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Definition von Klassen (i)
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Definitionsschema:

n Die Attribute und Methoden – welche allgemein auch Member genannt 
werden – einer Klasse gehören in eine der drei Sichtbarkeitskategorien

n Die Labels private: protected: public: können beliebig oft in 
beliebiger Reihenfolge verwendet werden.

class Demo {
private: // optional

// hier private Attribute/Methoden
protected:

// hier geschützte Attribute/Methoden
public:

// hier öffentliche Attribute/Methoden
};
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Definition von Klassen (ii)
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n private: Member von aussen nicht zugänglich; kann nur 
innerhalb der Klasse verwendet werden

n protected: wie private, jedoch kann Member innerhalb 
abgeleiteter Klassen verwendet werden (die Sichtbarkeit ist 
auf die Klassenhierarchie beschränkt)

n public: Member ist öffentlich verfügbar

n Die Voreinstellung bei Klassen (class) ist  private

n Die Voreinstellung bei Strukturen (struct) ist  public
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Memberzugriff
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n Im wesentlichen nichts neues
n Vorausgesetzt Regeln der Sichtbarkeit sind erfüllt

n Zugriff auf Member erfolgt analog zu struct

class Student { /* … */ };

Student s;
Student* sp = &s;
Student& sr = s;

cout << s.name << "," << s.age() << endl;
cout << sp->name << "," << sp->age() << endl;
cout << sr.name << "," << sr.age() << endl;
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Konstruktoren & Destruktor
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n Was passiert genau bei der Instanziierung eines Objekts?
1. Es wird Speicher reserviert.
2. Die Instanzvariablen werden initialisiert.

n Dazu gibt es spezielle Methoden:  Konstruktoren („Ctor”)
n Der Konstruktor wird als erste Methode aufgerufen, sobald 

Speicher allokiert ist
n Innerhalb eines Konstruktors ist beliebiger Code möglich
n Konstruktoren werden dazu verwendet, das Objekt in einen 

definierten Zustand zu bringen (Instanzvariablen initialisieren)

n Analog dazu führt der Destruktor („Dtor“) entsprechende 
„Aufräumarbeiten“ durch um Ressourcen (z.B. Speicher) wieder 
freizugeben.
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Konstruktoren & Destruktor
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n Jede C++ Klasse sollte ein Default-Konstruktor, ein Kopierkonstruktur, 
ein Zuweisungsoperator und ein Destruktor definieren sein.

Beispiel: Deklaration von Konstruktoren und Destruktor

class IntArray {
private:

int *data, len;
public:

IntArray();  // Default-Konstruktor
IntArray(int);     // ctor mit Arraygrösse
IntArray(const IntArray&); // Kopierkonstruktor
IntArray& operator=(const IntArray&); // Zuweisungsoperator
~IntArray(); // Destruktor

};

Konstruktoren besitzen keinen explizit angegebenen Rückgabetyp.

derselbe Name Konstruktoren sind überladen 
(unterschiedliche Parameter)
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Der Default-Konstruktor
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n Ist eine Methode, die den Namen der Klasse trägt, ohne 
Parameter.

n Rückgabewert ist neue Instanz der Klasse.
n Wird aufgerufen, wenn nichts anderes bei der Instanziierung 

gesagt wird, d.h. wenn keine Parameter angegeben werden 
(damit werden andere Konstruktoren aufgerufen).

n Falls vom Programmierer nicht angegeben, dann generiert 
der Compiler automatisch einen Default-Konstruktor, 
welcher: 
n Default-Konstruktor der Instanzvariablen aufruft,
n Ansonsten einen Leeren Rumpf hat.

MyClass()
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Der Kopierkonstruktur
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n Intention: Erzeuge neue Instanz aus einer bereits existierenden Instanz
n Erzeugung nicht notwendigerweise identischer Kopien (Clone)

n Definition:

n Der Kopierkonstruktor wird oft aufgerufen, ohne dass man es "sieht", z.B.:
n Bei call-by-value Parameterübergabe

n Bei Variablendefinition durch Zuweisung

n Der Kopierkonstruktor wird vom Compiler selbst erzeugt, falls er nicht 
explizit im Programm deklariert wird. Achtung: shallow copy!

IntArray(const IntArray& src) { // copy ctor
. . .

