 42; // schreibe 42 in das erste Element
b[o] = 42; // schreibe 42 in das erste Element
*(a+2) = 9; // schreibe 9 in das dritte Element von a
*(b+2) = 9; // schreibe 9 in das dritte Element von b
Ox471100: |00 00|00 2a 26 7e|fO|2e |00 00 00 09 |c3 5d d5|/76| |2c|a0|d2 14
Ox001900: |00 00 00 2a|l [26|/9e¢ 80|2e 00 00 00 09| 93 5d|/d5 96 |2c|ad | d2|94
a: 00 47 11 @0
b: @0 0 19 60
thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Zeiger & Felder

Noch ein Beispiel (syntax at its ,best”...)

a[4]
q —
p

*
=

*

p
[1

H = 1

J

3

Il N I

0 0 0O O
—

n ® +
(-

00;

= {63 1, 2, 3}3

as

// Zuweisung von Pointern

& a[@]; // Anfangsadresse iiber Adress-Operator

2a+2);

00;

// p,q zeigen jetzt auf dasselbe Element
// a = {100, 1, 2, 3}

// a = {100, 2, 2, 3}

// q zeigt jetzt auf a[2]

// a = {100, 2, 300, 3}

// Kompilerfehler! int[4] versus int*

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf

03. April 2020

Zeiger & Felder: Ungesicherter Zugriff

= Feld wird in C/C++ nur durch einen Zeiger auf den Anfang des
Speicherbereichs dargestellt.

s Der Zugriff auf Feldelemente wird nicht Gberpruft.

8[5] = { 1, 2, 3, 5, 7 }5
b = 100;

a[@] = 42; // Zugriff auf Feld Nr.1l: legal

a[5] = 137; // Zugriff auf Feld Nr.6: illegal aber moéglich
// > Seiteneffekt: verandert eventuell b !!!
X = int[9];
x[5] = 42; // Zugriff auf Feld Nr.6: legal

x[9]= 137; // Zugriff auf Feld Nr.10:
illegal > meist Absturz

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Warum erlaubt man unges. Zugriffe?

m Zugriff auf illegales Feld: es wird einfach in den entsprechenden
Speicher geschrieben (bzw. von dort gelesen).

m Glucklicher Fall: Speicher gehdrt anderem Programm und das
Betriebssystem meldet eine Zugriffsverletzung (Segmentation
Fault).

m Fataler Fall: Speicher geh6rt dem Programm selbst und die
Anderung bewirkt unerklarliche Seiteneffekte.

m Ergo: der Programmierer/die Programmiererin muss sich selbst die
Grosse des jeweiligen Speichers merken.

+ Optimale Performance und Speicherplatznutzung.

+ Auf dieser Basis kdnnen beliebig komfortablere, IHI
aber langsamere Felder (z.B. mit tGberpriften
Zugriffen) entwickelt werden.

m Umgekehrt ware dies nicht moglich!

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Lebenszeit dyn. allokierter Objekte

s Allokation (und ggf. Initialisierung) von Objekten auf dem
Heap mit new.

Lebensende von dynamisch erzeugten Objekten: delete.
= Muss man delete aufrufen?

m Allgemein: der gesamte Speicher wird vom Betriebssystem am Ende
des Programm freigegeben.

m Ja: da sonst Memory-Leaks entstehen konnen.

Faustregel: Zu jedem new ein delete.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Was ist/wie entsteht ein Memory Leak?

= Wenn z.B. Programme dynamischen Speicher anlegen und spater
vergessen, ihn wieder freizugeben, dann entstehen Memory Leaks.

doSomething (value, ntimes) {
array = new [ntimes];
for (i=0; i<ntimes; ++i) {
*(array + i) = value * (i); // entweder so ..
*(array++) = value * (i); // .. oder so ...

