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Analysis by Synthesis - Idea

Belief: Understanding means being able to synthesize it

Parameters 𝜃

Comparison

Update 𝜃 Synthesis 𝜑(𝜃)
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Analysis by Synthesis – Modelling problem

Modelling problem: What are 𝑝(𝜃) and 𝑝 𝐷 𝜃)

Parameters 𝜃

Comparison: 𝑝 D 𝜃)

Update 𝜃 Synthesis 𝜑(𝜃)

Prior 𝑝(𝜃)
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Analysis by synthesis – Conceptual problem
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Parameters 𝜃

Comparison: 𝑝 D 𝜃)

Update 𝜃
Synthesis 
𝜑(𝜃)

Prior 𝑝(𝜃)

Updating beliefs through Bayesian inference

𝑝 𝜃 D =
𝑝 𝜃 𝑝 D 𝜃

∫ 𝑝 𝜃 𝑝 𝐷 𝜃 𝑑𝜃
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Analysis by synthesis – Computational problem
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𝑝 𝜃 D =
𝑝 𝜃 𝑝 D 𝜃

∫ 𝑝 𝜃 𝑝 𝐷 𝜃 𝑑𝜃

Usually non-linear and
expensive to evaluate

High-Dimensional 
integral

නන…න𝑝 𝜃1, … , 𝜃𝑛 𝑝 𝐷 𝜃1, … , 𝜃𝑛)𝑑𝜃1…𝜃𝑛

𝜃1

𝜃𝑛

Can only be 
approximated
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Outline

• Basic idea: Sampling methods and MCMC

• The Metropolis-Hastings algorithm

• The Metropolis algorithm

• Implementing the Metropolis algorithm

• The Metropolis-Hastings algorithm

• Example: 3D Landmark fitting
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Variational methods

• Function approximation 𝑞(𝜃)
argmax

𝑞
KL(𝑞(𝜃)|𝑝(𝜃|𝐷))

Sampling methods

• Numeric approximations through simulation

Approximate Bayesian Inference

KL: Kullback-
Leibler divergence

𝜃

𝑝

𝜃

𝑝
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• Simulate a distribution 𝑝 through random samples 𝑥𝑖

• Evaluate expectation (of some function 𝑓 of random variable 𝑋)

𝐸 𝑓(𝑋) = න𝑓 𝑥 𝑝 𝑥 𝑑𝑥

𝐸 𝑓(𝑋) ≈ መ𝑓 =
1

𝑁
෍

𝑖

𝑁

𝑓 𝑥𝑖 , 𝑥𝑖 ~ 𝑝 𝑥

𝑉 መ𝑓(𝑋) ~ 𝑂
1

𝑁

Sampling Methods

• “Independent” of dimensionality of 𝑋
• More samples increase accuracy

This is difficult!

𝜃

𝑝



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Sampling from a Distribution

• Easy for standard distributions … is it?

• Uniform

• Gaussian

• How to sample from more complex distributions?

• Beta, Exponential, Chi square, Gamma, …

• Posteriors are very often not in a “nice” standard text book form

• We need to sample from an unknown posterior with only unnormalized, expensive point-
wise evaluation 
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Random.nextDouble()

Random.nextGaussian()
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Markov Chain Monte Carlo

Markov Chain Monte Carlo Methods (MCMC)

Idea: Design a Markov Chain such that samples 𝑥 obey the target distribution 𝑝

Concept: “Use an already existing sample to produce the next one”

• Many successful practical applications

• Proven: developed in the 1950/1970ies (Metropolis/Hastings)

• Direct mapping of computing power to approximation accuracy
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MCMC: An ingenious mathematical construction 

Markov chain

Equilibrium 
distribution

Distribution 𝑝(𝑥)

MCMC Algorithms
induces

converges to Generate samples
from

is

If Markov 
Chain is a-

periodic and 
irreducable

it…

… an aperiodic and irreducable

No need to understand this now:  more details follow!
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The Metropolis Algorithm