}

func(ia2);   // copy ctor called

IntArray ia3 = ia2;   // copy ctor called
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Shallow versus Deep Copy (i)
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Betrifft das Kopieren von Zeigern bzw. Arrays
Shallow Copy (Flache Kopie)

Nur Kopie der Instanzvariablen
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Shallow versus Deep Copy (ii)
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Vereinfachung bei zusammenhängenden Speicherbereichen:
// shallow copy
IntArray::IntArray(const IntArray& ref) {

len = ref.len;
data  = ref.data;  

}

// deep copy
IntArray::IntArray(const IntArray& ref) {

len = ref.len;
data = new int[len]; 
// memcpy Bestandteil von ANSI C
memcpy(data, ref.data, len*sizeof(int)); 

}
for (int i=0; i<len; i++) {

data[i] = ref.data[i];
*(data+i)  = *(ref.data+i);

}
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Initialisierungsreihenfolge (i)
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n Die Attribute einer Klassen können natürlich vom Typ einer anderen 
Klasse sein

n In diesen Fällen ist folgende Initialisierungsreihenfolge definiert:
1. Attribute in der Reihenfolge ihrer Deklaration (von oben nach unten)
2. Danach erfolgt Aufruf des Konstruktors der zu instanziierenden Klasse

class Rectangle {
int length, width; 

public:
Rectangle (int l=0, int w=0) {

length = l;
width = w; 

}
};

class Cube {
Rectangle rec;
int height; 

};
0

1

has
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Initialisierungsreihenfolge (ii)
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... dass heisst:
n zuerst werden Instanzen der Attribute angelegt und initialisiert, bevor 

das ganze Objekt aufgebaut wird
n ohne weitere Angaben wird für jedes nichtprimitive Attribut der 

Default-Konstruktor ausgeführt

Beispiel: Mögliche Implementierung eines Cube-Konstruktors:

#include "cube.h"
Cube::Cube( int h=0, int w=0, int l=0 ) {
height = h;
rec.length = l; // Wenn Konstruktor aufgerufen
rec.width = w;  // wird ist rec schon existent.

}
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Initialisierungsreihenfolge (iii)
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n Nachteile:
n Attribute werden zunächst mit Default-Werten versehen und dann mit 

richtigen Werten initialisiert → nicht effizient!
n Attribute können nicht konstant (const) sein und gleichzeitig erst zur 

Konstruktionszeit parametrisiert initialisiert werden (da notwendige 
Initialisierung innerhalb Deklaration noch nicht möglich ist).

n Klassen, für die kein Default-Konstruktor definiert ist, können für 
Attribute nicht von „aussen“ parametrisiert verwendet werden.

n Erweiterung der Konstruktorsyntax: Attributinitialisierer

n Der Aufruf der Default-Konstruktoren entfällt dadurch da...
n ...der Attributinitialisierer in der Definition angegeben wird

(nicht in der Deklaration)

#include "cube.h"
Cube::Cube(int h=0, int l=0, int w=0) : height(h), rec(l, w)
{ /* hier was sonst noch zu tun ist */ }
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Initialisierung konstanter Attribute
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class IntArray {

const int MAX_LEN;

int* data, len;

public:

IntArray(int l, int ML=100);

};

Einziger Ort, an 
dem man kon-
stantes Attribut 
parametrisiert 
initialisieren kann

Dateninitialisierung

// Verwendung:
IntArray ia(5, 50);       // alle Member initialisiert

IntArray::IntArray(int l, int ML) : len(l), MAX_LEN(ML)
{

assert(len > 0);
assert(len <= MAX_LEN);
data = new int[len];

}
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Der Destruktor
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n Eine C++-Klasse kann (muss aber nicht) genau einen Destruktor definieren
n Dieser wird automatisch aufgerufen, wenn ...

n der Gültigkeitsbereich einer automatisch (auf dem Stack) allokierten 
Instanz verlassen wird,

n eine dynamisch allokierte Instanz explizit mit delete gelöscht wird.
n Name entspricht dem der Klasse, keine Parameter, kein Rückgabewert, 

identifiziert durch eine vorangestellte Tilde ~
n Destruktor kann virtuell sein (dazu später mehr)
n Vergleichbar mit finalize()-Methode in Java; Unterschied:

n C++: Destruktor wird genau dann aufgerufen, wenn der Gültigkeitsbereich 
verlassen oder delete aufgerufen wird.

n Java: Finalizer wird aufgerufen bevor der Garbage Collector die Instanz löscht.
n Der Destruktor ist der Ort, an dem

n dynamisch allokierter Speicher, der innerhalb einer Instanz allokiert wird, oder
n Ressourcen (z.B. offene Dateien, Streams, Netzwerkverbindungen)
wieder freigegeben werden sollte(n).
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Richtlinien im Zshg. mit Heap-Speicher

