
K05

1. Definition
2. Konstruktoren und Destruktor
3. Statische Klassenelemente
4. Überladen von Operatoren

Klassen & Methoden in C++

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Wiederholung: Das Typsystem in C++

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Elementare
Datentypen

struct

AdressenStrukturen

char
short

int
long

bool

Ganzzahlig

float

Gleitkommazahlen

double long double

classenum Zeiger
Referenzen

array

2

Definition von Klassen (i)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Definitionsschema:

n Die Attribute und Methoden – welche allgemein auch Member genannt
werden – einer Klasse gehören in eine der drei Sichtbarkeitskategorien

n Die Labels private: protected: public: können beliebig oft in
beliebiger Reihenfolge verwendet werden.

class Demo {
private: // optional

// hier private Attribute/Methoden
protected:

// hier geschützte Attribute/Methoden
public:

// hier öffentliche Attribute/Methoden
};

3

Definition von Klassen (ii)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n private: Member von aussen nicht zugänglich; kann nur
innerhalb der Klasse verwendet werden

n protected: wie private, jedoch kann Member innerhalb
abgeleiteter Klassen verwendet werden (die Sichtbarkeit ist
auf die Klassenhierarchie beschränkt)

n public: Member ist öffentlich verfügbar

n Die Voreinstellung bei Klassen (class) ist private

n Die Voreinstellung bei Strukturen (struct) ist public

ab
ne

hm
en

de
 S

ic
ht

ba
rk

ei
t

4

Memberzugriff

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Im wesentlichen nichts neues
n Vorausgesetzt Regeln der Sichtbarkeit sind erfüllt

n Zugriff auf Member erfolgt analog zu struct

class Student { /* … */ };

Student s;
Student* sp = &s;
Student& sr = s;

cout << s.name << "," << s.age() << endl;
cout << sp->name << "," << sp->age() << endl;
cout << sr.name << "," << sr.age() << endl;

5

K05

1. Definition
2. Konstruktoren und Destruktor
3. Statische Klassenelemente
4. Überladen von Operatoren

Klassen & Methoden in C++

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Konstruktoren & Destruktor

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Was passiert genau bei der Instanziierung eines Objekts?
1. Es wird Speicher reserviert.
2. Die Instanzvariablen werden initialisiert.

n Dazu gibt es spezielle Methoden: Konstruktoren („Ctor”)
n Der Konstruktor wird als erste Methode aufgerufen, sobald

Speicher allokiert ist
n Innerhalb eines Konstruktors ist beliebiger Code möglich
n Konstruktoren werden dazu verwendet, das Objekt in einen

definierten Zustand zu bringen (Instanzvariablen initialisieren)

n Analog dazu führt der Destruktor („Dtor“) entsprechende
„Aufräumarbeiten“ durch um Ressourcen (z.B. Speicher) wieder
freizugeben.

7

Konstruktoren & Destruktor

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Jede C++ Klasse sollte ein Default-Konstruktor, ein Kopierkonstruktur,
ein Zuweisungsoperator und ein Destruktor definieren sein.

Beispiel: Deklaration von Konstruktoren und Destruktor

class IntArray {
private:

int *data, len;
public:

IntArray(); // Default-Konstruktor
IntArray(int); // ctor mit Arraygrösse
IntArray(const IntArray&); // Kopierkonstruktor
IntArray& operator=(const IntArray&); // Zuweisungsoperator
~IntArray(); // Destruktor

};

Konstruktoren besitzen keinen explizit angegebenen Rückgabetyp.

derselbe Name Konstruktoren sind überladen
(unterschiedliche Parameter)

8

Der Default-Konstruktor

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Ist eine Methode, die den Namen der Klasse trägt, ohne
Parameter.

n Rückgabewert ist neue Instanz der Klasse.
n Wird aufgerufen, wenn nichts anderes bei der Instanziierung

gesagt wird, d.h. wenn keine Parameter angegeben werden
(damit werden andere Konstruktoren aufgerufen).

n Falls vom Programmierer nicht angegeben, dann generiert
der Compiler automatisch einen Default-Konstruktor,
welcher:
n Default-Konstruktor der Instanzvariablen aufruft,
n Ansonsten einen Leeren Rumpf hat.