• Initialize with sample 𝒙

• Generate next sample, with current sample 𝒙
1. Draw a sample 𝒙′ from 𝑄(𝒙′|𝒙) (“proposal”)

2. With probability 𝛼 = min
𝑃 𝒙′

𝑃 𝒙
, 1 accept 𝒙′ as new state 𝒙

3. Emit current state 𝒙 as sample
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Requirements:

• Proposal distribution 𝑄(𝒙′|𝒙) – must generate samples, symmetric

• Target distribution 𝑃 𝒙 – with point-wise evaluation

Result:

• Stream of samples approximately from 𝑃 𝒙
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Jupyter-Notebook – Metropolis-Hastings.ipynb



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

The Metropolis-Hastings Algorithm

• Initialize with sample 𝒙

• Generate next sample, with current sample 𝒙
1. Draw a sample 𝒙′ from 𝑄(𝒙′|𝒙) (“proposal”)

2. With probability 𝛼 = min
𝑃 𝑥′

𝑃 𝑥

𝑄 𝑥|𝑥′

𝑄 𝑥′|𝑥
, 1 accept 𝒙′ as new state 𝒙

3. Emit current state 𝒙 as sample
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• Generalization of Metropolis algorithm to asymmetric Proposal distribution

𝑄 𝒙′ 𝒙 ≠ 𝑄 𝒙 𝒙′

𝑄 𝒙′ 𝒙 > 0 ⇔ 𝑄 𝒙 𝒙′ > 0
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Properties

• Approximation: Samples 𝑥1, 𝑥2, … approximate 𝑃(𝑥)

Unbiased but correlated (not i.i.d.)

• Normalization: 𝑃(𝑥) does not need to be normalized

Algorithm only considers ratios 𝑃(𝑥′)/𝑃(𝑥)

• Dependent Proposals: 𝑄 𝑥′ 𝑥 depends on current sample 𝑥

Algorithm adapts to target with simple 1-step memory
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Metropolis - Hastings: Limitations

• Highly correlated targets

Proposal should match target to 
avoid too many rejections

• Serial correlation

• Results from rejection 
and too small stepping

• Subsampling
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Bishop. PRML, Springer, 
2006



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

• Metropolis algorithm formalizes: propose-and-verify

• Steps are completely independent.

Propose
Draw a sample 𝑥′ from 𝑄(𝑥′|𝑥)

Verify

With probability 𝛼 = min
𝑃 𝑥′

𝑃 𝑥

𝑄 𝑥|𝑥′

𝑄 𝑥′|𝑥
, 1 accept 𝒙′ as new sample 

Propose-and-Verify Algorithm
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MH as Propose and Verify

• Decouples the steps of finding the solution from validating a solution

• Natural to integrate uncertain proposals Q 
(e.g. automatically detected landmarks, ...)

• Possibility to include “local optimization” (e.g. a ICP or ASM updates, 
gradient step, …) as proposal

Anything more “informed” than random walk should improve convergence.
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Fitting 3D Landmarks
3D Alignment with Shape and Pose
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3D Fitting Example
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right.eye.corner_outer left.eye.corner_outer

right.lips.corner left.lips.corner
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3D Fitting Setup

Observations

• Observed positions 𝑙𝑇
1 , … , 𝑙𝑇

𝑛

• Correspondence: 𝑙𝑅
1 , … , 𝑙𝑅

𝑛

Parameters

𝜃 = 𝛼, 𝜑, 𝜓, 𝜗, 𝑡

Posterior distribution:

𝑃 𝜃 𝑙𝑇
1 , … , 𝑙𝑇

𝑛 ∝ 𝑝 𝑙𝑇
1 , … , 𝑙𝑇

𝑅|𝜃 𝑃(𝜃)

Shape transformation

𝜑𝑠 𝛼 = 𝜇 𝑥 +෍

𝑖=1

𝑟

𝛼𝑖 𝜆𝑖𝛷𝑖(𝑥)

