

## Probabilistic Shape Modelling - Part 2. Fitting probabilistic models -

14. April 2020

Marcel Lüthi

Graphics and Vision Research Group  
Department of Mathematics and Computer Science  
University of Basel

# Probabilistic Shape Modelling

Online Course / Futurelearn



Shape Modelling

Next lectures

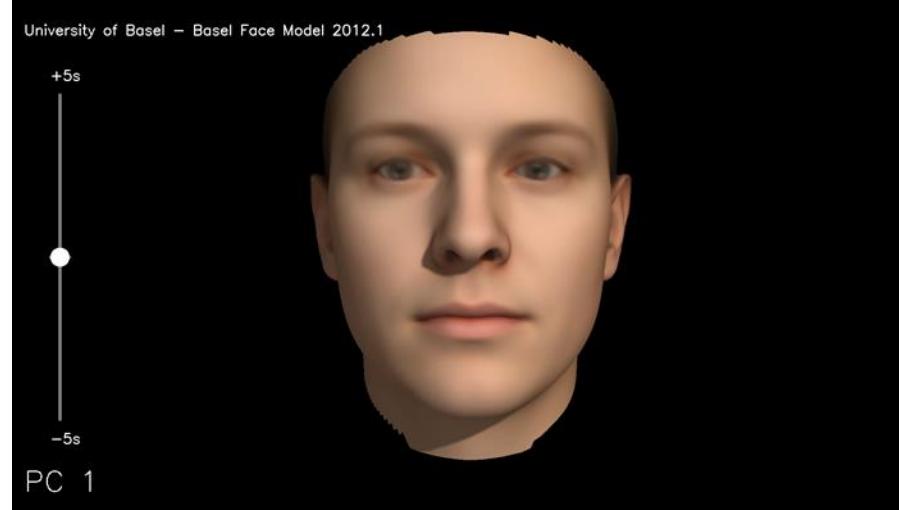


Model fitting

Scalismo

# Probabilistic Shape Modelling

Online Course / Futurelearn



Shape Modelling

Next lectures



by courtesy of keystone

Model fitting

Scalismo

# Programme

|           | Lecture (14.15 – 16.00)                                                                                                                                |                                                                                                                                  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 14. April | <ul style="list-style-type: none"><li>• Analysis by Synthesis</li><li>• Introduction to Bayesian modelling</li></ul>                                   |                                                                                                                                  |
| 21. April | <ul style="list-style-type: none"><li>• Markov Chain Monte Carlo – Concepts and main ideas</li><li>• Applications to Shape modelling</li></ul>         | <ul style="list-style-type: none"><li>• Introduction to exercise 3 and project 2</li><li>• Working on exercise sheet 3</li></ul> |
| 28. April | <ul style="list-style-type: none"><li>• MCMC: Filtering, diagnostics and logging</li><li>• Likelihood Functions for shape and image analysis</li></ul> | <ul style="list-style-type: none"><li>• Working on exercise sheet 3</li></ul>                                                    |
| 5. Mai    | <ul style="list-style-type: none"><li>• Metropolis – Hastings. Why does it work?</li></ul>                                                             | <ul style="list-style-type: none"><li>• Discussion: Exercise sheet 3</li></ul>                                                   |
| 12. Mai   | <ul style="list-style-type: none"><li>• Face Image Analysis</li></ul>                                                                                  | <ul style="list-style-type: none"><li>• Working on Project 2</li></ul>                                                           |
| 19. Mai   | <ul style="list-style-type: none"><li>• Gaussian processes</li><li>• More insights / connections to other methods</li></ul>                            | <ul style="list-style-type: none"><li>• Working on Project 2</li></ul>                                                           |
| 26. Mai   | <ul style="list-style-type: none"><li>• Summary</li></ul>                                                                                              |                                                                                                                                  |

# Administrative issues

## Exam

- Will be changed to oral exam due to Covid-19
- Date remains the same (2. Juli 2020)

## Project 2

- You may regroup if you ended up alone or unhappy in a group
- Project introduction: 21. April

## Lectures

- Lectures on Tuesdays, 14:15 – 16:00
- Exercises, questions and discussions, Tuesday's 16:15-18:00

