“ Klassen & Methoden in C++

Definition
Konstruktoren und Destruktor
Statische Klassenelemente

s w N e

Uberladen von Operatoren

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Wiederholung: Das Typsystem in C++

Elementare Strukturen

Adressen
Datentypen / \ /
Referenzen
enum struct array Zeiger
Ganzzahll Gleitkommazahlen
char / bool
short
|nt
float double long double

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Definition von Klassen (i)

Definitionsschema:

Demo {
private: // optional
// hier private Attribute/Methoden
protected:
// hier geschiutzte Attribute/Methoden
public:
// hier offentliche Attribute/Methoden

}s

s Die Attribute und Methoden — welche allgemein auch Member genannt
werden — einer Klasse gehoren in eine der drei Sichtbarkeitskategorien

= Die Labels private: protected: public: konnen beliebig oft in
beliebiger Reihenfolge verwendet werden.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Definition von Klassen (ii)

o : Member von aussen nicht zuganglich; kann nur
innerhalb der Klasse verwendet werden

= : wie , jedoch kann Member innerhalb
abgeleiteter Klassen verwendet werden (die Sichtbarkeit ist
auf die Klassenhierarchie beschrankt)

o : Member ist offentlich verfigbar

= Die Voreinstellung bei Klassen (class) ist private

= Die Voreinstellung bei Strukturen (struct) ist public

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Memberzugriff

= Im wesentlichen nichts neues

= Vorausgesetzt Regeln der Sichtbarkeit sind erfullt

= Zugriff auf Member erfolgt analog zu struct

Student { /* .. */ };

Student s;
Student* sp
Student& sr

&s;
S5

cout << s.name << "," << s.age() << endl;
cout << sp->name << "," << sp->age() << endl;
cout << sr.name << "," << sr.age() << endl;

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

17. April 2020

“ Klassen & Methoden in C++

Definition
Konstruktoren und Destruktor
Statische Klassenelemente

A\ =

Uberladen von Operatoren

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Konstruktoren & Destruktor *"§
D % —I-*

= Was passiert genau bei der Instanziierung eines Objekts?
1. Es wird Speicher reserviert.
2. Die Instanzvariablen werden initialisiert.

= Dazu gibt es spezielle Methoden: Konstruktoren (,,Ctor”)

m Der Konstruktor wird als erste Methode aufgerufen, sobald
Speicher allokiert ist
= Innerhalb eines Konstruktors ist beliebiger Code maoglich

m Konstruktoren werden dazu verwendet, das Objekt in einen
definierten Zustand zu bringen (Instanzvariablen initialisieren)

= Analog dazu fuhrt der Destruktor (,,Dtor”) entsprechende
,2Aufraumarbeiten” durch um Ressourcen (z.B. Speicher) wieder
freizugeben.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Konstruktoren & Destruktor

m Jede C++ Klasse sollte ein Default-Konstruktor, ein Kopierkonstruktur,
ein Zuweisungsoperator und ein Destruktor definieren sein.

Beispiel: Deklaration von Konstruktoren und Destruktor
IntArray {

*data, len;

IntArray(); // Default-Konstruktor
IntArray(int); // ctor mit Arraygrosse
IntArray(const IntArray&); // Kopierkonstruktor
IntArfay& operator=(donst IntArray&); // Zuweisungsoperator
~IntArray(); // Destruktor
}s
derselbe Name Konstruktoren sind tberladen
(unterschiedliche Parameter)

Konstruktoren besitzen keinen explizit angegebenen Riickgabetyp.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Der Default-Konstruktor myClass ()

= Ist eine Methode, die den Namen der Klasse tragt, ohne
Parameter.

= Rlckgabewert ist neue Instanz der Klasse.

= Wird aufgerufen, wenn nichts anderes bei der Instanziierung
gesagt wird, d.h. wenn keine Parameter angegeben werden
(damit werden andere Konstruktoren aufgerufen).