}

5 // Achtung: array wird nicht wieder freigegeben,
// der angelegte Speicher ist ,,verloren*

= C++ besitzt keinen automatischen Garbage-Collector, der die Freigabe
des nicht mehr benotigten Speichers Gbernimmt.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Speicherbug — Overwrite Pointer

otherint

int* ip = new int(333); Allokiere Speicher

& Wertzuweisung ip
delete ip;

p=Botherint; e

0Xx6666a

™~

Zeiger ip zeigt auf neue Adresse _@m-

BBt OX 12345

(zeigt auf neuen integer Wert)

Speicherleck!

Speicher kann nicht mehr erreicht werden

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf

03. April 2020

Speicherbug — Buffer Overflow

= Buffer Overflow (Puffer-Uberlauf)
m Ursache: man schreibt GUber Grenzen eines allokierten Blocks hinaus.

= Mogliche Folgen (oft schlecht reproduzierbar):
Sporadische Core-Dumps (segmentation fault)
Falsche Werte in anderen Variablen (z.B. NaN, 1.xxE38, ...)

Return aus Funktion ,killt“ das Programm

Beispiel:
a = [10];
b = [10];
(i=0; 1 < 20; i++)
a[i] = 1.0;

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Speicherbug — Dangling Pointer

= Dangling Pointer (,,Hangende Zeiger”)

m Ursache: Zeiger wird verwendet, nachdem er, und damit der
zugehorige Speicher, freigegeben wurde.

= Mogliche Folgen:

Falsche Werte in anderen dynamischen Variablen.

MyStruct {

m,
}s
sl = MyStruct;
sl->m = 17;
sl;

// tue etwas, z.B. Allokation neuer Variable(n) mit new

cout << sl->m; Ausgabe: 42

// oder auch etwas anderes

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf

03. April 2020

Speicherbug — Double Delete

= Double Delete
= Spezieller Fall von Dangling Pointer
= Ursache: Speicher wird zweimal freigegeben
= Folge:

Loscht evtl. Speicher, der einem anderen Programmteil gehort
Fihrt evtl. zum Absturz

Beispiel MyStruct {
m;
};5
sl = MyStruct;
sl->m = 17;
sl;

// tue etwas, z.B. Allokation neuer Variable(n) mit new
sl; // erneutes Freigeben von sl

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Noch mehr Fallstricke ...

Wo bzw. warum stirzt diese Funktion ab?

someFunction (a, b) {
1;

((a % b) == 0) {

/* ... */
i= H
} ((b % a) == 0) {
/* ... */
i= H

}
// 1 moéglicherweise uninitialisiert! (z.B. a=3, b=2)
*1 = (a >b) ? a: b;

a*b*(*i);

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Losungen fur diese Fallstricke

= Tools: Verwendung von speziellen ,Memory Checkern® (z.B.

valgrind, purify, ...)

= Bibliotheken: Smart Pointer oder Garbage Collection

= Eine etwas armselige Losung flir Double Delete:

sl = MyStruct;
sl->m = 17;

e
00 sl;
sl = NULL; // sl ist nun ein NULL pointer

sl; // double delete, tut nichts

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf

03. April 2020

Radikale Losung fur ,,Zeigerproblematik”

= Programmiersprachen ohne Zeiger (wie z.B. Java, Python)

m Variablen mit nichtelementaren Typen sind implementiert als Zeiger
m Programmierer sieht die Zeiger nicht (kein *- und & Operator vorhanden)

s Laufzeitumgebung (Interpreter/Virtual Machine) erkennt, wenn ein
Objekt vom Programm nicht mehr benutzt wird (kein Zeiger zeigt mehr
auf Objekt)

m Garbage-Collector (GC) lauft im Hintergrund standig mit

m FUr nichtzeitkritische Applikationen eine sehr gute und in der Praxis
bewahrte Losung
Es werden keine Garantien zum GC gegeben, d.h. er kann fir beliebig lange

Unterbrechungen sorgen (wenn er aufraumt); zumindest verursacht er zusatzliche
Last im System.

m Diese Sprachen werden auch verwaltete Sprachen genannt,
weil der gesamte Speicher automatisch verwaltet wird.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Borrow Checking in Rust

= Sichere Speicherverwaltung ohne Garbage Collection, durch
statische Analyse zur Compilezeit.