# Outline

## Analysis by synthesis – Main ideas

- The conceptual framework we follow in this course

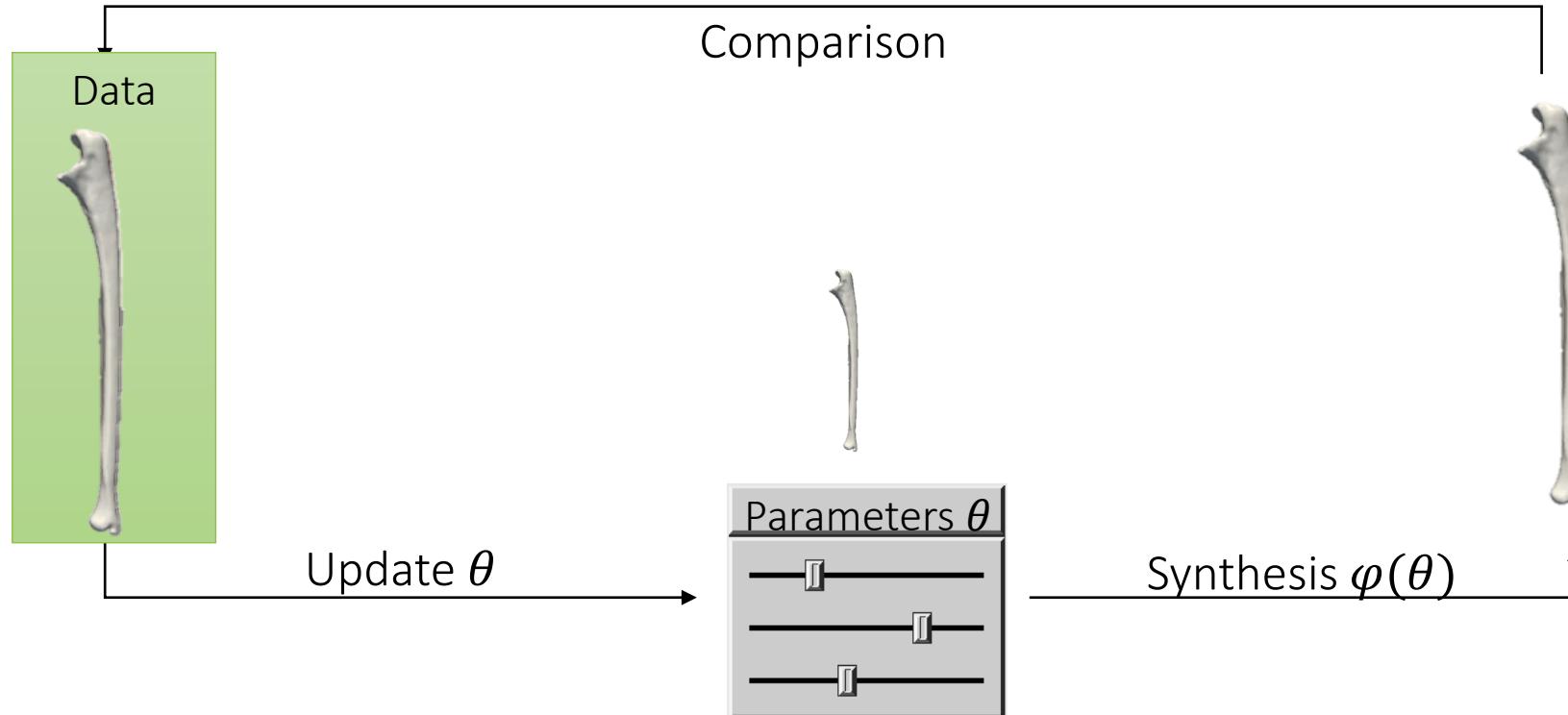
## Bayesian inference

- How we reason in this course

## Analysis by Synthesis in 5 (simple) steps

- A step by step guide to image analysis

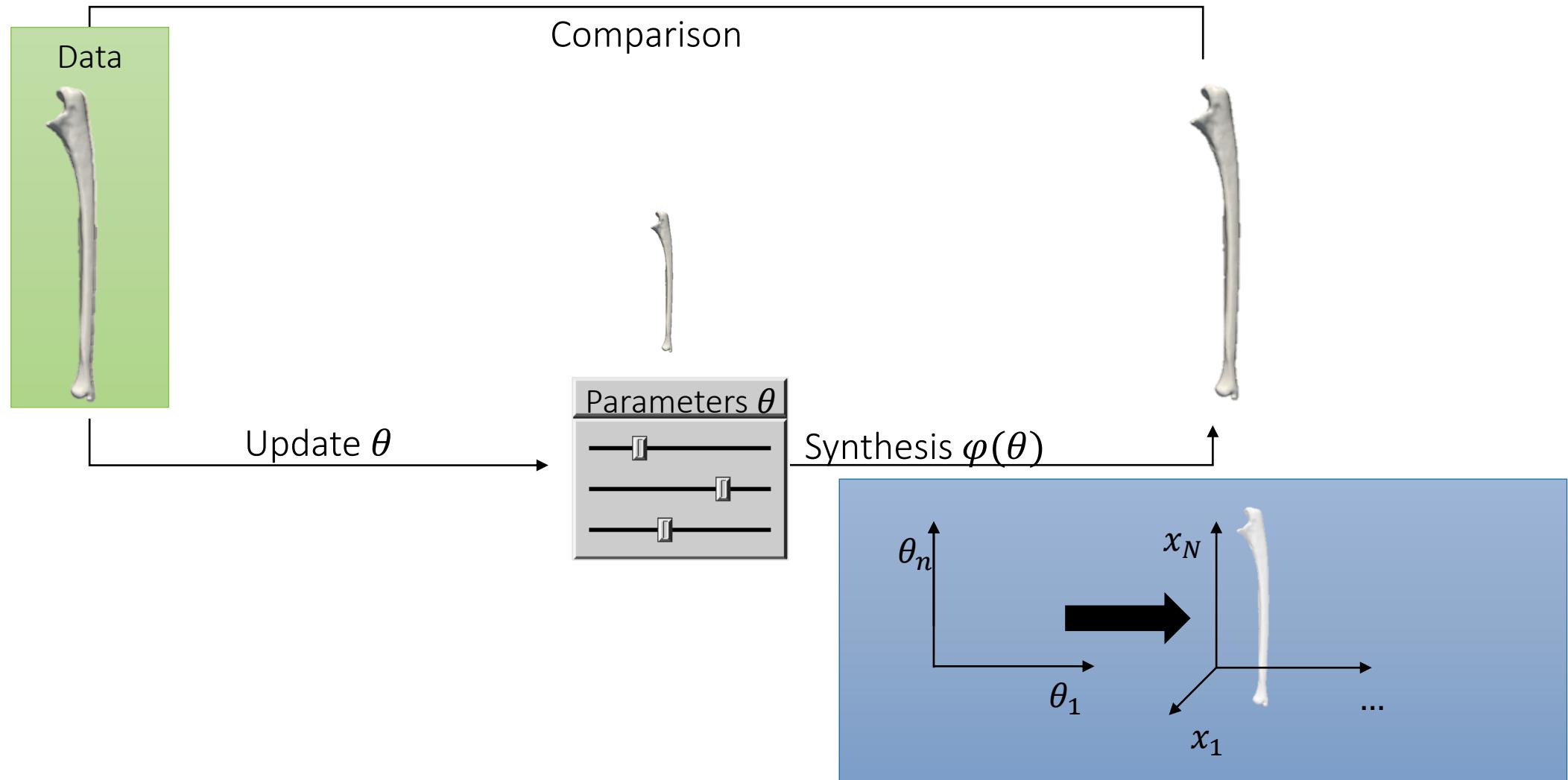
# Conceptual Basis: Analysis by synthesis