= Falls vom Programmierer nicht angegeben, dann generiert
der Compiler automatisch einen Default-Konstruktor,
welcher:

m Default-Konstruktor der Instanzvariablen aufruft,
m Ansonsten einen Leeren Rumpf hat.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Der Kopierkonstruktur

Intention: Erzeuge neue Instanz aus einer bereits existierenden Instanz
= Erzeugung nicht notwendigerweise identischer Kopien (Clone)

= Definition:

IntArray() { // copy ctor

}

s Der Kopierkonstruktor wird oft aufgerufen, ohne dass man es "sieht", z.B.:
= Bei call-by-value Parameteriibergabe

func(ia2); // copy ctor called

= Bei Variablendefinition durch Zuweisung
IntArray ia3 = ia2; // copy ctor called

m Der Kopierkonstruktor wird vom Compiler selbst erzeugt, falls er nicht
explizit im Programm deklariert wird. Achtung: shallow copy!

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

11

Shallow versus Deep Copy

Betrifft das Kopieren von Zeigern bzw. Arrays

Shallow Copy (Flache Kopie)

hj

. .’

Nur Kopie der Instanzvariablen
ObjSrc ObjSrc
int :.' int
int* ;1 0b3X int*
int < %
Ob-* pObj
ot int*
: pObj*
ObjCpy ObjCpy
int int
pObj* pOb7j*

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

Deep Copy (Tiefe Kopie)

(i)

Kopie wird auch von referenzierten
Objekten erzeugt

0bjX

int

int*

X*

objX’

e

int

int*

X*

17. April 2020

Shallow versus Deep Copy (ii)

Vereinfachung bei zusammenhangenden Speicherbereichen:
// shallow copy

IntArray: :IntArray(IntArray& ref) {
len = ref.len;
data = ref.data;

}

// deep copy

IntArray: :IntArray(IntArray& ref) {
len = ref.len;
data = [len];

// memcpy Bestandteil von ANSI C
memcpy(data, ref.data, len*sizeof(int));

}
for (int i=0; i<len; i++) {
data[i] = ref.data[i];

*(data+i) = *(ref.data+i);
}

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Initialisierungsreihenfolge (i)

= Die Attribute einer Klassen konnen nattrlich vom Typ einer anderen
Klasse sein

Cube { Rectangle {
Rectangle rec; length, width;
height;
¥ Rectangle (1=0, w=0) {
0 length = 1;
has width = w;
f» }
}s

= In diesen Fallen ist folgende Initialisierungsreihenfolge definiert:

1. Attribute in der Reihenfolge ihrer Deklaration (von oben nach unten)
2. Danach erfolgt Aufruf des Konstruktors der zu instanziierenden Klasse

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

17. April 2020

Initialisierungsreihenfolge

... dass heisst:

(ii)

m zuerst werden Instanzen der Attribute angelegt und initialisiert, bevor

das ganze Objekt aufgebaut wird

m ohne weitere Angaben wird fiir jedes nichtprimitive Attribut der
Default-Konstruktor ausgefihrt

Beispiel: Mogliche Implementierung eines Cube-Konstruktors:

#include "cube.h"

Cube: :Cube(h=0, w=0, 1=0) {
height = h;
rec.length = 1; // Wenn Konstruktor aufgerufen
rec.width = w; // wird ist rec schon existent.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

17. April 2020

Initialisierungsreihenfolge (iii)

= Nachteile:

m Attribute werden zunachst mit Default-Werten versehen und dann mit

richtigen Werten initialisiert - nicht effizient!

m Attribute kdnnen nicht konstant (const) sein und gleichzeitig erst zur
Konstruktionszeit parametrisiert initialisiert werden (da notwendige

Initialisierung innerhalb Deklaration noch nicht maoglich ist).

m Klassen, fur die kein Default-Konstruktor definiert ist, kdbnnen fir
Attribute nicht von ,,aussen” parametrisiert verwendet werden.

