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Programme
Lecture (14.15 – 16.00)

14. April • Analysis by Synthesis
• Introduction to Bayesian modelling

21. April • Markov Chain Monte Carlo – Concepts and main ideas
Applications to Shape modelling

• Introduction to exercise 3 and project 2
• Working on exercise sheet 3

28. April • MCMC: Filtering, diagnostics and logging
• Likelihood Functions for shape and image analysis

• Working on exercise sheet 3

5. Mai • Metropolis – Hastings. Why does it work? • Discussion: Exercise sheet 3

12. Mai • Face Image Analysis • Working on Project 2

19. Mai • Gaussian processes 
More insights / connections to other methods

• Working on Project 2

26. Mai • Summary
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Administrative issues

Exam

• Will be changed to oral exam due to Covid-19

• Date remains the same (2. Juli 2020)

Project 2

• You may regroup if you ended up alone or unhappy in a group

• Project introduction: 21. April

Lectures 

• Lectures on Tuesdays, 14:15 – 16:00

• Exercises, questions and discussions, Tuesday’s 16:15-18:00
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Outline 

Analysis by synthesis – Main ideas

• The conceptual framework we follow in this course

Bayesian inference

• How we reason in this course

Analysis by Synthesis in 5 (simple) steps

• A step by step guide to image analysis
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Conceptual Basis: Analysis by synthesis

Parameters 𝜃

Comparison

Update 𝜃 Synthesis 𝜑(𝜃)

We analyze our world by synthesizing relevant aspects of it using our model
• Once synthesis produces observed data, we have an explanation of the data
• Allows reasoning about unseen parts

Data
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Conceptual Basis: Analysis by synthesis

Parameters 𝜃

Comparison

Update 𝜃 Synthesis 𝜑(𝜃)

𝑥1

…

𝑥𝑁

𝜃1

𝜃𝑛

Data
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Conceptual Basis: Analysis by synthesis

Parameters 𝜃

Comparison

Update 𝜃 Synthesis 𝜑(𝜃)

Computer graphics

𝜃1

𝜃𝑛
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Mathematical Framework: Bayesian inference

Principled way of dealing with uncertainty.

Parameters 𝜃

Comparison: 𝑝 D 𝜃)

Update 𝜃 Synthesis 𝜑(𝜃)

Prior 𝑝(𝜃)
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Pattern theory – The mathematics
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Bayesian inference
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Probabilities: What are they?

Four possible interpretations:

1. Long-term frequencies
• Relative frequency of an event over time

2. Physical tendencies (propensities)
• Arguments about a physical situation (causes of relative frequencies)

3. Degree of belief (Bayesian probabilities)
• Subjective beliefs about events/hypothesis/facts

4. Logic
• Degree of logical support for a particular hypothesis
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Degree of belief: An example

Does a dentist’s patient have a cavity?

Observation: Patient either has a cavity or does not!
• There is no 80% cavity
• Having a cavity does not depend on whether the patient has a toothache or gum problems
• Does not depend on what the dentist believes

Statements summarize the dentist’s knowledge (model) about the patient

15

𝑃 cavity = 0.1

𝑃 cavity toothache) = 0.8

𝑃 cavity toothache, gum problems) = 0.4
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Bayesian probabilities for image analysis

Bayesian probabilities make sense where frequentists interpretations are not applicable!

• No amount of repetition makes organ
boundaries sharper
− Uncertainty is not due to random effect

• Still possible to use Bayesian inference.
− Build model of situation

− Our believe how image was generated
− Add uncertainty where we are ignorant
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Subjectivity

• Bayesian probabilities rely on a subjective perspective:

• Probabilities express our current knowledge. 

• Can change when we learn or see more

• More data -> more certain about our result.