MyClass()

9

Der Kopierkonstruktur

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Intention: Erzeuge neue Instanz aus einer bereits existierenden Instanz
n Erzeugung nicht notwendigerweise identischer Kopien (Clone)

n Definition:

n Der Kopierkonstruktor wird oft aufgerufen, ohne dass man es "sieht", z.B.:
n Bei call-by-value Parameterübergabe

n Bei Variablendefinition durch Zuweisung

n Der Kopierkonstruktor wird vom Compiler selbst erzeugt, falls er nicht
explizit im Programm deklariert wird. Achtung: shallow copy!

IntArray(const IntArray& src) { // copy ctor
. . .

}

func(ia2); // copy ctor called

IntArray ia3 = ia2; // copy ctor called

10

Shallow versus Deep Copy (i)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Betrifft das Kopieren von Zeigern bzw. Arrays
Shallow Copy (Flache Kopie)

Nur Kopie der Instanzvariablen

int*

pObj*

int

ObjSrc

int*

pObj*

int

ObjX int*

pObj*

int
ObjSrc

int*

X*

int
ObjX

Deep Copy (Tiefe Kopie)
Kopie wird auch von referenzierten

Objekten erzeugt

int*

pObj*

int

ObjCpy

int*

pObj*

int
ObjCpy

int*

X*

int
ObjX'

11

Shallow versus Deep Copy (ii)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Vereinfachung bei zusammenhängenden Speicherbereichen:
// shallow copy
IntArray::IntArray(const IntArray& ref) {

len = ref.len;
data = ref.data;

}

// deep copy
IntArray::IntArray(const IntArray& ref) {

len = ref.len;
data = new int[len];
// memcpy Bestandteil von ANSI C
memcpy(data, ref.data, len*sizeof(int));

}
for (int i=0; i<len; i++) {

data[i] = ref.data[i];
*(data+i) = *(ref.data+i);

}

12

Initialisierungsreihenfolge (i)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Die Attribute einer Klassen können natürlich vom Typ einer anderen
Klasse sein

n In diesen Fällen ist folgende Initialisierungsreihenfolge definiert:
1. Attribute in der Reihenfolge ihrer Deklaration (von oben nach unten)
2. Danach erfolgt Aufruf des Konstruktors der zu instanziierenden Klasse

class Rectangle {
int length, width;

public:
Rectangle (int l=0, int w=0) {

length = l;
width = w;

}
};

class Cube {
Rectangle rec;
int height;

};
0

1

has

13

Initialisierungsreihenfolge (ii)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

... dass heisst:
n zuerst werden Instanzen der Attribute angelegt und initialisiert, bevor

das ganze Objekt aufgebaut wird
n ohne weitere Angaben wird für jedes nichtprimitive Attribut der

Default-Konstruktor ausgeführt

Beispiel: Mögliche Implementierung eines Cube-Konstruktors:

#include "cube.h"
Cube::Cube(int h=0, int w=0, int l=0) {
height = h;
rec.length = l; // Wenn Konstruktor aufgerufen
rec.width = w; // wird ist rec schon existent.

}

14

Initialisierungsreihenfolge (iii)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Nachteile:
n Attribute werden zunächst mit Default-Werten versehen und dann mit

richtigen Werten initialisiert → nicht effizient!
n Attribute können nicht konstant (const) sein und gleichzeitig erst zur

Konstruktionszeit parametrisiert initialisiert werden (da notwendige
Initialisierung innerhalb Deklaration noch nicht möglich ist).

n Klassen, für die kein Default-Konstruktor definiert ist, können für
Attribute nicht von „aussen“ parametrisiert verwendet werden.