= Erweiterung der Konstruktorsyntax: Attributinitialisierer

#include "cube.h"
Cube: :Cube(int h=e, int 1=, int w=@) : height(h), rec(l, w)
{ /* hier was sonst noch zu tun ist */ }

m Der Aufruf der Default-Konstruktoren entfallt dadurch da...

m ...der Attributinitialisierer in der Definition angegeben wird
(nicht in der Deklaration)

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

17. April 2020

Initialisierung konstanter Attribute

IntArray { T
) Dateninitialisierung
const int MAX_LEN;
int* data, len; Einziger Ort, an
dem man kon-

I] 1 stantes Attribut

T ? HE=E) parametrisiert
¥ ¢ initialisieren kann
IntArray: :IntArray(1, ML) : len(l), MAX_LEN(ML)
{

assert(len > 90);

assert(len <= MAX_LEN);

data = [len];
}

// Verwendung:
IntArray ia(5, 50); // alle Member initialisiert

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Der Destruktor @

s Eine C++-Klasse kann (muss aber nicht) genau einen Destruktor definieren

s Dieser wird automatisch aufgerufen, wenn ...

= der Gliltigkeitsbereich einer automatisch (auf dem Stack) allokierten
Instanz verlassen wird,

= eine dynamisch allokierte Instanz explizit mit delete geldscht wird.

= Name entspricht dem der Klasse, keine Parameter, kein Riickgabewert,
identifiziert durch eine vorangestellte Tilde ~

= Destruktor kann virtuell sein (dazu spater mehr)
= Vergleichbar mit finalize()-Methode in Java; Unterschied:

s C++: Destruktor wird genau dann aufgerufen, wenn der Giltigkeitsbereich
verlassen oder delete aufgerufen wird.

= Java: Finalizer wird aufgerufen bevor der Garbage Collector die Instanz I6scht.
s Der Destruktor ist der Ort, an dem

= dynamisch allokierter Speicher, der innerhalb einer Instanz allokiert wird, oder

s Ressourcen (z.B. offene Dateien, Streams, Netzwerkverbindungen)

wieder freigegeben werden sollte(n).

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Richtlinien im Zshg. mit Heap-Speicher

= Wenn ein Konstruktor dynamisch reservierten Speicher allokiert
(new), dann ...

m ... muss spatestens der Destruktor den Speicher freigegeben (delete),
m ... sollte man immer einen Copy-Konstruktor definieren,
m ... sollte man immer einen Zuweisungsoperator definieren.

- “ ,_
” L

m Ctor + Copy-Ctor + Dtor + Zuweisungsoperator

= Sonst konnen zur Laufzeit Probleme auftreten:
s Memory Leaks (siehe Kapitel 3),
= Shallow Copy realisiert obwohl eine Deep Copy gefordert ist.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Beispiel: Konstruktoren

IntArray { IntArray.h
*data; len;
IntArray(); // Default-Konstruktor
IntArray(); // ctor mit Parameter (Arraygrosse)
IntArray(IntArray&); // Kopierkonstruktor
IntArray& operator=(IntArray&); // Zuweisungsoperator
~IntArray(); // Destruktor

}s

#include <cassert>
IntArray: :IntArray(1) {
assert(l > 0);

IntArray.cpp

len = 1;
data = [len];
}
IntArray: :IntArray() { // Default-Konstructor
len = 0 ; // Werte initialisieren um sicherzustellen
data = s // dass sie nicht beliebig sind.
}

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Beispiel zusammengefasst: Ctor & Dtor

#include <cassert> // -DNDEBUG
IntArray: :IntArray(1) {
assert(l > 0);

len = 1;
data = [len];
}
IntArray: :IntArray() {
len = 0 ; // Werte initialisieren um sicherzustellen

data = NULL; // dass sie nicht beliebig sind.
}

IntArray: :IntArray(IntArray& ref) {
len = ref.len;
data = [len];

// memcpy Bestandteil von ANSI C
memcpy(data, ref.data, len*sizeof(int));

}

IntArray: :~IntArray() { // Destruktor
data;

}

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

17. April 2020

Zusammenfassendes Beispiel

Wann werden Konstruktoren, Destruktoren und Operatoren aufgerufen?

