
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Probabilistic Shape Modelling
Gaussian processes – Deeper insights

Marcel Lüthi



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Reminder: Gaussian process

A Gaussian process 𝑝 𝑢 = 𝐺𝑃 𝜇, 𝑘

is a probability distribution over functions 

𝑢 ∶ 𝒳 → ℝ𝑑

such that every finite restriction to function values  

𝑢𝑋 = 𝑢 𝑥1 , … , 𝑢 𝑥𝑛

is a multivariate normal distribution 

𝑝(𝑢𝑋) = 𝑁 𝜇𝑋, 𝑘𝑋𝑋 .
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ex

Reminder: Defining a Gaussian process

A Gaussian process 
𝐺𝑃 𝜇, 𝑘

is completely specified by a mean function 𝜇 and covariance 
function (or kernel) 𝑘.

• 𝜇:𝒳 → ℝ𝑑 defines how the average deformation looks like
• 𝑘:𝒳 ×𝒳 → ℝ𝑑×𝑑 defines how it can deviate from the mean
• Must be positive semi-definite
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Reminder: Positive definiteness

• A kernel 𝑘 ∶ 𝒳 × 𝒳 → ℝ𝑑×𝑑 is called positive semi-definite, 
if it gives rise to a positive-semi-definite kernel matrix 𝐾𝑋𝑋 with

𝐾𝑖𝑗 = 𝑘 𝑥𝑖 , 𝑥𝑗 , 𝑖, 𝑗 = 1,… , 𝑛

for any choice of 𝑛 and 𝑋 = (𝑥1, … , 𝑥𝑛)

• Exactly what is needed to define a valid covariance matrix!
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We can write  u ∼ 𝐺𝑃 𝜇, 𝑘

as 𝑢 ∼ 𝜇 + σ𝑖=1
∞ 𝛼𝑖 𝜆𝑖 𝜙𝑖 , 𝛼𝑖 ∼ 𝑁(0, 1)

• 𝜙𝑖 is the eigenfunction with associated eigenvalue 𝜆𝑖 of the 
linear operator 

[𝑇𝑘𝑢](𝑥) = ∫ 𝑘 𝑥, 𝑠 𝑢 𝑠 𝑑𝑠

Every sample is a linear combination of Eigenfunctions 𝜙𝑖

Reminder: The Karhunen-Loève expansion
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The space of samples



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Scalar-valued Gaussian processes

Vector-valued (this course)

• Samples u are deformation 
fields: 

𝑢:ℝ𝑛 → ℝ𝑑

Scalar-valued (more common)

• Samples f are real-valued 
functions

𝑓 ∶ ℝ𝑛 → ℝ
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Scalar-valued Gaussian processes

Vector-valued (this course)

𝑢 ∼ 𝐺𝑃 Ԧ𝜇, 𝒌
Ԧ𝜇: ℝ𝑛 → ℝ𝑑

𝒌:ℝ𝑛 × ℝ𝑛 → ℝ𝑑×𝑑

Scalar-valued (more common)

𝑓 ∼ 𝐺𝑃 𝜇, 𝑘
Ԧ𝜇: ℝ𝑛 → ℝ
𝑘:ℝ𝑛 × ℝ𝑛 → ℝ
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A connection 

Matrix-valued kernels can be reinterpreted as scalar-valued kernels:

Matrix valued kernel: 𝒌: ℝ𝒏 × ℝ𝒏 → ℝ𝒅×𝒅

Scalar valued kernel: 𝑘:ℝ𝒏 × 1. . 𝑑 × ℝ𝒏 × 1. . 𝑑 → ℝ

Bijection: Define 𝑘( 𝑥, 𝑖 , 𝑥′, 𝑗 = 𝒌 𝑥′, 𝑥′ 𝑖,𝑗

Everything we know about scalar-valued Gaussian processes can be 
transferred to the vector-valued case and vice versa.



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Simplified mathematical setting – Finite domains

𝑓

• We consider now a fixed, finite domain

• Functions become vectors

X
𝑥𝑁𝑥1
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Drawing samples

Sampling from 𝐺𝑃 𝜇, 𝑘 defined on a finite domain is done using the 
corresponding normal distribution  𝑁( Ԧ𝜇, K)

Algorithm for generating random sample Ԧs

1. Do an SVD: K = 𝑈Λ𝑈𝑇

2. Draw a normal vector Ԧ𝛼 ∼ 𝑁 0, 𝐼𝑛×𝑛

3. Compute Ԧ𝜇 + 𝑈Λ
1

2 Ԧ𝛼

11
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The space of samples

K = 𝑈Λ𝑈𝑇

⇒ 𝐾𝑈 = 𝑈Λ𝑈𝑇𝑈 = 𝑈Λ (right multiplication with U orthogonality of U)

⇒ 𝐾𝑈Λ−
1
2 = 𝑈Λ−

1
2 (right multiplication with Λ−

1
2)

12

For a sample Ԧs we have

Ԧ𝑠 = Ԧ𝜇 + 𝑈Λ−
1
2 Ԧ𝛼 = Ԧ𝜇 + K𝑈Λ−

1
2 Ԧ𝛼 = Ԧ𝜇 + K Ԧ𝛽

with 𝑤𝑖𝑡ℎ 𝛽 = 𝑈Λ−
1

2𝛼
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The space of samples

Ԧ𝑠 = Ԧ𝜇 + 𝑈Λ−
1
2 Ԧ𝛼 = Ԧ𝜇 + K Ԧ𝛽
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Writing matrix-multiplication as explicit sum

