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Programme

14. April * Analysis by Synthesis
* Introduction to Bayesian modelling

21. April * Markov Chain Monte Carlo — Concepts and main ideas * Introduction to exercise 3 and project 2
Applications to Shape modelling * Working on exercise sheet 3
28. April * MCMC: Filtering, diagnostics and logging * Working on exercise sheet 3
* Likelihood Functions for shape and image analysis
5. Mai * Metropolis — Hastings. Why does it work? e Discussion: Exercise sheet 3
12. Mai * Face Image Analysis * Working on Project 2
19. Mai * (Gaussian processes * Working on Project 2

More insights / connections to other methods

26. Mai * Summary
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Administrative issues

Exam
* Will be changed to oral exam due to Covid-19

* Date remains the same (2. Juli 2020)

Project 2
* You may regroup if you ended up alone or unhappy in a group

* Project introduction: 21. April

Lectures
e Lectures on Tuesdays, 14:15—-16:00

* Exercises, questions and discussions, Tuesday’s 16:15-18:00
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Outline

Analysis by synthesis — Main ideas

* The conceptual framework we follow in this course

Bayesian inference

* How we reason in this course

Analysis by Synthesis in 5 (simple) steps
* A step by step guide to image analysis



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS

Conceptual Basis: Analysis by synthesis
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We analyze our world by synthesizing relevant aspects of it using our model
 Once synthesis produces observed data, we have an explanation of the data

* Allows reasoning about unseen parts
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Conceptual Basis: Analysis by synthesis
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Mathematical Framework: Bayesian inference
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Principled way of dealing with uncertainty.
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Pattern theory — The mathematics

PatternTheory

The Stochastic Analysis of Real-World Signals

Pattern Theory

From Representation to Inference

David Mumford * Agnés Desolneux
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Bayesian inference
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Probabilities: What are they?

Four possible interpretations:

1. Long-term frequencies
* Relative frequency of an event over time

3. Degree of belief (Bayesian probabilities)
* Subjective beliefs about events/hypothesis/facts
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Degree of belief: An example

Does a dentist’s patient have a cavity?

P(cavity) = 0.1
P(cavity|toothache) = 0.8
P(cavity|toothache, gum problems) = 0.4

Observation: Patient either has a cavity or does not!

 Thereis no 80% cavity

* Having a cavity does not depend on whether the patient has a toothache or gum problems
* Does not depend on what the dentist believes

Statements summarize the dentist’s knowledge (model) about the patient

15
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Bayesian probabilities for image analysis

Bayesian probabilities make sense where frequentists interpretations are not applicable!

* No amount of repetition makes organ
boundaries sharper
— Uncertainty is not due to random effect

 Still possible to use Bayesian inference.
— Build model of situation
— Qur believe how image was generated
— Add uncertainty where we are ignorant
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e Bayesian probabilities rely on a subjective perspective:
* Probabilities express our current knowledge.
e Can change when we learn or see more

* More data -> more certain about our result.

Subjectivity: There is no single, real underlying distribution. A probability distribution
expresses our knowledge — It is different in different situations and for different
observers since they have different knowledge.

17
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Rules for updating beliefs

Given: Joint distribution

Pxy(X,¥)

Marginal Conditional

Distribution of certain points only Distribution of points conditioned on known
values of others
Px,y (X, Y)

py(¥)

! ]

Product rule:
px,y(xr y) = px|y(x|y)py(y)

pe(2) = [ pey( iy Py (xly) =
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From the product rule:
Dy V)Dxiy (X|Y) = Dy (6, ) = Dk () Dy 1 (¥[X)

Bayes rule follows by dividing by p;, ()

Px (x)py|x (ylx)
Py (¥)

px|y(x|y) —

Since py (1) = [ Py (X, ¥)dy = | px(0)py) (|x)dy we get

px(x)py|x (ylx)
fpx(x)py|x(Y|x)dx

px|y(x|y) —
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Bayes inference - Terminology

Posterior

N

Prior
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N/

p(x)p(y|x)

| p()p(ylx)dx
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Likelihood

Marginal Likelihood

GRAVIS
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Updating beliefs

Given
* prior knowledge p(x) - (dentists knowledge about cavities)
* Observation p(y|x) - (probability of toothache given cavity)

We can compute posterior probability: (probability of cavity given toothache)

. _ pp(Y|x)
P(%Y) = Ftoplyn)as

Once distributions are fixed, updating beliefs follows laws of probability and is
not subjective!
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Modelling example