£1(IntArray& ia) {..}
f2(IntArray ia) {..}
IntArray f3() {..}

main() {

IntArray ial; //
IntArray ia2(10); //
IntArray ia3(ia2); //

IntArray ia4 = ia2; //
IntArray a_of_ia[20]; //

ial = ia2;
f1(ial);
f2(ial);
ial = 3();
0;

thorsten moller

//
//
//
//
//
//

default ctor

IntArray(int)

copy ctor

copy ctor

default ctor fir 20 Elemente
Zuweisungsoperator

keine neue Instanz erzeugt (Referenz)!
copy ctor

copy ctor Aufruf bei return

dtor von ial, ia2, ia3, ia4 und fir
jedes Element von a_of_ia

- informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Beispiel: Call-by-value im Zusammenhang mit (autom.

generiertem) Copy-Konstruktor

#include <iostream>
std;
Body {

count; // Shall be an instance counter.

Body() { cout << "in Ctor " << ++count << endl;}
~Body() { cout << "in Dtor " << --count << endl;}

Body (Body& body) {
cout << "in CopyTor " << ++count << endl;

Wie ist die
Ausgabe?

in Ctor 1
in Dtor ©
in Dtor -1???

¥ Wie ist die
f(Body body) { }; Wenn Copy-K(?nstr. nicht gxplizit definiert Ausgabe jetzt?
Body: : count=0; erzeugt Compiler selbst einen (welcher in
diesem Beispiel nichts tun wiirde — warum?)
in Ctor 1
main() { in CopyTor 2
// create objects Argument wird call-by-value Gibergeben! in Dtor 1
Body body; Deshalb wird Kopie mittels Aufruf des in Dtor ©
f(body) ; Copy-Konstruktors erzeugt.
}
thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Der this-Zeiger

= Erlaubt den Zugriff auf das aktuelle Objekt

m Eine Methode kann auf jeden Member zugreifen,
ohne dabei konkret das Objekt anzugeben.

m Die Adresse des Objektes steht implizit in der Methode mit dem
konstanten Zeiger this zur Verfligung:

Klasse * const this = &aktObj;

Beispiel: Verwendung innerhalb einer Methode

len = 5; // Zuweisung an Membervariable len

func(); // Methode func aufrufen
// implizit erzeugt der Compiler diesen Ausdruck

this->len = 5;
this->func();

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

17. April 2020

Typisches Beispiel fur this

= Die Verwendung des this-Zeigers ist dann notwendig, wenn das aktuelle
Objekt (also this) als Ganzes angesprochen werden muss

= Rickgabe des this-Zeigers bei der Return-Anweisung des
Zuweisungsoperators (welcher kein Konstruktor ist)

IntArray& IntArray: :operator=(IntArray& v) {
// this->len = v.len;

8n = Vv.len; =
(i=0; i<len; ++i)
data[i] = v.data[i];

IntArray a(10), b(10);
a.operator=(b); // a = b;
// Operator uberladen

}

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

“ Klassen & Methoden in C++

Definition
Konstruktoren und Destruktor
Statische Klassenelemente

N A =

Uberladen von Operatoren

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Statische Klassenmember in C++

Header-Datei: Empl .h : i
eader-Datei: Employee = Statische Klassenattribute

I.Employee { werden nur einmal gespeichert

Employee(); (unabhangig von der Anzahl an
. Instanzen der Klasse).
static count; m Schliusselwort: static

}s

m Existieren auch wenn keine

Instanz existiert.