n Erweiterung der Konstruktorsyntax: Attributinitialisierer

n Der Aufruf der Default-Konstruktoren entfällt dadurch da...
n ...der Attributinitialisierer in der Definition angegeben wird

(nicht in der Deklaration)

#include "cube.h"
Cube::Cube(int h=0, int l=0, int w=0) : height(h), rec(l, w)
{ /* hier was sonst noch zu tun ist */ }

15

Initialisierung konstanter Attribute

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

class IntArray {

const int MAX_LEN;

int* data, len;

public:

IntArray(int l, int ML=100);

};

Einziger Ort, an
dem man kon-
stantes Attribut
parametrisiert
initialisieren kann

Dateninitialisierung

// Verwendung:
IntArray ia(5, 50); // alle Member initialisiert

IntArray::IntArray(int l, int ML) : len(l), MAX_LEN(ML)
{

assert(len > 0);
assert(len <= MAX_LEN);
data = new int[len];

}

16

Der Destruktor

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Eine C++-Klasse kann (muss aber nicht) genau einen Destruktor definieren
n Dieser wird automatisch aufgerufen, wenn ...

n der Gültigkeitsbereich einer automatisch (auf dem Stack) allokierten
Instanz verlassen wird,

n eine dynamisch allokierte Instanz explizit mit delete gelöscht wird.
n Name entspricht dem der Klasse, keine Parameter, kein Rückgabewert,

identifiziert durch eine vorangestellte Tilde ~
n Destruktor kann virtuell sein (dazu später mehr)
n Vergleichbar mit finalize()-Methode in Java; Unterschied:

n C++: Destruktor wird genau dann aufgerufen, wenn der Gültigkeitsbereich
verlassen oder delete aufgerufen wird.

n Java: Finalizer wird aufgerufen bevor der Garbage Collector die Instanz löscht.
n Der Destruktor ist der Ort, an dem

n dynamisch allokierter Speicher, der innerhalb einer Instanz allokiert wird, oder
n Ressourcen (z.B. offene Dateien, Streams, Netzwerkverbindungen)
wieder freigegeben werden sollte(n).

17

Richtlinien im Zshg. mit Heap-Speicher

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Wenn ein Konstruktor dynamisch reservierten Speicher allokiert
(new), dann …
n … muss spätestens der Destruktor den Speicher freigegeben (delete),
n … sollte man immer einen Copy-Konstruktor definieren,
n … sollte man immer einen Zuweisungsoperator definieren.

n „Gang of Four“ :=
n Ctor + Copy-Ctor + Dtor + Zuweisungsoperator

n Sonst können zur Laufzeit Probleme auftreten:
n Memory Leaks (siehe Kapitel 3),
n Shallow Copy realisiert obwohl eine Deep Copy gefordert ist.

18

Beispiel: Konstruktoren

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

#include <cassert>
IntArray::IntArray(int l) {

assert(l > 0);
len = l;
data = new int[len];

}
IntArray::IntArray() { // Default-Konstructor

len = 0 ; // Werte initialisieren um sicherzustellen
data = NULL; // dass sie nicht beliebig sind.

}

class IntArray {
private:

int *data; int len;
public:

IntArray(); // Default-Konstruktor
IntArray(int); // ctor mit Parameter (Arraygrösse)
IntArray(const IntArray&); // Kopierkonstruktor
IntArray& operator=(const IntArray&); // Zuweisungsoperator
~IntArray(); // Destruktor

};

IntArray.h

IntArray.cpp

19

Beispiel zusammengefasst: Ctor & Dtor

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

#include <cassert> // -DNDEBUG
IntArray::IntArray(int l) {

assert(l > 0);
len = l;
data = new int[len];

}

IntArray::IntArray() {
len = 0 ; // Werte initialisieren um sicherzustellen
data = NULL; // dass sie nicht beliebig sind.

