Dynamische Programmiersprachen

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf 29. Mai 2020

Dynamische Programmiersprachen

m Der Begriff Dynamischen Programmiersprache ist nicht prazise bzw.

formal definiert.

= Typischerweise versteht man darunter Sprachen ...

= ... bei denen zur Laufzeit Tatigkeiten ausgefiihrt werden, die bei statischen

Sprachen* zur Compilezeit ausgefiihrt werden, z.B.:
Dynamische Typuberpriifung
Dynamische Bestimmung des Typs anhand struktureller Eigenschaften
Modifikation von Programmen zur Laufzeit

= ...die Interpretiert ausgefuhrt werden (Skriptsprachen)
= ... die automatische Speicherverwaltung beinhalten

= Motivation:
= Produktivitdt bei der Programmierung erhohen und/oder
= Erlernbarkeit der Programmiersprache vereinfachen

* Auch dieser Begriff ist nicht prazise definiert.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

29. Mai 2020

Dynamische Typuberprifung (i)

= TypUberprifung erfolgt zur Laufzeit (im Gegensatz zur statischen
Typprufung zur Compilezeit).

m Vertreter: Groovy, JavaScript, Lisp, Lua, Perl, PHP, Ruby, Python, ...

= Charakteristische Eigenschaft:

1. Werte/Objekte haben Typ
Ergo: Typinformation muss zusatzlich mit dem Wert/Objekt gefiihrt werden.

2. Variablen haben keinen Typ
Ergo: Variable kann wahrend ihrer Lebenszeit Werte beliebigen Typs annehmen.

- Es konnen weniger bis gar keine Garantien zur Typkompatibilitat zur
Laufzeit gegeben werden.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf 29. Mai 2020

Dynamische Typuberprifung (ii)

Nachteile:

m TypuUberprufung zur Laufzeit birgt gewissen Aufwand
(Overhead); zeitlich als auch im Speicher.

s Laufzeitfehler durch Typinkompatibilitaten

Auftretens- und Ursacheort im Quelltext u.U. weit voneinander entfernt.

m Erhohter Testaufwand

Volle Abdeckung aller moglichen Ausfiihrungen oft nicht mit vertretbarem
Aufwand machbar.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf 29. Mai 2020

Duck Typing (i)

= ldee: Ein Objekt ist kompatibel zu einem Typ 7"'wenn es zur
Laufzeit die Methoden (und Attribute) von 7 besitzt.

= Analog: zwei Objekte sind typkompatibel wenn sie zur Laufzeit
gleiche Methoden (und Attribute) besitzen.

= Ergo: Objekt muss im Grunde genommen uberhaupt keinen
statischen Typ besitzen. Der Typ wird dynamisch (zur Laufzeit)
anhand seiner Struktur, namlich der vorhandenen Methoden (und
Attribute), bestimmt.

Name geht zurtck auf ein Gedicht von J.W. RILEY:

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf 29. Mai 2020

Duck Typing

Beispiel (Python):

Vogel:

__init_ (, hame):
.name = name

_str__():

.__class_ . name___

+ + .hame
Ente(Vogel):

quak():

print str()+': quak'
Frosch:

quak():

print str()+': quak'

tiere = [Vogel('Gustav'),
Ente('Donald'),
Frosch('Kermit')]

t tiere:

t.quak()
AttributeError:
print 'Kann nicht quaken:', t

Ausgabe:

Kann nicht quaken: Vogel Gustav
Ente Donald: quak
Frosch Kermit: quak

29. Mai 2020

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

Duck Typing — Gegenuberstellung (iii)

m Duck Typing ist dynamische Form des Structural Typing. Bei letzterem
wird Typkompatibilitat i. Allg. statisch zur Compilezeit bestimmt.

= Die Typsysteme der bisher in der Vorlesung behandelten Sprachen (C++,
Java, Haskell) sind nominativ:

m Typkompatibilitat bzw. -aquivalenz bestimmt durch explizite
Typdeklarationen und/oder Typnamen.

// explizite Deklaration adquivalenter // unterschiedliche Typen in C++
// Typen durch Typaliase in C++ // mit identischer Struktur
unsigned char BYTE; Foo {

int id; char name[80];
-- explizite Deklaration adquivalenter };
-- Typen durch Typsynonyme in Haskell Bar {

ar
String = [Char]; . i
int id; char name[80];

}s

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf 29. Mai 2020

Mixins

(i)

= Idee: Ein Mixin deklariert und definiert eine Menge von Methoden die man (zur

Laufzeit) beliebig vielen Klassen hinzufuigt -, beimischt®, ohne dass es dabei
Superklasse sein muss (was damit den Unterschied zur Vererbung darstellt).
= Direkt unterstutzt u.a. in: Go, Ruby, Scala
Beispiel (Ruby):
Mixin das Logging-Methoden bereitstellt # Verwendung
Logging Foo
logInfo # Methode fiir Info-Ausgabe include Logging
Implementierung ... # ...
logErr # Methode fiir Fehler-Ausgabe Bar
Implementierung ... include Logging
e o o
thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

eine

29. Mai 2020

Mixins (ii)

Konzept in der objektorientierten Programmierung:

m Keine Form der Spezialisierung (Vererbung) sondern ein Mittel um
Funktionalitat (dynamisch) einer Klasse hinzuzuftigen.