17. April 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

n Wenn ein Konstruktor dynamisch reservierten Speicher allokiert 
(new), dann …
n … muss spätestens der Destruktor den Speicher freigegeben (delete),
n … sollte man immer einen Copy-Konstruktor definieren,
n … sollte man immer einen Zuweisungsoperator definieren.

n „Gang of Four“ :=
n Ctor +  Copy-Ctor + Dtor + Zuweisungsoperator

n Sonst können zur Laufzeit Probleme auftreten:
n Memory Leaks (siehe Kapitel 3),
n Shallow Copy realisiert obwohl eine Deep Copy gefordert ist.
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Beispiel: Konstruktoren
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#include <cassert>
IntArray::IntArray(int l) {

assert(l > 0);
len = l;
data = new int[len];

}
IntArray::IntArray() { // Default-Konstructor

len = 0 ;     // Werte initialisieren um sicherzustellen
data = NULL;  // dass sie nicht beliebig sind.

}

class IntArray {
private:

int *data; int len;
public:

IntArray();              // Default-Konstruktor
IntArray(int);           // ctor mit Parameter (Arraygrösse)
IntArray(const IntArray&); // Kopierkonstruktor
IntArray& operator=(const IntArray&); // Zuweisungsoperator
~IntArray(); // Destruktor

};

IntArray.h

IntArray.cpp
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Beispiel zusammengefasst: Ctor & Dtor
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#include <cassert> // -DNDEBUG
IntArray::IntArray(int l) {

assert(l > 0);
len = l;
data = new int[len];

}

IntArray::IntArray() {
len = 0 ;     // Werte initialisieren um sicherzustellen
data = NULL;  // dass sie nicht beliebig sind.

}

IntArray::IntArray(const IntArray& ref) {
len = ref.len;
data = new int[len]; 
// memcpy Bestandteil von ANSI C
memcpy(data, ref.data, len*sizeof(int)); 

}

IntArray::~IntArray() {  // Destruktor
delete[] data;

}

20



Zusammenfassendes Beispiel
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Wann werden Konstruktoren, Destruktoren und Operatoren aufgerufen?

void f1(const IntArray& ia) {…}
void f2(IntArray ia) {…}
IntArray f3() {…}

int main() {
IntArray ia1;
IntArray ia2(10);
IntArray ia3(ia2);
IntArray ia4 = ia2;
IntArray a_of_ia[20];
ia1 = ia2;
f1(ia1);
f2(ia1);
ia1 = f3();
return 0;

}

// copy ctor Aufruf bei return
// dtor von ia1, ia2, ia3, ia4 und für
// jedes Element von a_of_ia

// copy ctor

// Zuweisungsoperator
// keine neue Instanz erzeugt (Referenz)!

// default ctor

// copy ctor
// IntArray(int)

// default ctor für 20 Elemente
// copy ctor
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Beispiel: Call-by-value im Zusammenhang mit (autom. 
generiertem) Copy-Konstruktor
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Wie ist die 
Ausgabe?

Wie ist die 
Ausgabe jetzt?

in Ctor 1
in CopyTor 2
in Dtor 1
in Dtor 0

#include <iostream>
using namespace std;
class Body {
public:

static int count; // Shall be an instance counter.
Body()  { cout << "in Ctor " << ++count << endl;}
~Body() { cout << "in Dtor " << --count << endl;}

};
void f(Body body) {  };
int Body::count=0;

int main() {
// create objects
Body body;
f(body);

}

Body(const Body& body) {
cout << "in CopyTor " << ++count << endl;

}

in Ctor 1
in Dtor 0
in Dtor -1???

22

Wenn Copy-Konstr. nicht explizit definiert 
erzeugt Compiler selbst einen (welcher in 
diesem Beispiel nichts tun würde – warum?)

Argument wird call-by-value übergeben! 
Deshalb wird Kopie mittels Aufruf des 
Copy-Konstruktors erzeugt.