}

IntArray::IntArray(const IntArray& ref) {
len = ref.len;
data = new int[len];
// memcpy Bestandteil von ANSI C
memcpy(data, ref.data, len*sizeof(int));

}

IntArray::~IntArray() { // Destruktor
delete[] data;

}

20

Zusammenfassendes Beispiel

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Wann werden Konstruktoren, Destruktoren und Operatoren aufgerufen?

void f1(const IntArray& ia) {…}
void f2(IntArray ia) {…}
IntArray f3() {…}

int main() {
IntArray ia1;
IntArray ia2(10);
IntArray ia3(ia2);
IntArray ia4 = ia2;
IntArray a_of_ia[20];
ia1 = ia2;
f1(ia1);
f2(ia1);
ia1 = f3();
return 0;

}

// copy ctor Aufruf bei return
// dtor von ia1, ia2, ia3, ia4 und für
// jedes Element von a_of_ia

// copy ctor

// Zuweisungsoperator
// keine neue Instanz erzeugt (Referenz)!

// default ctor

// copy ctor
// IntArray(int)

// default ctor für 20 Elemente
// copy ctor

21

Beispiel: Call-by-value im Zusammenhang mit (autom.
generiertem) Copy-Konstruktor

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Wie ist die
Ausgabe?

Wie ist die
Ausgabe jetzt?

in Ctor 1
in CopyTor 2
in Dtor 1
in Dtor 0

#include <iostream>
using namespace std;
class Body {
public:

static int count; // Shall be an instance counter.
Body() { cout << "in Ctor " << ++count << endl;}
~Body() { cout << "in Dtor " << --count << endl;}

};
void f(Body body) { };
int Body::count=0;

int main() {
// create objects
Body body;
f(body);

}

Body(const Body& body) {
cout << "in CopyTor " << ++count << endl;

}

in Ctor 1
in Dtor 0
in Dtor -1???

22

Wenn Copy-Konstr. nicht explizit definiert
erzeugt Compiler selbst einen (welcher in
diesem Beispiel nichts tun würde – warum?)

Argument wird call-by-value übergeben!
Deshalb wird Kopie mittels Aufruf des
Copy-Konstruktors erzeugt.

Der this-Zeiger

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Erlaubt den Zugriff auf das aktuelle Objekt
n Eine Methode kann auf jeden Member zugreifen,

ohne dabei konkret das Objekt anzugeben.
n Die Adresse des Objektes steht implizit in der Methode mit dem

konstanten Zeiger this zur Verfügung:

Klasse * const this = &aktObj;

Beispiel: Verwendung innerhalb einer Methode

len = 5; // Zuweisung an Membervariable len
func(); // Methode func aufrufen
// implizit erzeugt der Compiler diesen Ausdruck
this->len = 5;
this->func();

23

Typisches Beispiel für this

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Die Verwendung des this-Zeigers ist dann notwendig, wenn das aktuelle
Objekt (also this) als Ganzes angesprochen werden muss

n Rückgabe des this-Zeigers bei der Return-Anweisung des
Zuweisungsoperators (welcher kein Konstruktor ist)

IntArray& IntArray::operator=(const IntArray& v) {
len = v.len; // this->len = v.len;
for (int i=0; i<len; ++i)

data[i] = v.data[i];

return *this;
}

IntArray a(10), b(10);
a.operator=(b); // a = b;

// Operator überladen

24

K05

1. Definition
2. Konstruktoren und Destruktor
3. Statische Klassenelemente
4. Überladen von Operatoren

Klassen & Methoden in C++

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Statische Klassenmember in C++

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Statische Klassenattribute
werden nur einmal gespeichert
(unabhängig von der Anzahl an
Instanzen der Klasse).
n Schlüsselwort: static

n Existieren auch wenn keine
Instanz existiert.

n Nicht zu verwechseln mit
globalen Variablen. Sie sind
unter der „Kontrolle“ der
Klasse, d.h. sie unterliegen
Sichtbarkeitsregeln
n private, protected oder

public

class Employee {
public:

Employee();
...
static int count;

};