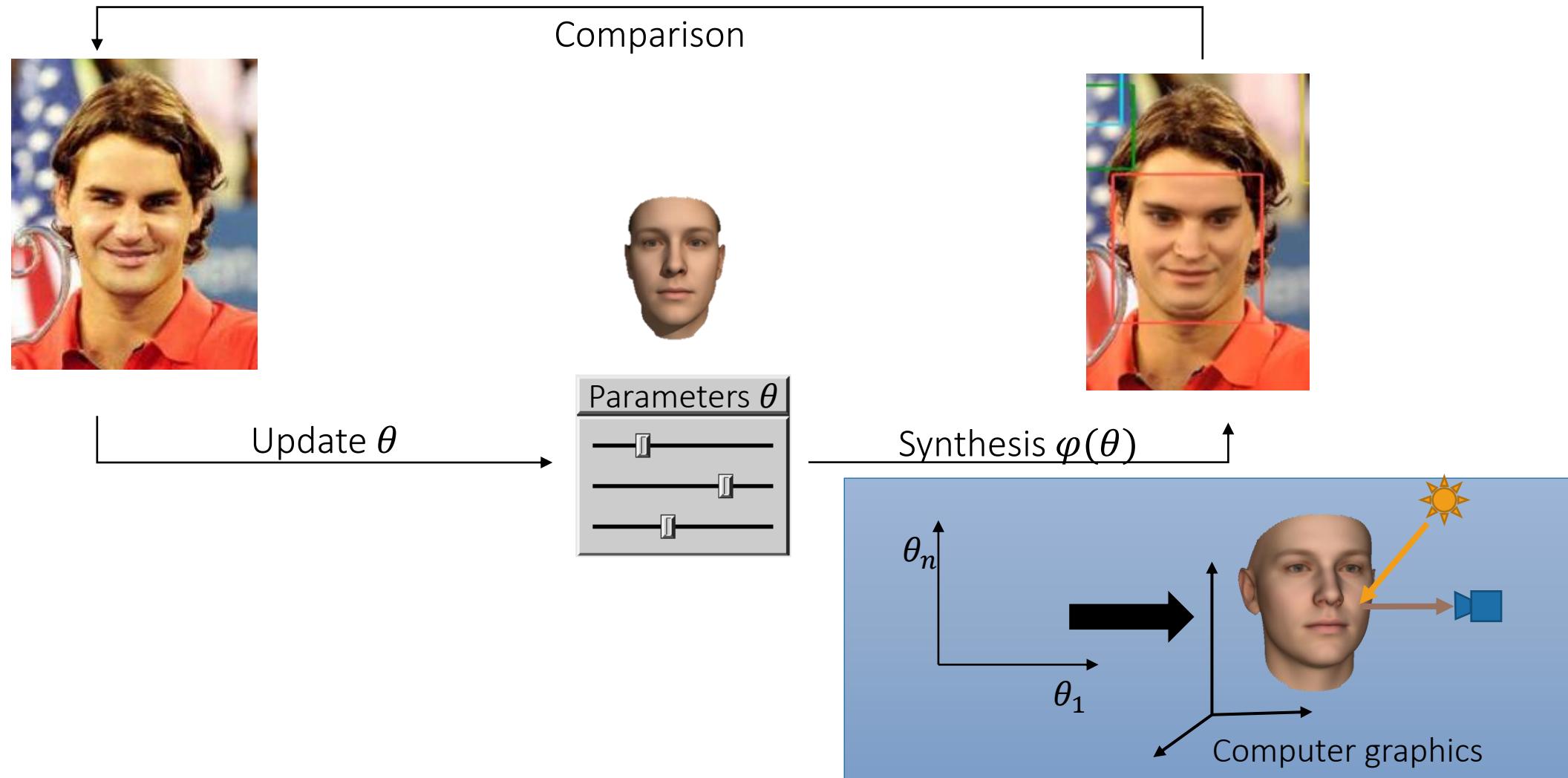
We analyze *our* world by synthesizing relevant aspects of it using *our* model

- Once synthesis produces observed data, we have an explanation of the data
- Allows reasoning about unseen parts

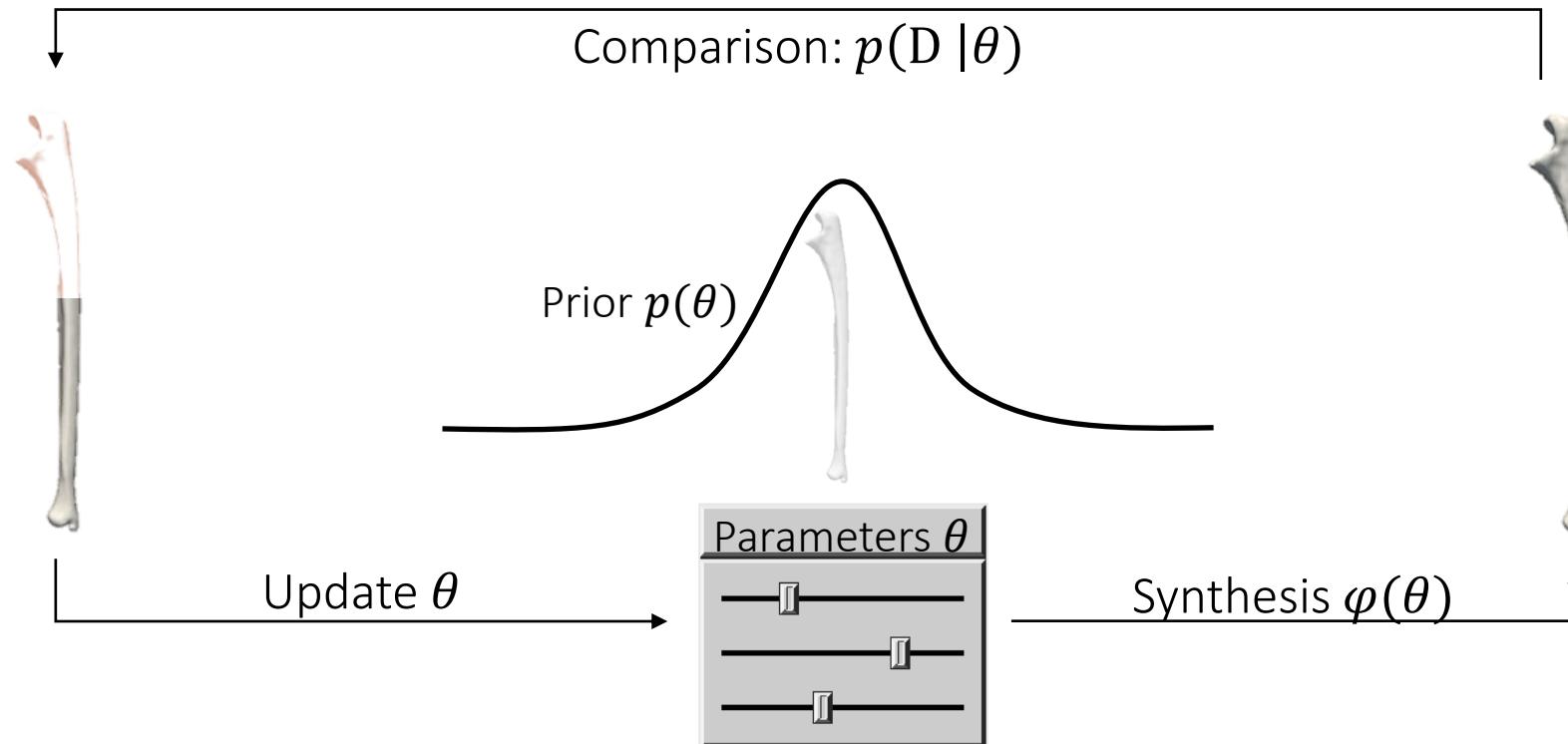
# Conceptual Basis: Analysis by synthesis



# Conceptual Basis: Analysis by synthesis



# Mathematical Framework: Bayesian inference



Principled way of dealing with uncertainty.