Der this-Zeiger
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n Erlaubt den Zugriff auf das aktuelle Objekt
n Eine Methode kann auf jeden Member zugreifen,

ohne dabei konkret das Objekt anzugeben.
n Die Adresse des Objektes steht implizit in der Methode mit dem 

konstanten Zeiger this zur Verfügung:

Klasse * const this = &aktObj; 

Beispiel: Verwendung innerhalb einer Methode

len = 5;      // Zuweisung an Membervariable len
func();       // Methode func aufrufen
// implizit erzeugt der Compiler diesen Ausdruck
this->len = 5;
this->func();
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Typisches Beispiel für this
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n Die Verwendung des this-Zeigers ist dann notwendig, wenn das aktuelle 
Objekt (also this) als Ganzes angesprochen werden muss

n Rückgabe des this-Zeigers bei der Return-Anweisung des 
Zuweisungsoperators (welcher kein Konstruktor ist)

IntArray& IntArray::operator=(const IntArray& v) {
len = v.len;   // this->len = v.len;
for (int i=0; i<len; ++i)

data[i] = v.data[i];

return *this;
}

IntArray a(10), b(10);  
a.operator=(b); // a = b; 

// Operator überladen
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Statische Klassenmember in C++
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n Statische Klassenattribute 
werden nur einmal gespeichert 
(unabhängig von der Anzahl an 
Instanzen der Klasse).
n Schlüsselwort: static

n Existieren auch wenn keine 
Instanz existiert.

n Nicht zu verwechseln mit 
globalen Variablen. Sie sind 
unter der „Kontrolle“ der 
Klasse, d.h. sie unterliegen 
Sichtbarkeitsregeln
n private, protected oder 

public

class Employee {
public:

Employee();
...
static int count; 

};

Header-Datei: Employee.h

// Initialisierung (Definition)
// ausserhalb der Klassendeklaration
int Employee::count = 0;
Employee::Employee() {

...
++count;

}

Implementierung: Employee.cpp
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Statische Member – Zugriff
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n Für statische Attribute/Methoden gelten die üblichen Regeln 
der Datenkapselung (Sichtbarkeit).

n Auf einen als public deklarierten, statischen Member ist der 
Zugriff auch über eine Instanz der Klasse möglich:

Statische Verwendung ohne Instanz mittels Bereichsoperator  ::
cout << "Number of employees: " << Employee::count << endl;

Employee person;
cout << "Number of employees: " << person.count << endl;

Diese Variante wird nicht empfohlen!
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Statisch versus Instanzgebunden
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Unterschiede (die klar sein sollten):
n Statische Methoden sind beim Aufruf an keine Instanz der 

Klasse gebunden.
n Im Unterschied zu einer Instanzmethode steht ihnen 

deshalb kein this-Zeiger zur Verfügung ...
n ... was wiederum zur Folge hat, dass statische Methoden 

keinen Zugriff auf Attribute und Methoden haben, die selbst 
nicht statisch sind.
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Operatoren überladen
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n Das Überladen von Operatoren ermöglicht es, vorhandene Operatoren
(+, -, *, /, usw.) auch für Klassen zu definieren und damit auf Instanzen 
anzuwenden.

n Die meisten der C++ Operatoren die für elementare Datentypen definiert 
sind lassen sich nicht sofort auf Klassenobjekte anwenden.
n Ausnahme: z.B. der Zuweisungsoperator (=) ist ein Operator, 

der automatisch auch bei Klassen definiert/nutzbar ist.
n Dabei wird der Definitionsbereich des Operators erweitert.

n Arithmetische Operatoren können nur verwendet werden, wenn sie auch 
für Klassenobjekte überladen werden.

n Das Überladen eines Operators findet immer in Zusammenhang mit 
mindestens einer Klasse statt, d.h. bei binären Operatoren muss 
mindestens einer der beiden Typen ein benutzerdefinierter Typ (Klasse) 
sein.
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n Man kann die Funktionalität einer Klasse nicht nur durch 
Methoden, sondern auch durch Operatoren festlegen.

n Beispiel:

Complex c1, c2, c3;
c3 = c1.mult(c2);
c3 = c1 * c2;

n Vorteil: Ausdrücke mit Operatoren sind oft intuitiver und 
schneller zu erfassen als Methodenaufrufe.

