
Dynamische Programmiersprachen

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

K10

Dynamische Programmiersprachen

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

2

n Der Begriff Dynamischen Programmiersprache ist nicht präzise bzw.
formal definiert.

n Typischerweise versteht man darunter Sprachen ...
n ... bei denen zur Laufzeit Tätigkeiten ausgeführt werden, die bei statischen

Sprachen* zur Compilezeit ausgeführt werden, z.B.:
n Dynamische Typüberprüfung
n Dynamische Bestimmung des Typs anhand struktureller Eigenschaften
n Modifikation von Programmen zur Laufzeit

n ... die Interpretiert ausgeführt werden (Skriptsprachen)
n ... die automatische Speicherverwaltung beinhalten

n Motivation:
n Produktivität bei der Programmierung erhöhen und/oder
n Erlernbarkeit der Programmiersprache vereinfachen

* Auch dieser Begriff ist nicht präzise definiert.

Dynamische Typüberprüfung (i)

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

3

n Typüberprüfung erfolgt zur Laufzeit (im Gegensatz zur statischen
Typprüfung zur Compilezeit).
n Vertreter: Groovy, JavaScript, Lisp, Lua, Perl, PHP, Ruby, Python, ...

n Charakteristische Eigenschaft:
1. Werte/Objekte haben Typ

n Ergo: Typinformation muss zusätzlich mit dem Wert/Objekt geführt werden.

2. Variablen haben keinen Typ
n Ergo: Variable kann während ihrer Lebenszeit Werte beliebigen Typs annehmen.

à Es können weniger bis gar keine Garantien zur Typkompatibilität zur
Laufzeit gegeben werden.

Dynamische Typüberprüfung (ii)

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

4

Nachteile:
n Typüberprüfung zur Laufzeit birgt gewissen Aufwand

(Overhead); zeitlich als auch im Speicher.

n Laufzeitfehler durch Typinkompatibilitäten
n Auftretens- und Ursacheort im Quelltext u.U. weit voneinander entfernt.

n Erhöhter Testaufwand
n Volle Abdeckung aller möglichen Ausführungen oft nicht mit vertretbarem

Aufwand machbar.

Duck Typing (i)

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

5

n Idee: Ein Objekt ist kompatibel zu einem Typ T wenn es zur
Laufzeit die Methoden (und Attribute) von T besitzt.
n Analog: zwei Objekte sind typkompatibel wenn sie zur Laufzeit

gleiche Methoden (und Attribute) besitzen.
n Ergo: Objekt muss im Grunde genommen überhaupt keinen

statischen Typ besitzen. Der Typ wird dynamisch (zur Laufzeit)
anhand seiner Struktur, nämlich der vorhandenen Methoden (und
Attribute), bestimmt.

Name geht zurück auf ein Gedicht von J.W. RILEY:

„When I see a bird that walks like a duck and swims like a duck
and quacks like a duck, I call that bird a duck.“

Duck Typing (ii)

29. Mai 2020

thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

6

Beispiel (Python):
class Vogel:
def __init__(self, name):

self.name = name
def __str__(self):

return
self.__class__.__name__
+ ' ' + self.name

class Ente(Vogel):
def quak(self):

print str(self)+': quak'

class Frosch:
def quak(self):

print str(self)+': quak'

tiere = [Vogel('Gustav'),
Ente('Donald'),
Frosch('Kermit')]

for t in tiere:
try:

t.quak()
except AttributeError:

print 'Kann nicht quaken:', t

Kann nicht quaken: Vogel Gustav
Ente Donald: quak
Frosch Kermit: quak

Ausgabe:

Duck Typing – Gegenüberstellung (iii)

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

7

n Duck Typing ist dynamische Form des Structural Typing. Bei letzterem
wird Typkompatibilität i. Allg. statisch zur Compilezeit bestimmt.

n Die Typsysteme der bisher in der Vorlesung behandelten Sprachen (C++,
Java, Haskell) sind nominativ:
n Typkompatibilität bzw. -äquivalenz bestimmt durch explizite

Typdeklarationen und/oder Typnamen.

// explizite Deklaration äquivalenter
// Typen durch Typaliase in C++

typedef unsigned char BYTE;

-- explizite Deklaration äquivalenter
-- Typen durch Typsynonyme in Haskell

type String = [Char];

// unterschiedliche Typen in C++
// mit identischer Struktur

struct Foo {

int id; char name[80];
};

struct Bar {

int id; char name[80];

};

Mixins (i)

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

8

n Idee: Ein Mixin deklariert und definiert eine Menge von Methoden die man (zur
Laufzeit) beliebig vielen Klassen hinzufügt – „beimischt“, ohne dass es dabei eine
Superklasse sein muss (was damit den Unterschied zur Vererbung darstellt).

n Direkt unterstützt u.a. in: Go, Ruby, Scala

Beispiel (Ruby):

Mixin das Logging-Methoden bereitstellt

module Logging
def logInfo # Methode für Info-Ausgabe

Implementierung ...

end

def logErr # Methode für Fehler-Ausgabe

Implementierung ...

end

end

Verwendung

class Foo
include Logging

...

end

class Bar

include Logging

...

end

Mixins (ii)

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

9

n Konzept in der objektorientierten Programmierung:
n Keine Form der Spezialisierung (Vererbung) sondern ein Mittel um

Funktionalität (dynamisch) einer Klasse hinzuzufügen.

n Motivation: don‘t repeat yourself (dry)
n Vergleichbar mit:

n Mehrfachvererbung: Klasse kann (alle) Methoden über ein oder mehrere
Mixins erhalten.
n Unterschied: eliminiert Probleme des mehrfachen Erbens von Methoden

(siehe auch Diamond-Problem bzw. virtuelle Mehrfachvererbung in C++)
n Java Interface

n Unterschied: Methoden sind implementiert.

n Manche Sprachen ermöglichen das „beimischen“ von Methoden in
eine Klasse zur Laufzeit, wobei Mixins selbst zur Compilezeit
definiert sind. Dies ist eine Form des late binding.