Motivation: don‘t repeat yourself (dry)

Vergleichbar mit:

0 : Klasse kann (alle) Methoden UGber ein oder mehrere
Mixins erhalten.

Unterschied: eliminiert Probleme des mehrfachen Erbens von Methoden
(siehe auch Diamond-Problem bzw. virtuelle Mehrfachvererbung in C++)

Unterschied: Methoden sind implementiert.

Manche Sprachen ermoglichen das ,,beimischen®” von Methoden in
eine Klasse zur Laufzeit, wobei Mixins selbst zur Compilezeit
definiert sind. Dies ist eine Form des late binding.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf 29. Mai 2020

Metaprogrammierung

= Mit wurde erstmalig die Moglichkeit eingefiihrt, ein in ein
Programm als Daten eingebettetes Programmfragment p (welches
i.A. nicht notwendigerweise in derselben Sprache geschrieben ist)
auszuwerten und das Ergebnis zurtckzuliefern (Ausdruck) bzw.

auszufihren (Anweisung(en)).

= Auswertung/Ausfiihrung von p entweder zur:

s Compilezeit: Statische Metaprogrammierung
z.B.: C/C++ Makros und C++ Templates

= Laufzeit: Dynamische Metaprogrammierung

= Auswertung zur Laufzeit verfligbar u.a. in
Lua, Perl, Python, Ruby, JavaScript.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf 29. Mai 2020

Metaprogrammierung — eval

= Egal ob Auswertung zur Compile- oder Laufzeit stattfindet, es
wird Evaluierungsfunktion: eval(p) bendtigt:
= p liegtin Form von Daten fur eval vor.

Demzufolge unterscheidet eval bzgl. p zwischen Programm
und Daten.

= Auswertung/Ausfiihrung zur Laufzeit meist interpretiert.

= Kompilierte Auswertung/Ausfiihrung benotigt Zugriff auf einen
Compiler durch das ausfuhrbare Programm.

= Syntax bzgl. eval variiert zwischen den Programmiersprachen; z.B.
implizite Kennzeichnung durch Prafix # bei C/C++ Makros.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf 29. Mai 2020

eval - Beispiele

Java Script:

// Auswertung eines Ausdrucks
X = 3;
alert(eval('x + 3"));

// Ausfiihrung von Anweisungen
X = 3;
eval('x += 3; alert(x);');

Python (interaktiver Modus >>>):

>>> # Auswertung eines Ausdrucks
>> X =3

>>> eval('x + 3")

6

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

Perl:

// Auswertung eines Ausdrucks
$x = 3;
print eval('$x + 3'), "\n";

// Ausfihrung von Anweisungen
$x = 3;
eval('$x += 3; print "$x\n";');

>>> x = 3

>>>y =4

>>> exec "X += 3; y += 4
>>> X

>>> Yy

29. Mai 2020

eval und Quines

= eval lasst sich verwenden um sogenannte Quines zu
implementieren:

= Definition: Ein Quine ist ein Programm dass keine Eingaben hat und
bei Ausfihrung exakt seinen eigenen Quelltext ausgibt.

= Auf dieser Basis ist ein Quine damit eine Spezialform eines
Metaprogrammes.

Beispiel (Ruby):
eval s=%q(puts"eval s=%q(#{s})")

http://codepad.org/

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf 29. Mai 2020

http://codepad.org/

Metaprogrammierung: Dynamische
Programmmodifikation

= Ebenfalls mit wurde erstmalig die Moglichkeit eingefuhrt
dass ein Programm sich selbst zur Laufzeit modifiziert.

= Programm benutzt sich selbst als Daten. Durch Modifikation
dieser Daten kann es sich selbst zur Laufzeit modifizieren.

= Ob dies in der Folge zu einer unmittelbaren Anderung der
Programmausfuhrung fihrt, ist abhangig davon, ob die
Modifikation direkt den Maschinencode (im Codesegment) andert,
bzw. ob sie so geschieht, dass ein Interpreter, der das aktuelle
Programm interpretiert, die Modifikation ,sieht”.

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf 29. Mai 2020

Dyn. Programmmodifikation — Beispiel

= Ruby: Hinzufligen einer neuen Methode zu einer Klasse und
Ausfuhrung dieser:

Foo
initiale Definition der Klasse ...

fuge neue Methode 'hello' zur Klasse 'Foo' hinzu
Foo. ("def hello; return 'hello'; end”)

erzeuge neue Instanz und fiihre 'hello’' aus
Foo.new.hello

= Ahnlich kann man mit remove_method in Ruby eine Methode m¢
einer Klasse C zur Laufzeit entfernen. Beachte: hat m© jedoch m°%

einer Superklasse Sup Uberschrieben, dann kann danach immer
noch m>? auf Instanzen von C aufgerufen werden (da ererbt).

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf 29. Mai 2020

... Paradigmen ... ???

Was hat dieses Comic mit (Programmier-) Paradigmen zu tun?

"1SI JEQPUIMJIQNUN NZ3YBU SaYI[aM ‘ewdipeied sayasiuyaanydiu
UId SUISaPUIW UBW 13pul} Sunpoimiuaaiemios 'mzq Suniaiwwel3oad Jap Sixeld J3p U] :1JOMIUY

thorsten moller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf 29. Mai 2020