Operatoren-Überladen für Klassen
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klar
schwer zu lesen
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Überladen von Operatoren – Regeln
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n Es können keine neuen Operatoren eingeführt werden:

n *** N M oder ;-) funktioniert nicht!

n Die Bedeutung der Operatoren auf elementaren Datentypen lässt sich 
nicht umdefinieren (z.B. Addition + für int).

n Die Anzahl der Operanden eines Operators kann nicht geändert werden:
n Binärer Operator bleibt stets binär (*, -, …)
n Unärer Operator bleibt stets unär (++, --, !).

n Präzedenz und Assoziativität bleibt unverändert.
n z.B. a * b + c == (a * b) + c bzw.

cout << "x" << "y" == ((cout << "x") << "y")
n Operatoren müssen alle explizit überladen werden.

n z.B. Überladen von   + und     +=
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(Nicht-)Überladbare Operatoren
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Operatoren, die man nicht überladen kann Bedeutung
.    .*    :: Zugriffsoperatoren
?:   sizeof typeid Auswahloperator, Speicherplatz
Überladbare Operatoren Bedeutung
+    - *   /  %    ++   -- arithmetische Operatoren

==   !=    <   <=   >    >= Vergleichsoperatoren
&&   ||    ! Logische Operatoren
= Zuweisungsoperator

&    |   ^    ~    <<    >> Bitoperationen
()   [] Funktionsaufruf, Indexoperator
&    *   ->    ,
new new[]   delete delete[]

Sonstige Operatoren
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Vordefinierte Operatoren
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n Für jede Klasse werden automatisch folgende Operatoren 
überladen wenn sie nicht selbst überladen wurden:
n = (Zuweisungsoperator): erzeugt Shallow Copy.
n , (Verkettungsoperator): verkettet Abfolgen von Anweisungen.
n & (Adressoperator): ermittelt Adresse des Operanden im Speicher.
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Beispiel – Operator überladen (i)
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Binärer
Operator:

n Definiert den binären Operator * für Instanzen der Klasse X
(Semantik von * bleibt davon unabhängig für elementare 
Datentypen unverändert)

Verwendung:

class X {
X operator * (const X& right); // Deklaration

}
X X::operator * (const X& right) { // Definition
...

}

X x, y, z;
x = y.operator*(z);
x = y * z;
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Beispiel – Operator überladen (ii)
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Unärer
Operator:

n Definiert den unären Operator ! für Instanzen der Klasse X,  
wobei ! ein Operator ist, der für elementare Datentypen existiert

Verwendung:

class X {
X operator ! (); // Deklaration

}
X X::operator ! () { // Definition
...
}

X x, z;
x = z.operator!();
x = ! z;
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Beispiel – Operator überladen (iii)
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Beispiele:
x = y; // äquivalent zu x.operator=(y);
i += 1; // i.operator+=(1);
if( q == r ) // q.operator==(r) oder operator==(q, r)
cout << x; // cout.operator<<(x); oder operator<<(cout, x);

a = b + c; // a = b.operator+(c);  oder a = operator+(b, c);

Es gibt zwei Möglichkeiten, Operatoren zu überladen:
Als Operatormethode innerhalb der Klasse X z.B.
// Addition, binärer Operator
X operator+(const X& y) const;

Als globale Operatorfunktion ausserhalb aller Klassen z.B.
// Addition, binärer Operator
X X::operator+(const X& y, const X& z);
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Beispiel: Klasse IntArray (ii)
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Operator überladen: 
neue Definition des 
Verhaltens für diese 
Klasse

class IntArray {
public:

// Zuweisungsoperator:            a = b
IntArray& operator=(const IntArray& b); 
// Addition, binärer Operator:    a += b
IntArray& operator+=(const IntArray& b);
// Addition mit int, binärer op:  a += i
IntArray& operator+=(int i);
// Addition, binärer Operator:    c = a+b
IntArray operator+(const IntArray& b) const;
// Gleichheitstest, binärer Op.:  a == b
bool operator==(const IntArray& b) const;
// Präfix increment, unärer op.:  ++a
IntArray& operator++();
// Postfix increment, unärer Op.: a++
IntArray operator++(int);
...

private:
int*  data, len;

};
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Klasse IntArray: Zuweisungsoper.
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IntArray& IntArray::operator=(const IntArray& rhs)
{

if (&rhs == this)
return *this;  

if (len != rhs.len) {
delete [] data;
data = new int[rhs.len];

}

len = rhs.len;
memcpy(data, rhs.data, len * sizeof(int));
/* for (int i=0; i<len; ++i) data[i] = rhs.data[i]; */
return *this;

}

Verhindert 
Selbstzuweisung
obj = obj

Grösse der dynamischen
Arrays ändern, falls diese 
unterschiedlich sind

Kopiere die Daten

Objekt zurückgeben

b = c;   <=>  b.operator=( c );