Header-Datei: Employee.h

// Initialisierung (Definition)
// ausserhalb der Klassendeklaration
int Employee::count = 0;
Employee::Employee() {

...
++count;

}

Implementierung: Employee.cpp

26

Statische Member – Zugriff

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Für statische Attribute/Methoden gelten die üblichen Regeln
der Datenkapselung (Sichtbarkeit).

n Auf einen als public deklarierten, statischen Member ist der
Zugriff auch über eine Instanz der Klasse möglich:

Statische Verwendung ohne Instanz mittels Bereichsoperator ::
cout << "Number of employees: " << Employee::count << endl;

Employee person;
cout << "Number of employees: " << person.count << endl;

Diese Variante wird nicht empfohlen!

27

Statisch versus Instanzgebunden

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Unterschiede (die klar sein sollten):
n Statische Methoden sind beim Aufruf an keine Instanz der

Klasse gebunden.
n Im Unterschied zu einer Instanzmethode steht ihnen

deshalb kein this-Zeiger zur Verfügung ...
n ... was wiederum zur Folge hat, dass statische Methoden

keinen Zugriff auf Attribute und Methoden haben, die selbst
nicht statisch sind.

28

K05

1. Definition
2. Konstruktoren und Destruktor
3. Statische Klassenelemente
4. Überladen von Operatoren

Klassen & Methoden in C++

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Operatoren überladen

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Das Überladen von Operatoren ermöglicht es, vorhandene Operatoren
(+, -, *, /, usw.) auch für Klassen zu definieren und damit auf Instanzen
anzuwenden.

n Die meisten der C++ Operatoren die für elementare Datentypen definiert
sind lassen sich nicht sofort auf Klassenobjekte anwenden.
n Ausnahme: z.B. der Zuweisungsoperator (=) ist ein Operator,

der automatisch auch bei Klassen definiert/nutzbar ist.
n Dabei wird der Definitionsbereich des Operators erweitert.

n Arithmetische Operatoren können nur verwendet werden, wenn sie auch
für Klassenobjekte überladen werden.

n Das Überladen eines Operators findet immer in Zusammenhang mit
mindestens einer Klasse statt, d.h. bei binären Operatoren muss
mindestens einer der beiden Typen ein benutzerdefinierter Typ (Klasse)
sein.

30

n Man kann die Funktionalität einer Klasse nicht nur durch
Methoden, sondern auch durch Operatoren festlegen.

n Beispiel:

Complex c1, c2, c3;
c3 = c1.mult(c2);
c3 = c1 * c2;

n Vorteil: Ausdrücke mit Operatoren sind oft intuitiver und
schneller zu erfassen als Methodenaufrufe.

Operatoren-Überladen für Klassen

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

klar
schwer zu lesen

31

Überladen von Operatoren – Regeln

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Es können keine neuen Operatoren eingeführt werden:

n *** N M oder ;-) funktioniert nicht!

n Die Bedeutung der Operatoren auf elementaren Datentypen lässt sich
nicht umdefinieren (z.B. Addition + für int).

n Die Anzahl der Operanden eines Operators kann nicht geändert werden:
n Binärer Operator bleibt stets binär (*, -, …)
n Unärer Operator bleibt stets unär (++, --, !).

n Präzedenz und Assoziativität bleibt unverändert.
n z.B. a * b + c == (a * b) + c bzw.

cout << "x" << "y" == ((cout << "x") << "y")
n Operatoren müssen alle explizit überladen werden.

n z.B. Überladen von + und +=

32

(Nicht-)Überladbare Operatoren

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Operatoren, die man nicht überladen kann Bedeutung
. .* :: Zugriffsoperatoren
?: sizeof typeid Auswahloperator, Speicherplatz
Überladbare Operatoren Bedeutung
+ - * / % ++ -- arithmetische Operatoren

== != < <= > >= Vergleichsoperatoren
&& || ! Logische Operatoren
= Zuweisungsoperator

& | ^ ~ << >> Bitoperationen
() [] Funktionsaufruf, Indexoperator
& * -> ,
new new[] delete delete[]

Sonstige Operatoren

33

Vordefinierte Operatoren

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Für jede Klasse werden automatisch folgende Operatoren
überladen wenn sie nicht selbst überladen wurden:
n = (Zuweisungsoperator): erzeugt Shallow Copy.
n , (Verkettungsoperator): verkettet Abfolgen von Anweisungen.
n & (Adressoperator): ermittelt Adresse des Operanden im Speicher.

