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Reminder: Gaussian process

A Gaussian process p(u) = GP(u, k)

is a probability distribution over functions
u: X - R4

such that every finite restriction to function values

Uy = (u(xl), ...,u(xn))

is @ multivariate normal distribution

p(uyx) = N(uyx, kxx).
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Reminder: Defining a Gaussian process

A Gaussian process

GP(u, k)
is completely specified by a mean function u and covariance
function (or kernel) k.

* u: X = R? defines how the average deformation looks like
e k: X X X - R**? defines how it can deviate from the mean
* Must be positive semi-definite
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Reminder: Positive definiteness

e Akernel k : XX X X » R%*4 js called positive semi-definite,
if it gives rise to a positive-semi-definite kernel matrix Ky with

Kij — k(xi,xj), l,] — 1, e,

for any choice of nand X = (x4, ..., x,)

* Exactly what is needed to define a valid covariance matrix!
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Reminder: The Karhunen-Loeve expansion

We can write u~ GP(u, k)
as u~p+ X2y aifA i, a; ~ N(O, 1)

* ¢; is the eigenfunction with associated eigenvalue 4; of the
linear operator

[T ul(x) = | k(x,s)u(s)ds

Every sample is a linear combination of Eigenfunctions ¢;
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The space of samples
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Scalar-valued Gaussian processes

Scalar-valued (more common)

Vector-valued (this course)
e Samples u are deformation e Samples f are real-valued
fields: functions
u: R® - R4 f: R"> R
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Scalar-valued Gaussian processes

Vector-valued (this course) Scalar-valued (more common)
u ~ GP(i, k) f ~GP(u k)
f: R* - R¢ i: R*" - R
k

...........
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A tion

Matrix-valued kernels can be reinterpreted as scalar-valued kernels:

Matrix valued kernel: k: R™ x R®* — R4*d
Scalar valued kernel: k: R"® X (1..d) X R®* X (1..d) - R

Bijection: Define k((x,1i), ((x',j)) = k(x’»x’)i,j

Everything we know about scalar-valued Gaussian processes can be
transferred to the vector-valued case and vice versa.
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* We consider now a fixed, finite domain

* Functions become vectors
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Drawing samples

Sampling from GP(u, k) defined on a finite domain is done using the
corresponding normal distribution N (i, K)

Algorithm for generating random sample s
1. DoanSVD: K = UAUT
2. Draw a normal vector @ ~ N(0, I,,«,)

1
3. Compute i + UAzax

11
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The space of samples

K=UAUT

= KU = 1UAU Ty = UA (right multiplication with U olrthogonality of U)

= KUA 2 =UA 2 (right multiplication with A" 2)

For a sample s we have

I
N[ =

1
2

K
I
=
+
N
oyl

S=u+UAN2a =+ KUA

1
with with f = (UA_Ea
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The space of samples

"%¢

1
=i+ UN2a

Writing matrix-multiplication as explicit sum

S=ji+ ) a4 Ug,
[

s = ﬁ + 2 K(i,.)ﬁi = ﬁ + 2 K(-,i)lgi
[ [

Sample space consists of
» space of all linear combination of eigenvector of K (KL-Expansion)
* space of all linear combinations of columns/rows of K (RKHS-View)
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Example: Gaussian kernel

o2

— |2
k(x,x’) = exp (_ ”X X “ >

0 100 200 300 400 500 600 700 800 900 1000 -2
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Example: Gaussian kernel

lx — x'||?

k(x,x") =exp| — —
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Multi le si |

X

* k(x,x") = exp| — Hx -y

|_.

[=]
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* Define u(x) = Cs(l)rslgcg
k(e x') = exp(-Il () — G| =exp(—4sin? (1),
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Symmetric kernels

* Enforce that f(x) = f(-x)
e k(x,x") =k(—x,x") + k(x,x")
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Changepoint kernels

* k(x,x") = s(x)k1(x,x")s(x") + (1 —s(x))k(x, x")(1 — s(x"))

*s(x) = :

1+exp( —x)
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Combining existing functions

k(x,x") = f)f (x')

20
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Combining existing functions

k(x,x") = f)f (x')

f(x) = sin(x)
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Combining existing functions

kGx) = ) fiGOfix)

{f1i(x) = x,f,(x) = sin(x)}
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Statistical shape models are linear combinations of example deformations u?, ... u™.
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(Gaussian process regression
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(Gaussian process regression

* Given: observations {(x1, ¥1), ..., (X;, ¥,)}
* Model:y; = f(x;)) + €, f~GP(uk)

* Goal: compute p(V.|Xs, X1, cevs Xopy Vs oovr Vi)
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(Gaussian process regression

 Solution given by posterior process GP(,up, kp) with
up () = K (e, OIK (X, X) + 021] 7y

kp(x,,x.) = k(x,x.") = KCo, X KX,X) + 0?117TK (X, x1)

* The covariance is independent of the value at the training points
e Structure of posterior GP determined solely by kernel.

* The most likely solution is a linear combination of kernels evaluated at the
training points
* This is known as the Representer Theorem in machine learning.
* Structure of solution determined solely by kernel.
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Illustration: Representer theorem

- I L I L L
2—3 =2 -1 0 1 2 3
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Examples

* Gaussian kernel (o = 1)
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* Gaussian kernel (o = 5)
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Examples

e Periodic kernel
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Examples

* Changepoint kernel
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Examples

* Symmetric kernel
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e Linear kernel
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Summary — Gaussian processes

Sample Space of a GP. Two views

1. KL-Expansion:
* Global functions that best capture the global properties of the GP

2. Linear combinations of the kernels k(-, x), fixed at point x
* Apply the kernels locally at each point
* Properties of kernels - Regularity/smoothness directly transferred to samples

* |[n inference tasks, the structure of the kernel determines the prediction
e => Extremely important to model it well