# The course in context

## Pattern Theory



Ulf Grenander

Computational  
anatomy

Natural language

Text

Music

Speech

Medical Images

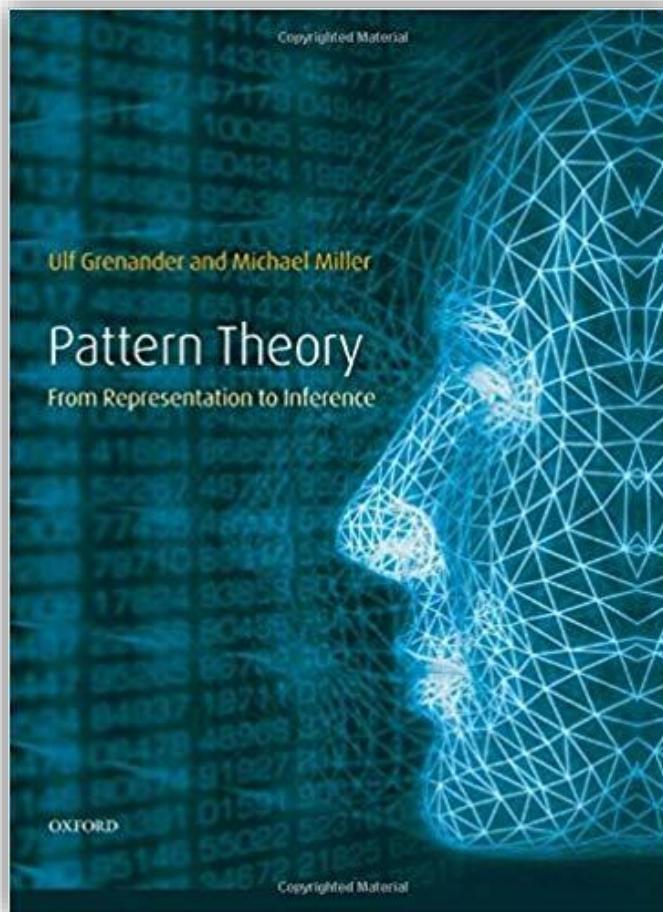
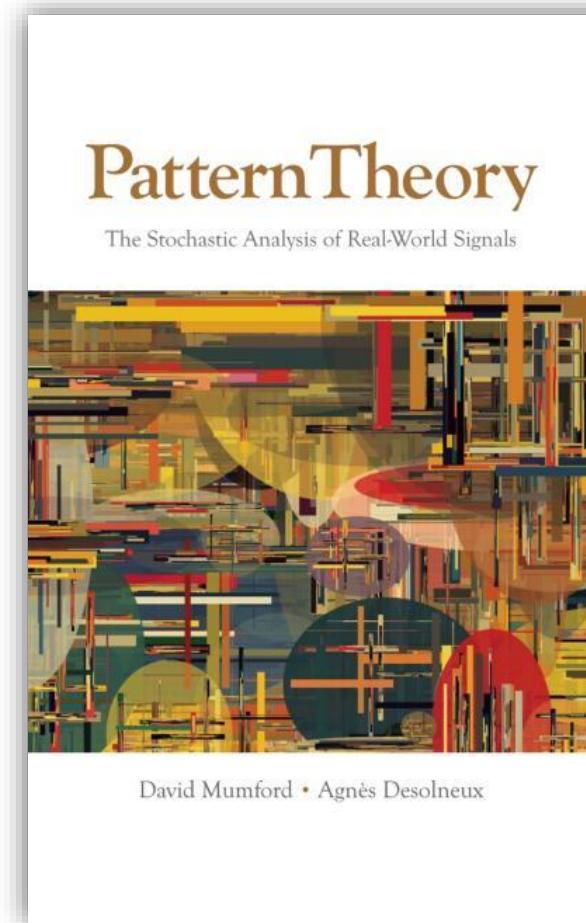
Fotos

Research at  
Gravis



This course

# Pattern theory – The mathematics



# Bayesian inference

# Probabilities: What are they?

Four possible interpretations:

1. Long-term frequencies
  - Relative frequency of an event over time
2. Physical tendencies (propensities)
  - Arguments about a physical situation (causes of relative frequencies)
3. Degree of belief (Bayesian probabilities)
  - Subjective beliefs about events/hypothesis/facts
4. Logic
  - Degree of logical support for a particular hypothesis

# Degree of belief: An example

Does a dentist's patient have a cavity?

$$P(\text{cavity}) = 0.1$$

$$P(\text{cavity}|\text{toothache}) = 0.8$$

$$P(\text{cavity}|\text{toothache, gum problems}) = 0.4$$

**Observation: Patient either has a cavity or does not!**

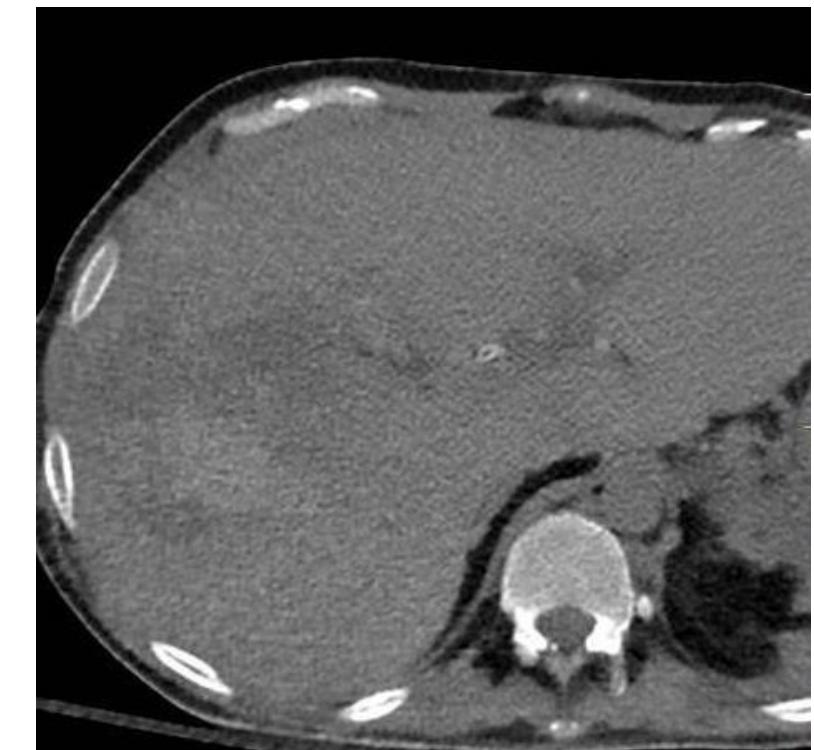
- There is no 80% cavity
- Having a cavity does not depend on whether the patient has a toothache or gum problems
- Does not depend on what the dentist believes