34

Beispiel – Operator überladen (i)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Binärer
Operator:

n Definiert den binären Operator * für Instanzen der Klasse X
(Semantik von * bleibt davon unabhängig für elementare
Datentypen unverändert)

Verwendung:

class X {
X operator * (const X& right); // Deklaration

}
X X::operator * (const X& right) { // Definition
...

}

X x, y, z;
x = y.operator*(z);
x = y * z;

35

Beispiel – Operator überladen (ii)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Unärer
Operator:

n Definiert den unären Operator ! für Instanzen der Klasse X,
wobei ! ein Operator ist, der für elementare Datentypen existiert

Verwendung:

class X {
X operator ! (); // Deklaration

}
X X::operator ! () { // Definition
...
}

X x, z;
x = z.operator!();
x = ! z;

36

Beispiel – Operator überladen (iii)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Beispiele:
x = y; // äquivalent zu x.operator=(y);
i += 1; // i.operator+=(1);
if(q == r) // q.operator==(r) oder operator==(q, r)
cout << x; // cout.operator<<(x); oder operator<<(cout, x);

a = b + c; // a = b.operator+(c); oder a = operator+(b, c);

Es gibt zwei Möglichkeiten, Operatoren zu überladen:
Als Operatormethode innerhalb der Klasse X z.B.
// Addition, binärer Operator
X operator+(const X& y) const;

Als globale Operatorfunktion ausserhalb aller Klassen z.B.
// Addition, binärer Operator
X X::operator+(const X& y, const X& z);

37

Beispiel: Klasse IntArray (ii)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Operator überladen:
neue Definition des
Verhaltens für diese
Klasse

class IntArray {
public:

// Zuweisungsoperator: a = b
IntArray& operator=(const IntArray& b);
// Addition, binärer Operator: a += b
IntArray& operator+=(const IntArray& b);
// Addition mit int, binärer op: a += i
IntArray& operator+=(int i);
// Addition, binärer Operator: c = a+b
IntArray operator+(const IntArray& b) const;
// Gleichheitstest, binärer Op.: a == b
bool operator==(const IntArray& b) const;
// Präfix increment, unärer op.: ++a
IntArray& operator++();
// Postfix increment, unärer Op.: a++
IntArray operator++(int);
...

private:
int* data, len;

};

38

Klasse IntArray: Zuweisungsoper.

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

IntArray& IntArray::operator=(const IntArray& rhs)
{

if (&rhs == this)
return *this;

if (len != rhs.len) {
delete [] data;
data = new int[rhs.len];

}

len = rhs.len;
memcpy(data, rhs.data, len * sizeof(int));
/* for (int i=0; i<len; ++i) data[i] = rhs.data[i]; */
return *this;

}

Verhindert
Selbstzuweisung
obj = obj

Grösse der dynamischen
Arrays ändern, falls diese
unterschiedlich sind

Kopiere die Daten

Objekt zurückgeben

b = c; <=> b.operator=(c);

39

Klasse IntArray: Additionsoperat.

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

// addition, binary operator: a += b
IntArray& IntArray::operator+=(const IntArray& v) {

assert(len == v.len);

for (int i=0; i<len; ++i)
data[i] += v.data[i];

return *this;
}
// addition, binary operator: c = a + b
IntArray IntArray::operator+(const IntArray& v) const
{

IntArray retval(*this);

retval += v;

return retval;
}

Erzeuge neues Objekt

Neues Objekt zurückgeben

(this) Objekt zurückgeben

Ändere das Objekt

40

Klasse IntArray: Vergleichsoperator

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

bool IntArray::operator==(const IntArray& v) const
{

if (len != v.len)
return false;

for (int i=0; i<len; ++i)
if (data[i] != v.data[i])

return false;

return true;
}

41

Klasse IntArray: Präfix-/Postfixoper.