Implementierung: Employee.cpp = Nicht zu verwechseln mit

// Initialisierung (Definition) . globalen Variablen. Sie sind
// ausserhalb der Klassendeklaration ter d Controlle® d
Employee: :count = 0; unter aer ,Kontrolle” aer

Employee: : Employee() { Klasse, d.h. sie unterliegen
e Sichtbarkeitsregeln
++count; = private, protected oder
public

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Statische Member — Zugriff

= FUr statische Attribute/Methoden gelten die tblichen Regeln
der Datenkapselung (Sichtbarkeit).

= Auf einen als public deklarierten, statischen Member ist der
Zugriff auch Uber eine Instanz der Klasse moglich:

Employee person;
cout << "Number of employees: " << person.count << endl;

Diese Variante wird nicht empfohlen!

Statische Verwendung ohne Instanz mittels Bereichsoperator ::

cout << "Number of employees: " << Employee::count << endl;

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Statisch versus Instanzgebunden

Unterschiede (die klar sein sollten):

m Statische Methoden sind beim Aufruf an keine Instanz der
Klasse gebunden.

= Im Unterschied zu einer Instanzmethode steht ihnen
deshalb kein this-Zeiger zur Verfiigung ...

= ... was wiederum zur Folge hat, dass statische Methoden
keinen Zugriff auf Attribute und Methoden haben, die selbst
nicht statisch sind.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

“ Klassen & Methoden in C++

Definition

Konstruktoren und Destruktor
Statische Klassenelemente
Uberladen von Operatoren

PN

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Operatoren uberladen %&—fg
©

= Das Uberladen von Operatoren ermdglicht es, vorhandene Operatoren
(+, -, *, /, usw.) auch fur Klassen zu definieren und damit auf Instanzen
anzuwenden.

= Die meisten der C++ Operatoren die fir elementare Datentypen definiert
sind lassen sich nicht sofort auf Klassenobjekte anwenden.

m Ausnahme: z.B. der Zuweisungsoperator (=) ist ein Operator,
der automatisch auch bei Klassen definiert/nutzbar ist.

= Dabei wird der Definitionsbereich des Operators erweitert.

= Arithmetische Operatoren kbnnen nur verwendet werden, wenn sie auch
fur Klassenobjekte Gberladen werden.

= Das Uberladen eines Operators findet immer in Zusammenhang mit
mindestens einer Klasse statt, d.h. bei binaren Operatoren muss
mindestens einer der beiden Typen ein benutzerdefinierter Typ (Klasse)
sein.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Operatoren-Uberladen fur Klassen

= Man kann die Funktionalitat einer Klasse nicht nur durch

Methoden, sondern auch durch Operatoren festlegen.

= Beispiel:

Complex cl1, c2, c3;
c3 = cl.mult(c2); <«— schwer zu lesen
c3 = cl * c2; <+«— klar

= Vorteil: Ausdriicke mit Operatoren sind oft intuitiver und
schneller zu erfassen als Methodenaufrufe.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Uberladen von Operatoren — Regeln

= Es kdnnen keine neuen Operatoren eingefiihrt werden:
m kEk 2 é oder ;-) funktioniert nicht!

= Die Bedeutung der Operatoren auf elementaren Datentypen lasst sich
nicht umdefinieren (z.B. Addition + flr int).

= Die Anzahl der Operanden eines Operators kann nicht geandert werden:

m Binadrer Operator bleibt stets binar (*, -, ..)
m Unarer Operator bleibt stets unar (++, --, !).

m Prazedenz und Assoziativitat bleibt unverandert.