17

Subjectivity: There is no single, real underlying distribution. A probability distribution
expresses our knowledge – It is different in different situations and for different
observers since they have different knowledge.
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Rules for updating beliefs

Marginal

Distribution of certain points only

Conditional

Distribution of points conditioned on known
values of others

Given: Joint distribution 

𝑝𝑥|𝑦 𝑥|𝑦 =
𝑝𝑥,𝑦(𝑥, 𝑦)

𝑝𝑦(𝑦)

𝑝𝑥(𝑥) = න
𝑦

𝑝𝑥,𝑦 𝑥, 𝑦 𝑑𝑦

𝑝𝑥,𝑦 𝑥, 𝑦

Product rule: 
𝑝𝑥,𝑦 𝑥, 𝑦 = 𝑝𝑥|𝑦 𝑥 𝑦 𝑝𝑦(𝑦)
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Bayes rule

From the product rule:
𝑝𝑦 𝑦 𝑝𝑥|𝑦 𝑥 𝑦 = 𝑝𝑥,𝑦 𝑥, 𝑦 = 𝑝𝑥 𝑥 𝑝𝑦|𝑥 𝑦 𝑥

Bayes rule follows by dividing by 𝑝𝑦 𝑦

𝑝𝑥|𝑦 𝑥 𝑦 =
𝑝𝑥 𝑥 𝑝𝑦|𝑥 𝑦 𝑥

𝑝𝑦(𝑦)

𝑝𝑥|𝑦 𝑥 𝑦 =
𝑝𝑥 𝑥 𝑝𝑦|𝑥 𝑦 𝑥

∫ 𝑝𝑥 𝑥 𝑝𝑦|𝑥 𝑦 𝑥 𝑑𝑥

Since 𝑝𝑦 𝑥 = ∫ 𝑝𝑥,𝑦 𝑥, 𝑦 𝑑𝑦 = ∫ 𝑝𝑥 𝑥 𝑝𝑦|𝑥 𝑦 𝑥 𝑑𝑦 we get
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Bayes inference - Terminology

𝑝 𝑥 𝑦 =
𝑝 𝑥 𝑝 𝑦 𝑥

∫ 𝑝 𝑥 𝑝 𝑦 𝑥 𝑑𝑥

Prior Likelihood

Marginal Likelihood

Posterior
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Updating beliefs

Given 
• prior knowledge 𝑝 𝑥 - (dentists knowledge about cavities)
• Observation 𝑝 𝑦 𝑥 - (probability of toothache given cavity)

We can compute posterior probability:  (probability of cavity given toothache)

• 𝑝(𝑥, 𝑦) =
𝑝 𝑥 𝑝 𝑦 𝑥

∫ 𝑝 𝑥 𝑝 𝑦 𝑥 𝑑𝑥

Once distributions are fixed, updating beliefs follows laws of probability and is
not subjective!
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Modelling example

Model
Shape distribution

Observation
Point location (uncertain)

Posterior
Shape distribution 

consistent with observation

Prior belief More knowledge Posterior belief

p(𝑋) p 𝑋 𝑦1, … , 𝑦𝑛)p(𝑦1, … , 𝑦𝑛|𝑋)
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Belief update

• Observation 𝑦𝑖 is noisy measurements of 
(unobserved) surface point: 𝑦𝑖 = 𝑥𝑖 + 𝜖

• Distribution of 𝑋 after observing 𝑦1, … , 𝑦𝑁:

𝑃 𝑋|𝑦1…𝑦𝑁

• Posterior

𝑃 𝑋|𝑦1…𝑦𝑁 =
𝑃 𝑦1, … , 𝑦𝑁|𝑋 𝑃 𝑋

𝑃 𝑦1, … , 𝑦𝑁

X

y1 = 𝑥1 + 𝜀

yi = xi + 𝜀

yN = 𝑥N + 𝜀
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Belief update (II)

• Each update changes our belief

• Data can be processed sequentially

• Posterior becomes prior in next step

𝑝 𝑋

→ 𝑝 𝑋 𝑦1 =
𝑝 𝑋 𝑝 𝑦1 𝑋

𝑝(𝑦1)

→ 𝑝 𝑋 𝑦1, 𝑦2 =
𝑝 𝑋 𝑝 𝑦1 𝑋 𝑝(𝑦2|𝑦1, 𝑋)

𝑝(𝑦1)𝑝(𝑦2)
=

𝑝 𝑋 𝑦1 𝑝 𝑋 𝑦1, 𝑦2
𝑝(𝑦2)

→ ⋯
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Joint-Factorisation in Bayesian Inference

𝑃 𝑋, 𝑌 = 𝑃 𝑌|𝑋 𝑃 𝑋

• Likelihood x prior: factorization is more flexible than full joint

• Prior: distribution of core model without observation

• Likelihood: describes how observations are distributed

• May be related to model variables in very complicated ways

PriorLikelihoodJoint
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General Bayesian Inference