39



Klasse IntArray: Additionsoperat.
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// addition, binary operator: a += b
IntArray& IntArray::operator+=(const IntArray& v) {

assert(len == v.len);

for (int i=0; i<len; ++i)
data[i] += v.data[i];

return *this;
}
// addition, binary operator: c = a + b
IntArray IntArray::operator+(const IntArray& v) const
{

IntArray retval(*this);

retval += v;

return retval;
}

Erzeuge neues Objekt

Neues Objekt zurückgeben

(this) Objekt zurückgeben

Ändere das Objekt
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Klasse IntArray: Vergleichsoperator
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bool IntArray::operator==(const IntArray& v) const
{

if (len != v.len)
return false;

for (int i=0; i<len; ++i)
if (data[i] != v.data[i])

return false;

return true;
}
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Klasse IntArray: Präfix-/Postfixoper.
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n Der unäre Inkrement-Operator (++) für Klassen ist speziell, 
weil es eine Präfix- und eine Postfix-Notation gibt:
n Präfix-Fall (++a): gibt den inkrementierten Wert zurück.
n Postfix-Fall (a++): gibt den alten Wert als Kopie zurück und 

inkrementiert a

n Definition der
Präfix-Version:

// präfix increment
IntArray& IntArray::operator++() {   

for (int i=0; i<len; ++i)
++data[i];

return *this;
}

IntArray a;
++a;

Aufruf:
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Klasse IntArray: Präfix-/Postfixoper.
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n Postfix-Version: etwas aufwändiger, da der alte Wert 
zurückgegeben wird.

n Konvention: Der Postfix-Operator wird durch einen Dummy-
Parameter (int) vom Präfix-Operator unterschieden:

IntArray a;
a++;

Aufruf:

// postfix increment
IntArray IntArray::operator++(int) {  

IntArray tmp(*this); // create copy of this
// increment *this object
for (int i=0; i<len; ++i)

data[i]++;
return tmp; // return copy

}
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Klasse IntArray: Index-Operator (i)
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Zur Erinnerung: bei Arrays ...
n ... wird der Index-Operator zu Zeigerarithmetik:

n v[i] ist gleichbedeutend mit *(v+i)

n D.h. es gelten für den Index-Operator bei Arrays Einschränkungen:
n Linker Operand muss ein Zeiger sein.
n Der andere Operand muss ein ganzzahliger Ausdruck sein.
n Der Ergebnistyp ist festgelegt.

n Diese Einschränkungen gelten bei Klassen nicht:
n Der linke Operand muss ein Objekt der Klasse sein.
n Der rechte Operand darf ein beliebiger Datentyp sein.
n Der Ergebnistyp ist nicht festgelegt.
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Klasse IntArray: Index-Operator (ii)
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class IntArray {
int *data;
int len;

public:
IntArray(int l) {

len = l;
data = new int[len];
for (int i=0; i< len; i++)

data[i] = i;
}
int& operator[](int i) {

if (i<0 || i>=len) {
cerr << "Out of Range!" 

<< endl;
exit(1);

}
//Referenz auf i-tes Element
return *(data+i);

}
};

int main()
{

// ctor für 5 Elemente
IntArray a(5); 
for (int i=0; i<6; i++)

cout << a[i] << endl;
}

~/test/a> ./int_test
0
1
2
3
4 
Out of Range!
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Shift-Operator für die Ausgabe (i)
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n Will man eine Instanz c einer Klasse (z.B. Complex) auf dem 
Standardausgabestrom ausgegeben (welcher standardmässig 
auf die Konsole geleitet ist), mittels cout << c, so erhält 
man eine Fehlermeldung des Compilers

int i; 
cout << i; // operator<<(cout, i) – OK

Complex a;
cout << a; // Fehler!
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Shift-Operator für die Ausgabe (ii)
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... Ergo: den Operator << überladen für Complex
class Complex {
... 
// Deklaration global operators (friend)
friend ostream& operator<< (ostream&, const Complex&);

}
ostream& operator<<(ostream& o, const Complex& c) {

if (c.imag==0) o << c.real; // als Realzahl
else if (c.real==0) o << c.imag << "i"; // rein imaginär
else { // (a+bi) oder (a-bi)

o << "(" << c.real;
if (c.imag >= 0) o << '+';
if (c.imag < 0) o << '-';
o << c.imag << "i)";

}
return o;

} // output <<
Die Rückgabe von ostream bewirkt, dass man mehrere 
Komponenten hintereinander mit << verknüpfen kann
cout << a << " " << b << endl;
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