= z.B. a*b+c==(a*b)+c bzw.
cout << llxll << ||y|| S ((COUt << llxll) << llyll)

= Operatoren mussen alle explizit Gberladen werden.

m z.B. Uberladenvon + und +=

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

(Nicht-)Uberladbare Operatoren

Operatoren, die man nicht Gberladen kann Bedeutung

¥ Zugriffsoperatoren
?: sizeof typeid Auswahloperator, Speicherplatz
+ - * / % ++ -- arithmetische Operatoren
== = < <= > >= Vergleichsoperatoren
&& || ! Logische Operatoren
= Zuweisungsoperator
& | » ~ << >> Bitoperationen
() [] Funktionsaufruf, Indexoperator
& * -> , Sonstige Operatoren
new new|] delete delete[]

thorsten moller

- informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

17. April 2020

Vordefinierte Operatoren

= FUr jede Klasse werden automatisch folgende Operatoren
uberladen wenn sie nicht selbst Uberladen wurden:

m = (Zuweisungsoperator): erzeugt Shallow Copy.
m , (Verkettungsoperator): verkettet Abfolgen von Anweisungen.
m & (Adressoperator): ermittelt Adresse des Operanden im Speicher.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Beispiel — Operator uberladen (i)

Binarer X {

Operator: X operator * (X& right); // Deklaration
}
X X::operator * (X& right) { // Definition
}

= Definiert den binaren Operator * flr Instanzen der Klasse X
(Semantik von * bleibt davon unabhangig fir elementare
Datentypen unverandert)

Verwendung: x x, y, z;
X = y.operator*(z);
X =y * z;

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Beispiel — Operator Uberladen

Unarer
Operator:

X {
X operator ! (); // Deklaration

}
X X::operator ! () { // Definition

}

s Definiert den unaren Operator ! flr Instanzen der Klasse X,
wobei ! ein Operator ist, der fir elementare Datentypen existiert

Verwendung:

X x, z;
X = z.operator!();
x =1 z;

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

(ii)

17. April 2020

Beispiel — Operator Uberladen (iii)

Beispiele:

cout << Xx;

a=b + c;

Es gibt zwei Moglichkeiten, Operatoren zu tberladen:

Als Operatormethode innerhalb der Klasse X z.B.
// Addition, binarer Operator

X operator+(

// aquivalent zu x. (y);

// i. (1);

// q. (r) oder (9, r)

// cout. (x); oder (cout, x);

//a(Doder a = >

X& y) 5

Als globale Operatorfunktion ausserhalb aller Klassen z.B.
// Addition, binarer Operator

X X::operator+(X& vy, X& z);

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

17. April 2020

Beispiel: Klasse IntArray (ii)

Operator Uberladen: IntArray {

neueIDefwung1§es // Zuweisungsoperator: a=>b

Verhaltens flr diese IntArray& operator=(IntArray& b);

Klasse // Addition, binarer Operator: a+=b
IntArray& operator+=(IntArray& b);

// Addition mit int, bindrer op: a += i
IntArray& operator+=(i);

// Addition, binarer Operator: Cc = atb
IntArray operator+(IntArray& b) 9
// Gleichheitstest, binarer Op.: a ==

bool operator==(IntArray& b) ;

// Prafix increment, unarer op.: ++a
IntArray& operator++();

// Postfix increment, undrer Op.: a++
IntArray operator++(int);

* data, len;

}s

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Klasse IntArray: Zuweisungsoper.

IntArray& IntArray::operator=(IntArray& rhs)
{ Verhindert
if (&rhs ==) < Selbstzuweisung
* 5 obj = obj
if (len != rhs.len) { Grosse der dynamischen
[] data; < Arrays andern, falls diese
data = [rhs.len]; unterschiedlich sind
}
len = rhs.len;
memcpy(data, rhs.data, len * (int)); <«——— Kopiere die Daten
/* for (int i=0; i<len; ++i) data[i] = rhs.data[i]; */
* HER Objekt zurlickgeben

b=c; <=> b.operator=(c);

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Klasse IntArray: Additionsoperat.

// addition, binary operator: a += b

IntArray& IntArray::operator+=(IntArray& v) {
assert(len == v.len);
Lo st o)
* ; < (this) Objekt zurtickgeben
;/ addition, binary operator: c = a + b
IntArray IntArray::operator+(IntArray& v)
{ IntArray retval(*this); <— Erzeuge neues Objekt
retval += v;
} retval; « Neues Objekt zurtickgeben

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Klasse IntArray: Vergleichsoperator

IntArray: :operator==(IntArray& v)
{
(len != v.len)
false;
(int i=0; i<len; ++i)
(data[i] != v.data[i])
false;

true;

}

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Klasse IntArray: Prafix-/Postfixoper.