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Der unäre Inkrement-Operator (++) für Klassen ist speziell,
weil es eine Präfix- und eine Postfix-Notation gibt:
n Präfix-Fall (++a): gibt den inkrementierten Wert zurück.
n Postfix-Fall (a++): gibt den alten Wert als Kopie zurück und

inkrementiert a

n Definition der
Präfix-Version:

// präfix increment
IntArray& IntArray::operator++() {

for (int i=0; i<len; ++i)
++data[i];

return *this;
}

IntArray a;
++a;

Aufruf:

42

Klasse IntArray: Präfix-/Postfixoper.

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Postfix-Version: etwas aufwändiger, da der alte Wert
zurückgegeben wird.

n Konvention: Der Postfix-Operator wird durch einen Dummy-
Parameter (int) vom Präfix-Operator unterschieden:

IntArray a;
a++;

Aufruf:

// postfix increment
IntArray IntArray::operator++(int) {

IntArray tmp(*this); // create copy of this
// increment *this object
for (int i=0; i<len; ++i)

data[i]++;
return tmp; // return copy

}

43

Klasse IntArray: Index-Operator (i)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Zur Erinnerung: bei Arrays ...
n ... wird der Index-Operator zu Zeigerarithmetik:

n v[i] ist gleichbedeutend mit *(v+i)

n D.h. es gelten für den Index-Operator bei Arrays Einschränkungen:
n Linker Operand muss ein Zeiger sein.
n Der andere Operand muss ein ganzzahliger Ausdruck sein.
n Der Ergebnistyp ist festgelegt.

n Diese Einschränkungen gelten bei Klassen nicht:
n Der linke Operand muss ein Objekt der Klasse sein.
n Der rechte Operand darf ein beliebiger Datentyp sein.
n Der Ergebnistyp ist nicht festgelegt.

44

Klasse IntArray: Index-Operator (ii)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

class IntArray {
int *data;
int len;

public:
IntArray(int l) {

len = l;
data = new int[len];
for (int i=0; i< len; i++)

data[i] = i;
}
int& operator[](int i) {

if (i<0 || i>=len) {
cerr << "Out of Range!"

<< endl;
exit(1);

}
//Referenz auf i-tes Element
return *(data+i);

}
};

int main()
{

// ctor für 5 Elemente
IntArray a(5);
for (int i=0; i<6; i++)

cout << a[i] << endl;
}

~/test/a> ./int_test
0
1
2
3
4
Out of Range!

45

Shift-Operator für die Ausgabe (i)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Will man eine Instanz c einer Klasse (z.B. Complex) auf dem
Standardausgabestrom ausgegeben (welcher standardmässig
auf die Konsole geleitet ist), mittels cout << c, so erhält
man eine Fehlermeldung des Compilers

int i;
cout << i; // operator<<(cout, i) – OK

Complex a;
cout << a; // Fehler!

46

Shift-Operator für die Ausgabe (ii)

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

... Ergo: den Operator << überladen für Complex
class Complex {
...
// Deklaration global operators (friend)
friend ostream& operator<< (ostream&, const Complex&);

}
ostream& operator<<(ostream& o, const Complex& c) {

if (c.imag==0) o << c.real; // als Realzahl
else if (c.real==0) o << c.imag << "i"; // rein imaginär
else { // (a+bi) oder (a-bi)

o << "(" << c.real;
if (c.imag >= 0) o << '+';
if (c.imag < 0) o << '-';
o << c.imag << "i)";

}
return o;

} // output <<
Die Rückgabe von ostream bewirkt, dass man mehrere
Komponenten hintereinander mit << verknüpfen kann
cout << a << " " << b << endl;

47