= Grundlegende Idee: Einfuhrung der Konzepte
m Besitz (ownership) eines Objektes im Speicher.

= Ausleihen (borrowing) des Besitzes eines Objektes im Speicher entweder
an genau eine veranderliche (mutable) Referenzvariable oder beliebig
viele unveranderliche (immutable) Referenzvariablen.
— Compiler kann dies nachverfolgen.
= Darlber hinaus:
= hull als Wert fir Referenzen nicht erlaubt.

m Referenzen kénnen die Lebensdauer des referenzierten Objektes im
Speicher nicht ,iberleben” (schliesst Dangling Pointer aus).

= Unterscheidung zwischen sicheren und unsicheren Codeabschnitten.
Letztere erlauben praktisch dieselben Speicherprobleme wie C/C++.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Mehrdimensionale Felder (i)

s Grundsatzlich ist Speicher immer linear

= n-dimensionale Arrays werden durch geeignete Indizierung ,simuliert”

m C++ bietet eingebaute n-dimensionale Felder fester Lange:

mat[4][2]; mat[4][2];

i=0; i<4; ++1i) {

(j=0; j<2; ++j) { (
(i=0; i<4; ++1i) { X (j=0; j<2; ++j) {

mat[i][j] = 10*i + j; bzw. mat[i][j] = 10*i + j;
} }
} }
= mat ist ein Zeiger auf int:
mat .. |00 01 | 10 11 20 21 |30 31
— I

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Mehrdimensionale Felder (ii)
Welche Initialisierung ist schneller?
// Version A // Version B
mat[4][n]; mat[4][n];

(j=0; j<n; ++j) { (i=0; i<4; ++i) {
(j_:@; j_<4; ++j_) { x (j=9; j<n; ++j) {
mat[i][j] = 10*i + j; mat[i][j] = 10*i + j;

} }

= Zeilenweise Ordnung: Daten liegen dicht bezliglich der Zeilen j:

A: e1 .. ©on| 10)11 .. 1n1@21 .. 2n
B: 991 on 10 11 .. 1n 20 21 .. 2n

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Mehrdimensionale Felder (i

[___N]
S =

= Version B nutzt aufeinander folgende Daten im Speicher
= Version B ist daher deutlich schneller* als Version A

s C++ Compiler macht die Optimierung automatisch
(nur moglich fir einfache Beispiele)

* Je nach Hardware. Auf einem Testsystem wurde z.B. ca. Faktor 20 gemessen.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

[/l ...

2D-Arrays (Matrizen)

Reprasentation im Speicher

matrix[6][4];

Fill with 1 ..

24

p = &matrix[0][0];

matrix[0][0]

\ 4

4

8

1
5 6
9 |10

11

12

*(p+7)

13 14

15

16

17 18

19

20

21 22

23

24

™~

matrix[5][3]

~

int *p

24 0x259f67c
23 0x259f678
22 0x259f674
21 0x259f670
20 0x259f66¢
4 OXx259f62C
3 0x259f628
2 0x259f624
1 ‘\gfiiiffze
matrix[0][0]

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf

03. April 2020

2D-Arrays: Zeiger-Arithmetik

= Gegeben: mxn Matrix wobei im Bild m=6, n=4

m Aufgabe: Drucke die Werte der vorletzten Spalte

for (int* p = &matrix[@][n-2];
p <= &matrix[m-1][n-2];

p += n

)

cout << *p << " "

cout<<endl;

Adresse

Anfangselement

p
\ 4
11213 i
:i) Elemente
5161|7 *8\
9 10|11 ﬁ
13|14] 15 ﬁ
17|18} 19 EE{
21|22 23 «24)
Letzte zu lesende J
03. April 2020

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf

Alternative: Arrays von Arrays (i)

= Man kann mehrdimensionale Arrays wie eben beschrieben erzeugen (als
eindimensionaler Vektor), oder als n einzelne Vektoren!