*Statements summarize **the dentist's knowledge (model)** about the patient*

# Bayesian probabilities for image analysis

*Bayesian probabilities make sense where frequentists interpretations are not applicable!*

- No amount of repetition makes organ boundaries sharper
  - Uncertainty is not due to random effect
- Still possible to use Bayesian inference.
  - Build model of situation
    - Our belief how image was generated
  - Add uncertainty where we are ignorant



# Subjectivity

- Bayesian probabilities rely on a *subjective* perspective:
  - Probabilities express our *current knowledge*.
  - Can *change* when we learn or see more
  - More data -> more *certain* about our result.

*Subjectivity*: There is no single, real underlying distribution. A probability distribution expresses our knowledge – It is different in different situations and for different observers since they have different knowledge.

# Rules for updating beliefs

Given: Joint distribution

$$p_{x,y}(x, y)$$

Marginal

Distribution of certain points only

$$p_x(x) = \int_y p_{x,y}(x, y) dy$$

Conditional

Distribution of points conditioned on *known* values of others

$$p_{x|y}(x|y) = \frac{p_{x,y}(x, y)}{p_y(y)}$$



Product rule:

$$p_{x,y}(x, y) = p_{x|y}(x|y)p_y(y)$$

# Bayes rule

From the product rule:

$$p_y(y)p_{x|y}(x|y) = p_{x,y}(x, y) = p_x(x)p_{y|x}(y|x)$$

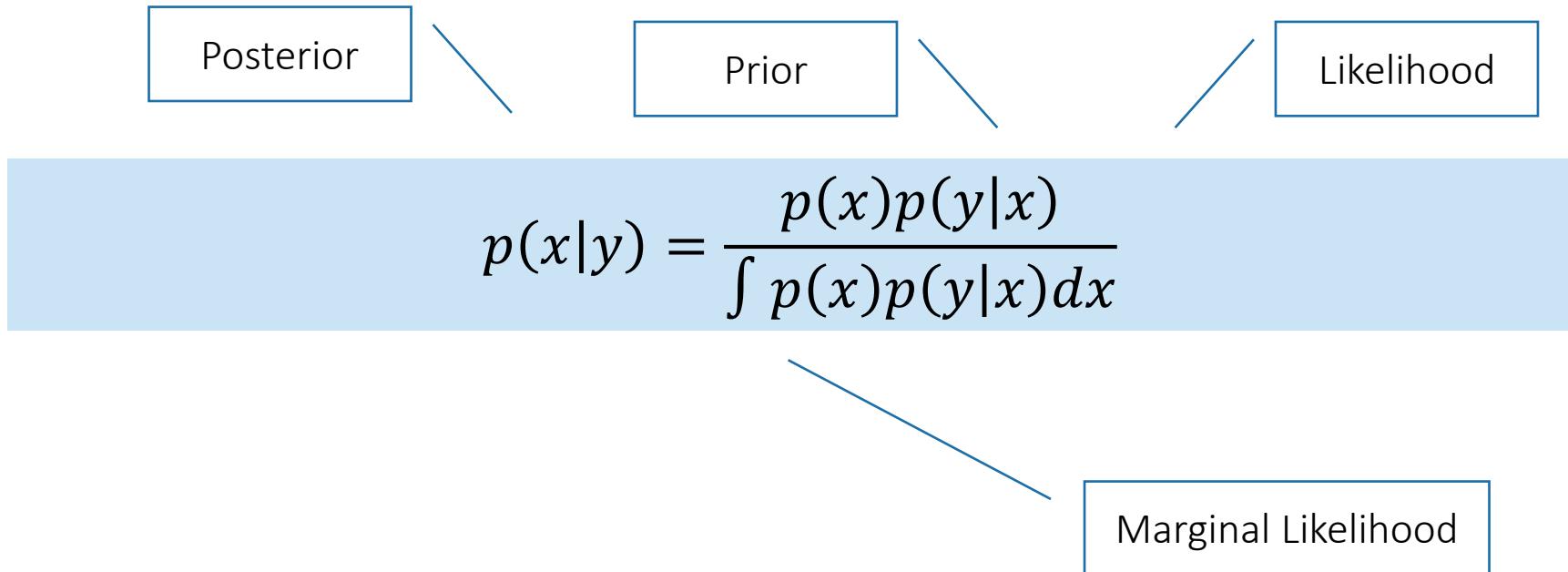
Bayes rule follows by dividing by  $p_y(y)$