• Observation of additional variables

• Common case, e.g. image intensities, surrogate measures (size, sex, …)

• Coupled to core model via likelihood factorization

• General Bayesian inference case: 

• Distribution of data 𝑌

• Parameters 𝜃

𝑃 𝜃|𝑌 =
𝑃 𝑌|𝜃 𝑃 𝜃

𝑃 𝑌
=

𝑃 𝑌|𝜃 𝑃 𝜃

∫ 𝑃 𝑌|𝜃 𝑃 𝜃 𝑑𝜃

Measurement Y

Parameterized
model M(𝜃)
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Summary: Bayesian Inference

• Belief: formal expression of an observer’s knowledge
• Subjective state of knowledge about the world

• Beliefs are expressed as probability distributions
• Formally not arbitrary: Consistency requires laws of probability

• Observations change knowledge and thus beliefs

• Bayesian inference formally updates prior beliefs to posteriors
• Conditional Probability

• Integration of observation via likelihood x prior factorization

𝑃 𝜃|𝑌 =
𝑃 𝑌|𝜃 𝑃 𝜃

∫ 𝑃 𝜃 𝑃(𝑌|𝜃)

27
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Analysis by Synthesis in 5 (simple) steps
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Analysis by synthesis in 5 simple steps

1. Decide which parameters you would like to model

• Parameters are your representation of the world

• state of the world is determined by parameters 𝜃 = (𝜃1, … , 𝜃𝑛)

Everything that is not represented by the parameters cannot be explained by the model

Shape reconstruction example:

Parameters: Shape parameters (KL-Expansion coefficients) of GP
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Analysis by synthesis in 5 simple steps

2. Define prior distribution: 𝑝 𝜃 = 𝑝(𝜃1, … , 𝜃𝑛)

• Our believe about the “state of the world”

Subjective and part of our modelling

Prior 𝑝(𝜃)

Shape reconstruction example:

Prior Distribution: Multivariate normal 𝜃 ∼ 𝑁 0, 𝐼
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Analysis by synthesis in 5 simple steps

3. Define a synthesis function 𝜑 𝜃

• generates/synthesize  the data given the 
“state of the world”

• 𝜑 can be deterministic or stochastic

𝑥1

…

𝑥𝑁

𝜃1

𝜃𝑛

𝜑 𝜃

Shape reconstruction example:

Synthesis function: 
• Warp of reference surface with deformation vector field 𝑢

where u 𝜃 (𝑥) = σ𝑖 𝜃𝑖𝜆𝑖𝜙𝑖(𝑥)
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Analysis by synthesis in 5 simple steps

4. Define likelihood function:

• Define a probabilistic model 
𝑝 D 𝜃 = p D 𝜑 𝜃

• How likely is 𝐷 given our synthesized 𝜑(𝜃)

• Includes stochastic factors on the data, such as noise

• Needs to include limitations of model and synthesis 
function

Comparison   𝑝(D|𝜃)

Shape reconstruction example:

Likelihood function for target point position 𝑦 𝑥 ∈ Γ𝑇 ⊂ ℝ3: 
𝑝 𝑦(𝑥) 𝜃, 𝑥 = 𝑁(𝑥 + 𝑢 𝜃 𝑥 , 𝜎2)
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Purely conceptual:
• Independent of algorithmic 

implementation

Analysis by synthesis in 5 simple steps

33

Parameters 𝜃

Comparison: 𝑝 D 𝜃)

Update 𝜃
Synthesis 
𝜑(𝜃)

Prior 𝑝(𝜃)

5. Observe data and update the posterior

𝑝 𝜃 D =
𝑝 𝜃 𝑝 D 𝜃

∫ 𝑝 𝜃 𝑝 𝐷 𝜃 𝑑𝜃
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Analysis by synthesis in 5 simple steps

5a. Implement numerical procedure to do actual inference

34

Possibilities
1. Computing MAP solution

• No uncertainty – leaves out information
2. Analytic Solution

• Often not practical
3. Posterior approximation

• Core of this course

MAP Solution

Local 
Maxima

Shape reconstruction example:

GP Regression (Analytic posterior)
MAP – Solution (ICP)