® neinzelne Vektoren:

array_of_array[6]; // Array von Zeigern auf int*
for (i=0;1<6; 1 ++)

array_of_array[i] = int[4];

= Der Zugriff erfolgt wie bereits bekannt:

k = array_of _array[i][j];

*(array_of _array[i] + j);

*(*(array_of_array + i) + j);

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Alternative: Arrays von Arrays

m Vorteil: Man kann auch nichtrechteckige, mehrdimensionale Arrays

(ii)

erzeugen:
upper_triang matrix[6]; // Array von Zeigern auf int
for (i=0; 1<6; i++)

upper_triang matrix[i] = int[6-i];
X %) » 112 3 4|5 6
C
p= 1 > 7 | 8 | 9 |10 11
£
:é! 2 .| 12 113 |14 | 15
©
o3 . 16 | 17 | 18
)
o4 .1 19 | 20
v
a 21
S 5 >

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Nachteil — durch interne Organisation

m Rechteckige zweidimensionale Matrix m[6][4] :

m = [6*4];
(i=0; i<6; i++)
(J=0; j<4; j++)
m[i*4 + j] = 10*i + j;
// *(m + 4*1 + j) Zeiger-Arithmetik

= Arrays von Arrays

m[6];
(i=0; i<6; i++) m[i] = float[4];
= mB I // 1ist aquivalent zu

X
X @ // Zeiger-Arithmetik

= Fazit: Verwendung von Array von Arrays ist im Allgemeinen langsamer
= Zugriff auf Speicher ist langsamer als Rechenoperationen

= Cache Misses
thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

n Zeiger & Co

1. Zeiger

3 Verwendung und Zeigerarithmetik

2. Referenzen

3. Arrays

4. Zeigertabellen
5. Funktionszeiger

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

N-dimensionale Arrays: Alternative

= Verwendung von Zeigertabellen (Zeiger auf Zeiger) anstelle von
unschonen Indexberechnungen

mat; array; — [16];
_J mat = new ()[4];
OXFFOO 00 ©0 00 @9.- Mmat[o] = &array[6];
et mat[1] = &array[4];
: J* ... ¥/
OxFF10 - 00 00 [11| 00+
s e
OxFF20 » 00 00 00 00 array[1*4+2] = 11;
OxFF30 -~ 00 00 00 00 // Zugriff, jetzt

mat[1][2] = 11;

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Zeiger & Co

1. Zeiger
= Verwendung und Zeigerarithmetik
2. Referenzen
3. Arrays
4. Zeigertabellen
5. Funktionszeiger

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Funktionszeiger (i)

Was kann man alles mit Funktionen tun?

Man kann sie aufrufen.

Man kann ihre Adresse — der Einstiegspunkt im Code-Segment —
ermitteln und den Zeiger spater benutzen, um die Funktion aufzurufen

m Braucht man um Funktionen hoherer Ordnung realisieren zu konnen
— Funktionale Programmierung

m Callback-Funktionen: z.B. prozessspezifische Ereignisbehandlung in
Betriebssystemen.

Es gilt: sizeof(fp) == sizeof(void*) wobeifp ein
Funktionszeiger ist. Ist ¥p jedoch ein Methodenzeiger (d.h. auf
Funktion einer Klasse), dann gilt dies im Allgemeinen nicht mehr,
da virtuelle Methoden korrekt behandelt werden miissen (zu
virtuellen Methoden spater mehr).

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

Funktionszeiger (ii)

Beispiel:

// zwei Funktionen mit bis auf den Namen identischer Signatur
plus(int x, y) { X+y; }
mult(int x, y) { x*y; }

(*fp) (s); /* Zeiger auf Funktionen die
Riickgabetyp int haben und zwei Parameter vom Typ int */

(*FP)(int,); // dasselbe mit Alias

FP FPT_PLUS = + // Dekl. & Zuweisung der Addr. von plus
cout << plus(2,3) << "," << FPT_PLUS(4,5) << endl;

5,9

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/04-c++-zeiger.pdf 03. April 2020