$$p_{x|y}(x|y) = \frac{p_x(x)p_{y|x}(y|x)}{p_y(y)}$$

Since  $p_y(y) = \int p_{x,y}(x, y)dx = \int p_x(x)p_{y|x}(y|x)dx$  we get

$$p_{x|y}(x|y) = \frac{p_x(x)p_{y|x}(y|x)}{\int p_x(x)p_{y|x}(y|x)dx}$$

# Bayes inference - Terminology



# Updating beliefs

Given

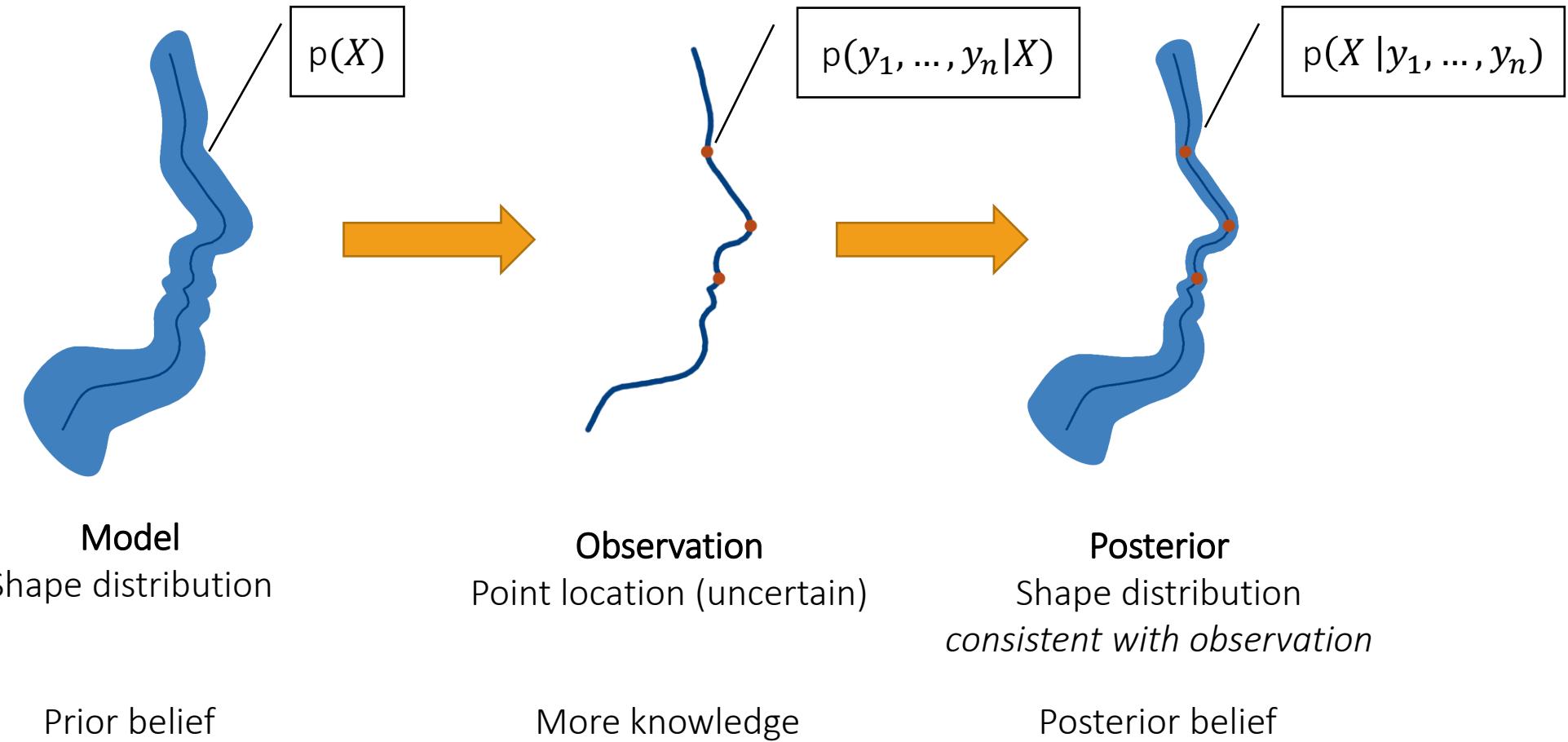
- prior knowledge  $p(x)$ 
  - (dentists knowledge about cavities)
- Observation  $p(y|x)$ 
  - (probability of toothache given cavity)

We can compute posterior probability: (probability of cavity given toothache)

$$\bullet \quad p(x, y) = \frac{p(x)p(y|x)}{\int p(x)p(y|x)dx}$$

*Once distributions are fixed, updating beliefs follows laws of probability and is not subjective!*

# Modelling example



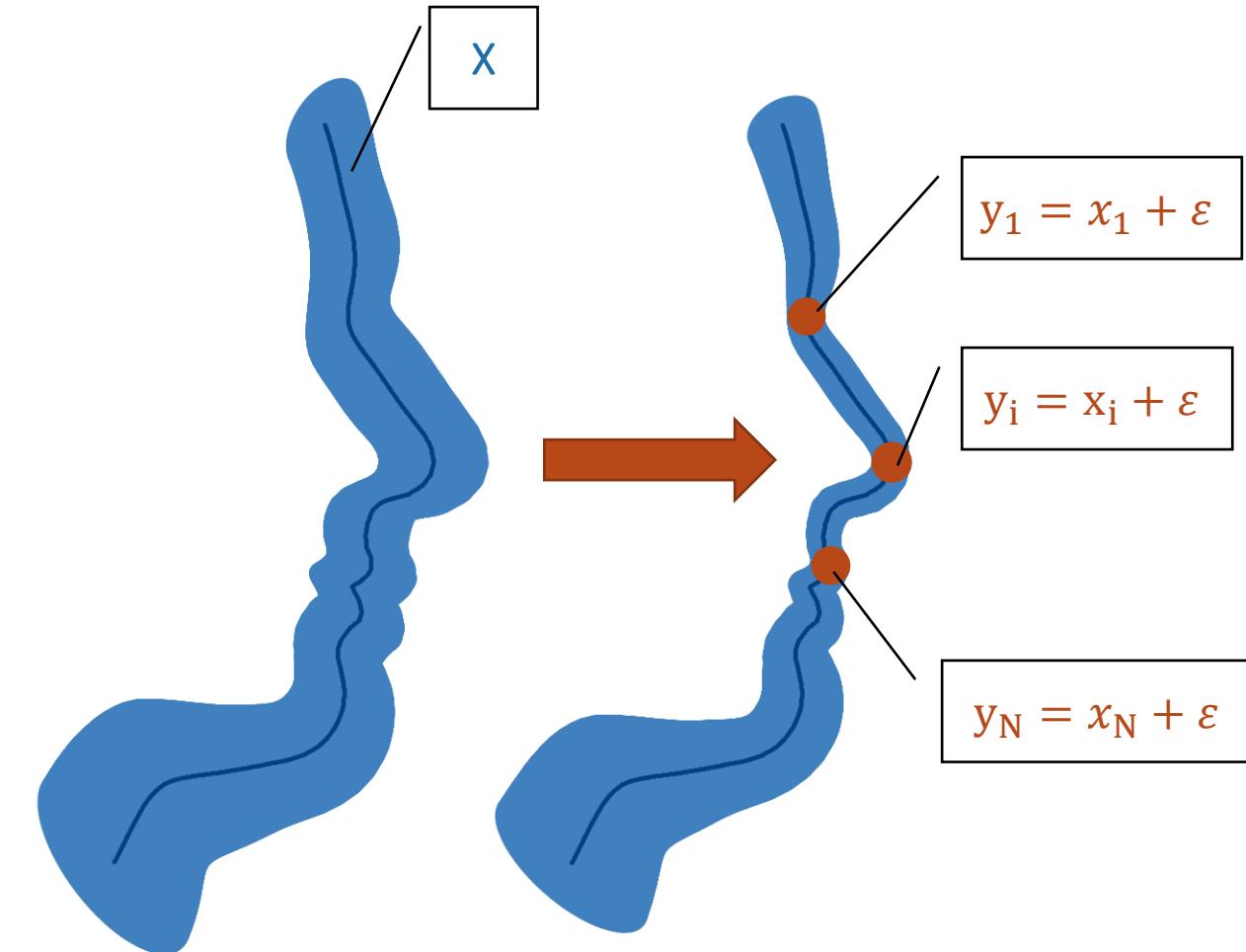
# Belief update

- Observation  $y_i$  is noisy measurements of (unobserved) surface point:  $y_i = x_i + \epsilon$
- Distribution of  $\mathbf{X}$  after *observing*  $y_1, \dots, y_N$ :