Ԧ𝑠 = Ԧ𝜇 +෍

𝑖

𝛼𝑖 𝜆𝑖 𝑈(𝑖,⋅)

Ԧ𝑠 = Ԧ𝜇 +෍

𝑖

𝐾 𝑖,⋅ 𝛽𝑖 = Ԧ𝜇 +෍

𝑖

𝐾 ⋅,𝑖 𝛽𝑖

Sample space consists of
• space of all linear combination of eigenvector of K  (KL-Expansion)
• space of all linear combinations of columns/rows of K  (RKHS-View)
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Example: Gaussian kernel

14

σ = 1

𝑘 𝑥, 𝑥′ = exp −
𝑥 − 𝑥′ 2

𝜎2
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Example: Gaussian kernel

15

𝑘 𝑥, 𝑥′ = exp −
𝑥 − 𝑥′ 2

𝜎2

σ = 3
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Multi-scale signals

• k x, x′ = exp − 𝑥 −
𝑥′

1

2

+ 0.1 exp − 𝑥 −
𝑥′

0.1

2

16
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Periodic kernels

• Define 𝑢 𝑥 =
cos 𝑥
sin(𝑥)

• 𝑘 𝑥, 𝑥′ = exp(−‖(𝑢 𝑥 − 𝑢 𝑥′ ‖2= exp(−4 sin2
‖𝑥 −𝑥′‖

𝜎2
)

17
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Symmetric kernels

• Enforce that f(x) = f(-x)

• 𝑘 𝑥, 𝑥′ = 𝑘 −𝑥, 𝑥′ + 𝑘(𝑥, 𝑥′)

18
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Changepoint kernels

• 𝑘 𝑥, 𝑥′ = 𝑠 𝑥 𝑘1 𝑥, 𝑥′ 𝑠 𝑥′ + (1 − 𝑠 𝑥 )𝑘2(𝑥, 𝑥
′)(1 − 𝑠 𝑥′ )

• s 𝑥 =
1

1+exp( −𝑥)

19
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f x = x

20

Combining existing functions

𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓 𝑥′
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Combining existing functions

𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓 𝑥′

f x = sin(x)
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{f1 x = x, f2 x = sin(x)}

22

𝑘 𝑥, 𝑥′ =෍

𝑖

𝑓𝑖 𝑥 𝑓𝑖(𝑥
′)

Combining existing functions
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Statistical models

Statistical shape models are linear combinations of example deformations 𝑢1, … 𝑢𝑛.

𝜇 𝑥 = 𝑢 𝑥 =
1

𝑛
෍

𝑖−1

𝑛

𝑢𝑖 (𝑥)

𝑘𝑆𝑀 𝑥, 𝑥′ =
1

𝑛 − 1
෍

𝑖

𝑛

(𝑢𝑖 𝑥 − 𝑢(𝑥)) 𝑢𝑖 𝑥′ − 𝑢(𝑥′)
𝑇

𝑢1 ∶ Ω → ℝ2 𝑢2 ∶ Ω → ℝ2

…

𝑢𝑛 ∶ Ω → ℝ2
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Gaussian process regression
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Gaussian process regression

• Given: observations {(𝑥1, 𝑦1), … , 𝑥𝑛, 𝑦𝑛 }

• Model: 𝑦𝑖 = 𝑓 𝑥𝑖 + 𝜖, 𝑓 ∼ 𝐺𝑃(𝜇, 𝑘)

• Goal: compute p(𝑦∗|𝑥∗, 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛)

25𝑥1 𝑥2 𝑥𝑛𝑥∗

𝑦∗
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Gaussian process regression

• Solution given by posterior process 𝐺𝑃 𝜇𝑝, 𝑘𝑝 with  

𝜇𝑝(𝑥∗) = 𝐾 𝑥∗, 𝑋 𝐾 𝑋, 𝑋 + 𝜎2𝐼 −1𝑦

𝑘𝑝 𝑥∗, 𝑥∗′ = 𝑘 𝑥∗, 𝑥∗′ − 𝐾 𝑥∗, 𝑋 𝐾 𝑋, 𝑋 + 𝜎2𝐼 −1𝐾 𝑋, 𝑥∗
′

• The covariance is independent of the value at the training points
• Structure of posterior GP determined solely by kernel.

• The most likely solution is a linear combination of kernels evaluated at the 
training points
• This is known as the Representer Theorem in machine learning.
• Structure of solution determined solely by kernel.

26
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Illustration: Representer theorem

27
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Examples
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Examples

29

• Gaussian kernel (𝜎 = 1)
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Examples
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• Gaussian kernel (𝜎 = 5)
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Examples
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• Periodic kernel
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Examples

32

• Changepoint kernel
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Examples

33

• Symmetric kernel



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Examples

34

• Linear kernel
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Summary – Gaussian processes

Sample Space of a GP. Two views

1. KL-Expansion:
• Global functions that best capture the global properties of the GP

2. Linear combinations of the kernels 𝑘(⋅, 𝑥), fixed at point 𝑥
• Apply the kernels locally at each point

• Properties of kernels - Regularity/smoothness directly transferred to samples

• In inference tasks, the structure of the kernel determines the prediction
• => Extremely important to model it well