Rigid transformation

• 3 angles (pitch, yaw, roll) 𝜑,𝜓, 𝜗

• Translation 𝑡 = (𝑡𝑥, 𝑡𝑦 , 𝑡𝑧)

𝜑𝑅 𝜑,𝜓, 𝜗, 𝑡 = 𝑅𝜗𝑅𝜓𝑅𝜑 𝒙 + 𝑡

Full transformation
𝜑 𝜃 (𝑥) = (𝜑𝑅∘ 𝜑𝑆)[𝜃](𝑥)
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Goal: Find posterior distribution for arbitrary pose and shape
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Proposals

• Gaussian random walk proposals

"𝑄 𝜃′|𝜃 = 𝑁(𝜃′|𝜃, Σ𝜃)"

• Update different parameter types block-wise
• Shape 𝑁(𝜶′|𝜶, 𝜎𝑆

2𝐼𝑚×𝑚 )

• Rotation 𝑁 𝜑′ 𝜑, 𝜎𝜑
2 , 𝑁 𝜓′ 𝜓, 𝜎𝜓

2 , 𝑁 𝜗′ 𝜗, 𝜎𝜗
2

• Translation 𝑁 𝒕′ 𝒕, 𝜎𝑡
2𝐼3×3

• Large mixture distributions as proposals

• Choose proposal 𝑄𝑖 with probability 𝑐𝑖

𝑄 𝜃′|𝜃 = ∑𝑐𝑖𝑄𝑖(𝜃
′|𝜃)
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3DMM Landmarks Likelihood

Simple models: Independent Gaussians

Observation of 𝐿 landmark locations 𝑙𝑇
𝑖 in image

• Single landmark position model:

𝑝 𝑙𝑇 𝜃, 𝑙𝑅 = 𝑁 𝜑 𝜃 𝑙𝑅 , 𝐼3×3𝜎
2

• Independent model (conditional independence): 

𝑝 𝑙𝑇
1 , … , 𝑙𝑇

𝑛|𝜃 =ෑ

𝑖=1

𝐿

𝑝𝑖 𝑙𝑇
𝑖 |𝜃
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3D Fit to landmarks

• Influence of landmarks uncertainty on 
final posterior?

• 𝜎LM = 1mm

• 𝜎LM = 4mm

• 𝜎LM = 10mm

• Only 4 landmark observations:

• Expect only weak shape impact

• Should still constrain pose

• Uncertain landmarks should be looser
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Posterior: Pose & Shape, 4mm
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Ƹ𝜇yaw = 0.511

ො𝜎yaw = 0.073 (4°)

Ƹ𝜇tx = −1mm

ො𝜎tx = 4 mm

Ƹ𝜇𝛼1 = 0.4

ො𝜎𝛼1 = 0.6

(Estimation from samples)
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Posterior: Pose & Shape, 1mm
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Ƹ𝜇yaw = 0.50

ො𝜎yaw = 0.041 (2.4°)

Ƹ𝜇tx = −2mm

ො𝜎tx = 0.8 mm

Ƹ𝜇𝛼1 = 1.5

ො𝜎𝛼1 = 0.35
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Posterior: Pose & Shape, 10mm
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Ƹ𝜇yaw = 0.49

ො𝜎yaw = 0.11 (7°)

Ƹ𝜇tx = −5mm

ො𝜎tx = 10 mm

Ƹ𝜇𝛼1 = 0

ො𝜎𝛼1 = 0.6
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Summary: MCMC for 3D Fitting

• Probabilistic inference for fitting probabilistic models
• Bayesian inference: posterior distribution

• Probabilistic inference is often intractable
• Use approximate inference methods

• MCMC methods provide a powerful sampling framework
• Metropolis-Hastings algorithm

• Propose update step

• Verify and accept with probability

• Samples converge to true distribution: More about this later!
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