$$P(\mathbf{X} | y_1 \dots y_N)$$

- Posterior

$$P(\mathbf{X} | y_1 \dots y_N) = \frac{P(y_1, \dots, y_N | \mathbf{X}) P(\mathbf{X})}{P(y_1, \dots, y_N)}$$



# Belief update (II)

- Each update changes our belief
- Data can be processed sequentially
  - Posterior becomes prior in next step

$$\begin{aligned} & p(X) \\ \rightarrow & p(X|y_1) = \frac{p(X)p(y_1|X)}{p(y_1)} \\ \rightarrow & p(X|y_1, y_2) = \frac{p(X)p(y_1|X)p(y_2|y_1, X)}{p(y_1)p(y_2)} = \frac{p(X|y_1)p(X|y_1, y_2)}{p(y_2)} \\ \rightarrow & \dots \end{aligned}$$

# Joint-Factorisation in Bayesian Inference

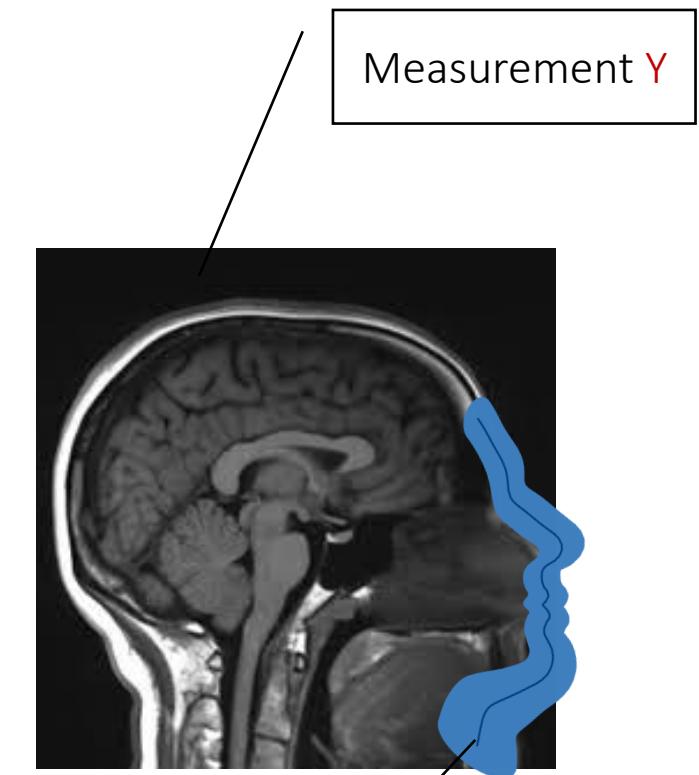
$$\begin{array}{ccc} \text{Joint} & \text{Likelihood} & \text{Prior} \\ P(X, Y) = P(Y|X)P(X) \end{array}$$

- *Likelihood x prior*: factorization is more flexible than full joint
  - Prior: distribution of core model *without observation*
  - Likelihood: describes how observations are distributed
    - May be related to model variables in very complicated ways

# General Bayesian Inference

- Observation of *additional* variables
  - Common case, e.g. image intensities, surrogate measures (size, sex, ...)
  - Coupled to core model via likelihood factorization
- General Bayesian inference case:
  - Distribution of data  $\mathbf{Y}$
  - Parameters  $\boldsymbol{\theta}$

$$P(\boldsymbol{\theta}|\mathbf{Y}) = \frac{P(\mathbf{Y}|\boldsymbol{\theta})P(\boldsymbol{\theta})}{P(\mathbf{Y})} = \frac{P(\mathbf{Y}|\boldsymbol{\theta})P(\boldsymbol{\theta})}{\int P(\mathbf{Y}|\boldsymbol{\theta})P(\boldsymbol{\theta})d\boldsymbol{\theta}}$$



Parameterized  
model  $\mathbf{M}(\boldsymbol{\theta})$

Measurement  $\mathbf{Y}$

# Summary: Bayesian Inference

- *Belief*: formal expression of an *observer's knowledge*
  - Subjective state of knowledge about the world
- Beliefs are expressed as *probability* distributions
  - Formally not arbitrary: Consistency requires laws of probability
- *Observations* change knowledge and thus beliefs
- Bayesian inference formally updates *prior beliefs* to *posteriors*
  - Conditional Probability
  - Integration of observation via *likelihood*  $\times$  *prior* factorization

$$P(\theta|Y) = \frac{P(Y|\theta)P(\theta)}{\int P(\theta)P(Y|\theta)}$$

# Analysis by Synthesis in 5 (simple) steps

# Analysis by synthesis in 5 simple steps

## 1. Decide which parameters you would like to model

- Parameters are your representation of the world
- state of the world is determined by parameters  $\theta = (\theta_1, \dots, \theta_n)$



*Everything that is not represented by the parameters cannot be explained by the model*

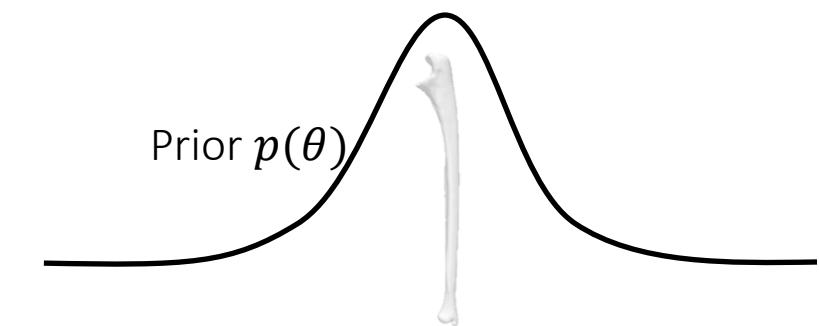
Shape reconstruction example:

Parameters: Shape parameters (KL-Expansion coefficients) of GP

# Analysis by synthesis in 5 simple steps

2. Define prior distribution:  $p(\theta) = p(\theta_1, \dots, \theta_n)$ 
  - Our belief about the “state of the world”

*Subjective and part of our modelling*



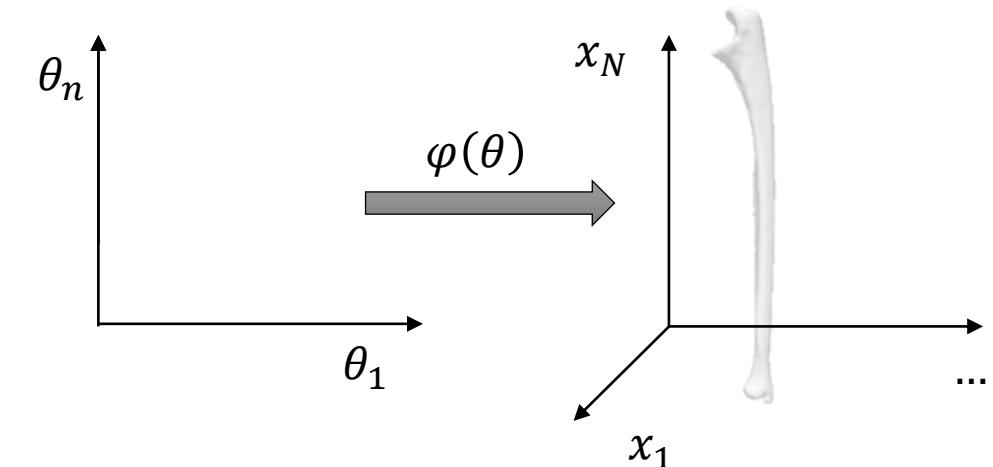
Shape reconstruction example:

Prior Distribution: Multivariate normal  $\theta \sim N(0, I)$

# Analysis by synthesis in 5 simple steps

## 3. Define a synthesis function $\varphi(\theta)$

- generates/synthesize the data given the “state of the world”
- $\varphi$  can be deterministic or stochastic



Shape reconstruction example:

Synthesis function:

- Warp of reference surface with deformation vector field  $u$  where  $u[\theta](x) = \sum_i \theta_i \lambda_i \phi_i(x)$

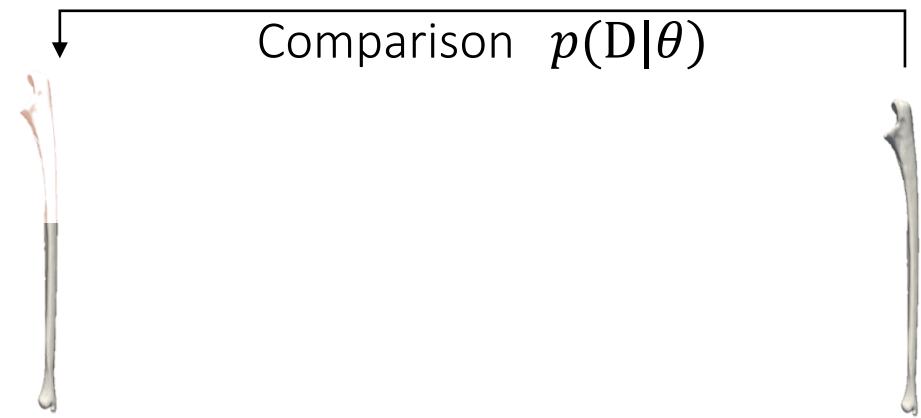
# Analysis by synthesis in 5 simple steps

## 4. Define likelihood function:

- Define a probabilistic model

$$p(D|\theta) = p(D|\varphi(\theta))$$

- How likely is  $D$  given our synthesized  $\varphi(\theta)$
- Includes stochastic factors on the data, such as noise
- Needs to include limitations of model and synthesis function



### Shape reconstruction example:

Likelihood function for target point position  $y(x) \in \Gamma_T \subset \mathbb{R}^3$ :

$$p(y(x)|\theta, x) = N(x + u[\theta](x), \sigma^2)$$

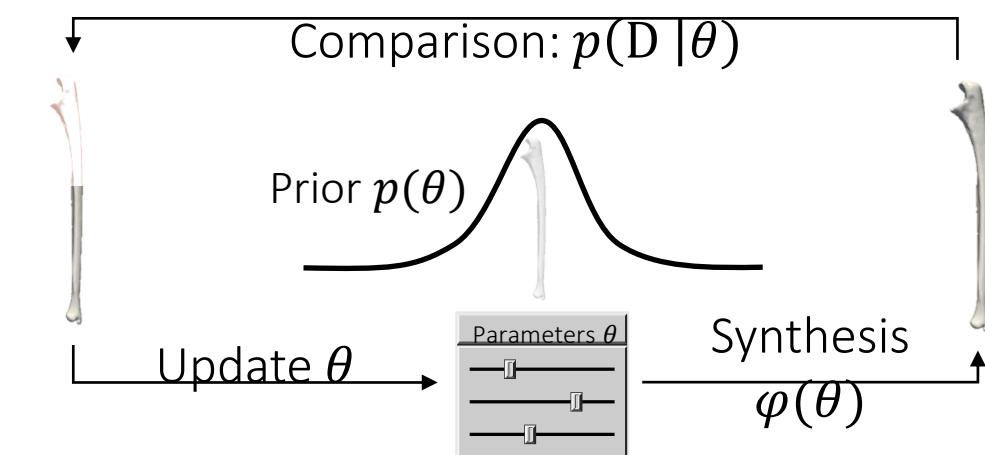
# Analysis by synthesis in 5 simple steps

5. Observe data and update the posterior

$$p(\theta|D) = \frac{p(\theta)p(D|\theta)}{\int p(\theta)p(D|\theta)d\theta}$$

Purely conceptual:

- Independent of algorithmic implementation



# Analysis by synthesis in 5 simple steps

5a. Implement numerical procedure to do actual inference

## Possibilities

1. Computing MAP solution
  - No uncertainty – leaves out information
2. Analytic Solution
  - Often not practical
3. Posterior approximation
  - Core of this course

Shape reconstruction example:

GP Regression (Analytic posterior)  
MAP – Solution (ICP)