/

Model
Shape distribution

Prior belief

p(X)

m—)

/ P(V1, e YnlX) / p(X Y1, ) Yn)
Observation Posterior
Point location (uncertain) Shape distribution

More knowledge

consistent with observation

Posterior belief

GRAVIS
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Belief update

* Observation y; is noisy measurements of
(unobserved) surface point: y; = x; + €

* Distribution of X after observing v, ..., V: imate
P(X|y1 .. yn) Vi =X;+ €
* Posterior
P(yl' 'lex)P(X)
P(X|y;, ...yn) =

yN:XN+€

Py, yn)
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Belief update (lIl)

e Each update changes our belief

e Data can be processed sequentially

» Posterior becomes prior in next step

" (Xp(y1lX)
_ pA)py1
p(X|y,) = O
S (X [y vs) _pOpXp 21y X) _ pXly)p(Xlys, v2)
v PODP() 2 (2)

% o 00
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Joint-Factorisation in Bayesian Inference

Joint Likelihood Prior

P(X,Y) = P(Y|X)P(X)

* Likelihood x prior: factorization is more flexible than full joint
e Prior: distribution of core model without observation
e Likelihood: describes how observations are distributed

* May be related to model variables in very complicated ways
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General Bayesian Inference

* Observation of additional variables
Measurement Y

« Common case, e.g. image intensities, surrogate measures (size, sex, ...)

* Coupled to core model via likelihood factorization

e General Bayesian inference case:
e Distribution of data ¥

e Parameters 6
P(Y|0)P(0) B P(Y|0)P(0)

P(Y)  [P(|9)P(6)dO

PO|Y) =

Parameterized
model M(8)




UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS

Summary: Bayesian Inference

Belief: formal expression of an observer’s knowledge
e Subjective state of knowledge about the world

Beliefs are expressed as probability distributions
* Formally not arbitrary: Consistency requires laws of probability

Observations change knowledge and thus beliefs

Bayesian inference formally updates prior beliefs to posteriors
e Conditional Probability
* Integration of observation via likelihood x prior factorization

P(Y|0)P(6)
| P(6)P(Y|0)

P(OIY) =

27
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Analysis by synthesis in 5 simple steps

1. Decide which parameters you would like to model
* Parameters are your representation of the world

* state of the world is determined by parameters 8 = (64, ..., 6,,)

Everything that is not represented by the parameters cannot be explained by the model

Shape reconstruction example:

Parameters: Shape parameters (KL-Expansion coefficients) of GP
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Analysis by synthesis in 5 simple steps

2. Define prior distribution: p(8) = p(684, ..., 0,,)
e Qur believe about the “state of the world” Prior p(0)

Subjective and part of our modelling

Shape reconstruction example:

Prior Distribution: Multivariate normal 8 ~ N(0, I)
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Analysis by synthesis in 5 simple steps

3. Define a synthesis function @(0) 6.1 xy 1

* generates/synthesize the data given the »(0)
“state of the world”

* (@ can be deterministic or stochastic

v
v

Shape reconstruction example:

Synthesis function:
* Warp of reference surface with deformation vector field u

where u[8](x) = X; 0;4;¢; ()




UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS

Analysis by synthesis in 5 simple steps

4. Define likelihood function: { Comparison p(D|6) |

* Define a probabilistic model ).
p(016) = p(DIg(6)) \\

* How likely is D given our synthesized ¢ (8) |] |

* Includes stochastic factors on the data, such as noise ;( ‘)

* Needs to include limitations of model and synthesis
function

Shape reconstruction example:

Likelihood function for target point position y(x) € I'y € R3:
p(y(x)]8,x) = N(x + u[8](x),5?)
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Analysis by synthesis in 5 simple steps

5. Observe data and update the posterior

6 6
610y = POPOIO

| p(8)p(D|6)d6

Purely conceptual: ;
* |Independent of algorithmic

‘-\

implementation | PM ,
| |

, |

*

—eametersf@l  Synthesis
— (0)

Comparison: p(D [8) |

33
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Analysis by synthesis in 5 simple steps

5a. Implement numerical procedure to do actual inference

Possibilities

1. Computing MAP solution
 No uncertainty — leaves out information

. . Local

2. Analytic Solution Maxima @
e Often not practical

3. Posterior approximation
e Core of this course

MAP Solution

Shape reconstruction example:

GP Regression (Analytic posterior)
MAP — Solution (ICP)
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