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Belief: Understanding means being able to synthesize it
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Analysis by Synthesis — Modelling problem
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Modelling problem: What are p(6) and p(D |8)
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Analysis by synthesis — Conceptual problem
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Updating beliefs through Bayesian inference
p(6)p(D|6)
p(0|D) =
| p(®)p(D16)d6
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Analysis by synthesis — Computational problem

>
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Outline

* Basic idea: Sampling methods and MCMC

* The Metropolis-Hastings algorithm
* The Metropolis algorithm
* Implementing the Metropolis algorithm

* The Metropolis-Hastings algorithm

e Example: 3D Landmark fitting
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Approximate Bayesian Inference

Variational methods Sampling methods

* Function approximation q(6) * Numeric approximations through simulation
argmax KL(q(6)[p(¢]D))

CN\ A

KL: Kullback-
p Leibler divergence p
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Sampling Methods

e Simulate a distribution p through random samples x;

* Evaluate expectation (of some function f of random variable X)

E[f(X)] = j FOPGOdx
EIFOO] ~ f = NZﬂxl) p

V[fx0] ~ ( )

* “Independent” of dimensionality of X
* More samples increase accuracy
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Sampling from a Distribution

» Easy for standard distributions ... is it? Random.nextDouble ()
Random.nextGaussian ()
e Uniform
* Gaussian

* How to sample from more complex distributions?
* Beta, Exponential, Chi square, Gamma, ...

* Posteriors are very often not in a “nice” standard text book form

* We need to sample from an unknown posterior with only unnormalized, expensive point-
wise evaluation &
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Markov Chain Monte Carlo

Markov Chain Monte Carlo Methods (MCMC)
|dea: Design a Markov Chain such that samples x obey the target distribution p

Concept: “Use an already existing sample to produce the next one”

* Many successful practical applications
* Proven: developed in the 1950/1970ies (Metropolis/Hastings)

* Direct mapping of computing power to approximation accuracy
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MCMC: An ingenious mathematical construction

... an aperiodic and irreducable

from

7 induces
If Markov Markov chain MCMC Algorithms
Chain is a- J |
periodic and
irreducable
it... converges to . Generate samples

v

g D
distribution stribution p(x)

No need to understand this now: more details follow!
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The Metropolis Algorithm

Requirements:

* Proposal distribution Q (x'|x) — must generate samples, symmetric
 Target distribution P(x) — with point-wise evaluation

Result:

 Stream of samples approximately from P(x)

* |nitialize with sample x

e Generate next sample, with current sample x
1. Draw asample x’ from Q(x'|x) (“proposal”)

!/
2. With probability « = min {I;((’;)) ) 1} accept x’ as new state x

3.  Emit current state x as sample

12
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Metropolis Sampling

Preparation

Before we start, we need to download the plotting library EvilPlot and make it available in the Jupyter-Notebook. It may take some time when you execute the
following cells for the first time.

In [40]: M interp.repositories() ++= Seq(
coursierapi.MavenRepository.of ("https://dl.bintray.com/cibotech/public")
)

In [41]: M import Sivy. com.cibo::evilplot-repl:0.7.0"°

import com.cibo.evilplot.plot._
import com.cibo.evilplot.plot.renderers.PointRenderer

import com.cibo.evilplot.plot.aesthetics.DefaultTheme._
import com.cibo.evilplot.numeric.Point
import com.cibo.evilplot.colors._

import breeze.linalg.{DenseVector, DenseMatrix}

def showPlot (plot: com.cibo.evilplot.geometry.Drawable) =
Image.fromRenderedImage (plot.asBufferedImage, Image.PNG)

Out[41]: import

import

Jupyter-Notebook — Metropolis-Hastings.ipynb
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The Metropolis-Hastings Algorithm

* |nitialize with sample x

e Generate next sample, with current sample x
1. Draw asample x’ from Q(x'|x) (“proposal”)

) .. . P(x') Q(x|x,) } ’
2. With probability a = mln{P(x) Ik 1t accept x' as new state x

3.  Emit current state x as sample

* Generalization of Metropolis algorithm to asymmetric Proposal distribution

Q(x'|x) # Q(x[x')
Q(x'|x) >0 Q(x|x") >0

16
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Properties

* Approximation: Samples x4, x5, ... approximate P(x)

Unbiased but correlated (not i.i.d.)