= Der unare Inkrement-Operator (++) fur Klassen ist speziell,
weil es eine Prafix- und eine Postfix-Notation gibt:

m Prafix-Fall (++a): gibt den inkrementierten Wert zurick.

m Postfix-Fall (a++): gibt den alten Wert als Kopie zuriick und
inkrementiert a

= Definitionder /; prafix increment

Prafix-Version: IntArray& IntArray::operator++() {
(i=0; i<len; ++i)
++data[i];

Xk o
J

Aufruf: IntArray a;
++a;

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Klasse IntArray: Prafix-/Postfixoper.

= Postfix-Version: etwas aufwandiger, da der alte Wert
zuruckgegeben wird.

= Konvention: Der Postfix-Operator wird durch einen Dummy-
Parameter (int) vom Prafix-Operator unterschieden:

// postfix increment
IntArray IntArray::operator++() {

IntArray tmp(*); // create copy of this

// increment *this object

(i=0; i<len; ++i)
data[i]++;
tmp; // return copy

}

Aufruf: IntArray a;
a++;

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Klasse IntArray: Index-Operator

Zur Erinnerung: bei Arrays ...
= ...wird der Index-Operator zu Zeigerarithmetik:
m Vv[i] ist gleichbedeutend mit *(v+1)

= D.h. es gelten fur den Index-Operator bei Arrays Einschrankungen:

m Linker Operand muss ein Zeiger sein.
m Der andere Operand muss ein ganzzahliger Ausdruck sein.

m Der Ergebnistyp ist festgelegt.

= Diese Einschrankungen gelten bei Klassen nicht:
m Der linke Operand muss ein Objekt der Klasse sein.
m Der rechte Operand darf ein beliebiger Datentyp sein.
m Der Ergebnistyp ist nicht festgelegt.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

(i)

17. April 2020

Klasse IntArray: Index-Operator (ii

IntArray {
*data;
len;

IntArray(int 1) {
len = 1;
data = [len];
(i=0; i< len; i++)
data[i] = i;

& operator[](i) {
if (i<@ || i>=len) {
cerr << "Out of Range!"
<< endl;
exit(1);
}
//Referenz auf i-tes Element
*(data+i);

}s

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf

main()
{
// ctor fur 5 Elemente
IntArray a(5);
for (int i=0; i<6; i++)
cout << a[i] << endl;
}

~/test/a> ./int_test

P WINEO

Out of Range!

17. April 2020

Shift-Operator fur die Ausgabe (i)

= Will man eine Instanz ¢ einer Klasse (z.B. Complex) auf dem
Standardausgabestrom ausgegeben (welcher standardmassig
auf die Konsole geleitet ist), mittels cout << ¢, so erhalt
man eine Fehlermeldung des Compilers

i;
cout << i; // operator<<(cout, i) - OK

Complex a;
cout << a; // Fehler!

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

Shift-Operator fir die Ausgabe (ii

... Ergo: den Operator << Uberladen fur Complex
Complex {

// Deklaration global operators (friend)

ostream& operator<< (ostream&, Complex&);
}
ostream& operator<<(ostream& o, Complex& c) {
(c.imag==0) o << c.real; // als Realzahl
(c.real==0) o << c.imag << "i"; // rein imaginar
{ // (a+bi) oder (a-bi)

0 << "(" << c.real;
(c.imag >= @) o0 << "+';
(c.imag < @) o << '-';

0 << c.imag << "i)";

}
0; Die Riickgabe von ostream bewirkt, dass man mehrere

} // output << Komponenten hintereinander mit << verkntpfen kann
cout << a << " " << b << endl;

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/05-c++-klassen.pdf 17. April 2020