Metaprogrammierung

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

10

n Mit Lisp wurde erstmalig die Möglichkeit eingeführt, ein in ein
Programm als Daten eingebettetes Programmfragment p (welches
i.A. nicht notwendigerweise in derselben Sprache geschrieben ist)
auszuwerten und das Ergebnis zurückzuliefern (Ausdruck) bzw.
auszuführen (Anweisung(en)).

n Auswertung/Ausführung von p entweder zur:
n Compilezeit: Statische Metaprogrammierung

z.B.: C/C++ Makros und C++ Templates
n Laufzeit: Dynamische Metaprogrammierung

n Auswertung zur Laufzeit verfügbar u.a. in
Lua, Perl, Python, Ruby, JavaScript.

Metaprogrammierung – eval

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

11

n Egal ob Auswertung zur Compile- oder Laufzeit stattfindet, es
wird Evaluierungsfunktion: eval(p) benötigt:
n p liegt in Form von Daten für eval vor.

Demzufolge unterscheidet eval bzgl. p nicht zwischen Programm
und Daten.

n Auswertung/Ausführung zur Laufzeit meist interpretiert.
n Kompilierte Auswertung/Ausführung benötigt Zugriff auf einen

Compiler durch das ausführbare Programm.

n Syntax bzgl. eval variiert zwischen den Programmiersprachen; z.B.
implizite Kennzeichnung durch Präfix # bei C/C++ Makros.

eval - Beispiele

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

12

Java Script:
// Auswertung eines Ausdrucks
x = 3;
alert(eval('x + 3'));

// Ausführung von Anweisungen
x = 3;
eval('x += 3; alert(x);');

// Auswertung eines Ausdrucks
$x = 3;
print eval('$x + 3'), "\n";

// Ausführung von Anweisungen
$x = 3;
eval('$x += 3; print "$x\n";');

Perl:

>>> # Auswertung eines Ausdrucks
>>> x = 3
>>> eval('x + 3')
6

Python (interaktiver Modus >>>):
>>> x = 3
>>> y = 4
>>> exec "x += 3; y += 4"
>>> x
6
>>> y
8

eval und Quines

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

13

n eval lässt sich verwenden um sogenannte Quines zu
implementieren:
n Definition: Ein Quine ist ein Programm dass keine Eingaben hat und

bei Ausführung exakt seinen eigenen Quelltext ausgibt.
n Auf dieser Basis ist ein Quine damit eine Spezialform eines

Metaprogrammes.

eval s=%q(puts"eval s=%q(#{s})")

Beispiel (Ruby):

Ausprobierbar ohne dass man eine Ruby-Laufzeitumgebung
Installieren muss auf http://codepad.org/

http://codepad.org/

Metaprogrammierung: Dynamische
Programmmodifikation

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

14

n Ebenfalls mit Lisp wurde erstmalig die Möglichkeit eingeführt
dass ein Programm sich selbst zur Laufzeit modifiziert.

n Programm benutzt sich selbst als Daten. Durch Modifikation
dieser Daten kann es sich selbst zur Laufzeit modifizieren.
n Ob dies in der Folge zu einer unmittelbaren Änderung der

Programmausführung führt, ist abhängig davon, ob die
Modifikation direkt den Maschinencode (im Codesegment) ändert,
bzw. ob sie so geschieht, dass ein Interpreter, der das aktuelle
Programm interpretiert, die Modifikation „sieht“.

Dyn. Programmmodifikation – Beispiel

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

15

n Ruby: Hinzufügen einer neuen Methode zu einer Klasse und
Ausführung dieser:

n Ähnlich kann man mit remove_method in Ruby eine Methode mC
einer Klasse C zur Laufzeit entfernen. Beachte: hat mC jedoch mSup
einer Superklasse Sup überschrieben, dann kann danach immer
noch mSup auf Instanzen von C aufgerufen werden (da ererbt).

class Foo
initiale Definition der Klasse ...

end

füge neue Methode 'hello' zur Klasse 'Foo' hinzu
Foo.class_eval("def hello; return 'hello'; end”)

erzeuge neue Instanz und führe 'hello' aus
Foo.new.hello

... Paradigmen ... ???

29. Mai 2020thorsten möller - informatik.unibas.ch/lehre/fs20/prog/10-dyn&dsls&esot.pdf

16

Was hat dieses Comic mit (Programmier-) Paradigmen zu tun?

Antwort: In der Praxis der Programmierung bzw. Softwareentwicklung findet man mindestens ein
nichttechnischesParadigma, welches nahezu unüberwindbar ist.