* Normalization: P(x) does not need to be normalized
Algorithm only considers ratios P(x") /P (x)

* Dependent Proposals: Q(x'|x) depends on current sample x

Algorithm adapts to target with simple 1-step memory
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Metropolis - Hastings: Limitations

* Highly correlated targets * Serial correlation
Proposal should match target to e Results from rejection
avoid too many rejections and too small stepping

e Subsampling
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Propose-and-Verity Algorithm

* Metropolis algorithm formalizes: propose-and-verify

» Steps are completely independent.

Propose
Draw a sample x’ from Q (x'|x)

Verify

With probability &« = min {P(x ) Q(xlx') 1} accept x’ as new sample

P(x) Q(x'|x)’

19
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MH as Propose and Verity

 Decouples the steps of finding the solution from validating a solution

* Natural to integrate uncertain proposals Q
(e.g. automatically detected landmarks, ...)

e Possibility to include “local optimization” (e.g. a ICP or ASM updates,
gradient step, ...) as proposal

Anything more “informed” than random walk should improve convergence.
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Fitting 3D Landmarks

3D Alignment with Shape and Pose

21
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3D Fitting Example

right.eye.corner_outer left.eye.corner_outer

right.lips.corner left.lips.corner

v

22
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Goal: Find posterior distribution for arbitrary pose and shape

Shape transformation Observations
r
« Observed positions I%, ..., %
pslal = u(0) + ) @A) posiions {r. .l
= e Correspondence: Iy, ..., lg
Rigid transformation Parameters
* 3 angles (pitch, yaw, roll) @, ¥, 9 0= (a,o,9,t¢)
* Translation t = (ty, ty, t;) Posterior distribution:
0rl@,1,9,t] = RgRyR (%) + t P(6|l%, ..., 1%) < p(13, ..., 1%16)P(6)

Full transformation
@l0](x) = (¢re s)[0](x)
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Proposals

e Gaussian random walk proposals

"Q(6'16) = N(676,Zg)"

* Update different parameter types block-wise

* Shape N(alla;o_.szlmxm)
* Rotation N(¢'|p,03), N(¢’|1/J,01/2,),N(19'|19»0§)
e Translation N(t'|t,0t213><3)

e Large mixture distributions as proposals

* Choose proposal Q; with probability c;
Q(0'10) = Xc;Q:(0'|9)

24
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3DMM Landmarks Likelihood

Simple models: Independent Gaussians

Observation of L landmark locations I% in image

* Single landmark position model:

p(lr|6,1g) = N(‘P 1(Ig), Isx30 )

* Independent model (conditional independence):

p(th, ., 1}16) = ﬂpla 6)

25
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3D Fit to landmarks

* Influence of landmarks uncertainty on
final posterior?

* oM — Imm
* oM = 4mm
* oy = 10mm
* Only 4 landmark observations:

* Expect only weak shape impact

e Should still constrain pose

 Uncertain landmarks should be looser

26
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Posterior: Pose & Shape, 4mm

Ayaw = 0.511 A, = —1mm g, = 0.4
Byaw = 0.073 (4°) Gy, =4 mm Gy, = 0.6

(Estimation from samples)
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Posterior: Pose & Shape, 1mm

N

fiyaw = 0.50 fie, = —2 mm flog, = 1.5
Oyaw = 0.041 (2.4°) 6y, = 0.8 mm Oq, = 0.35
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Posterior: Pose & Shape, 10mm

N

fyaw = 0.49 flt, = —> mm Hay =

Oyaw = 0.11 (7°) 0y, = 10 mm Oq, = 0.6
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Summary: MCMC for 3D Fitting

Probabilistic inference for fitting probabilistic models
e Bayesian inference: posterior distribution

Probabilistic inference is often intractable
* Use approximate inference methods

MCMC methods provide a powerful sampling framework
* Metropolis-Hastings algorithm
* Propose update step
* Verify and accept with probability

Samples converge to true distribution: More about this later!

31



