graphics and vision gravis

Shape model fitting using Metropolis-Hastings

Marcel Lüthi,

University of Basel

Agenda

- Reminder Metropolis-Hastings algorithm
- Case study: Landmark fitting with Metropolis-Hastings
 - General setting
 - Modelling
 - Sampling
- Other likelihood functions
 - Non-correspondence points
 - Active shape models
- Misc. Topics
 - Debugging Metropolis-Hastings sampler
 - Sequential Bayesian updating

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Case study: Landmark fitting with Metropolis-Hastings

Problem setting

Given:

- Face model with *m* basis functions
- Landmarks points on model reference: l_1^R, \dots, l_n^R
- Observed (corresponding) 3D-positions of landmark

$$l_1^T, \dots, l_n^T$$

Goal:

• Find faces matching the landmark points

Approach: Analysis by synthesis

Step 1: Defining the model parameters (our world)

• Shape-model-parameters:

 $\alpha_1, \ldots, \alpha_m$

- Pose-parameters
 - Translation:

 $t = (t_x, t_y, t_z)$

• Rotation: Euler angles (pitch, yaw, roll) $arphi, \psi, artheta$

Full parameter vector

 $\theta = (\alpha, \varphi, \psi, \vartheta, t)$

Step 2: Synthesis function

Shape-model transformation for landmark point l_i^R : $\varphi_S[\alpha](l_i^R) = l_i^R + \mu(l_i^R) + \sum_{i=n}^m \alpha_i \sqrt{\lambda_i} \phi_i(l_i^R)$

Pose transformation:

$$\varphi_P[\varphi,\psi,\vartheta,t](l_i^R) = R_{\vartheta,\psi,\varphi}(l_i^R) + t$$

Full transformation:

$$\varphi[\theta](l_i^R) = \left(\varphi_p[\varphi, \psi, \vartheta, t] \circ \varphi_S[\alpha]\right)(l_i^R)$$

KL-Expansion of GP Model $u \sim GP(\mu, k)$

Step 3: Likelihood function

For one landmark pair (l_i^R, l_i^T) :

$$p(l_i^T | \theta, l_i^R) = N(\varphi[\theta](l_i^R), I_{3x3}\sigma^2)$$

For all landmarks (assuming independence):

$$\left(l_{1}^{T},\ldots,l_{n}^{T}\middle|\theta,l_{1}^{R},\ldots,l_{n}^{R}\right)=\prod_{i}N(\varphi[\theta](l_{i}^{R}),I_{2x2}\sigma^{2})$$

Landmarks match target position up to zero-mean Gaussian noise.

Step 4: Prior distributions

Shape - model priors:

 $\alpha_i \sim N(0,1)$

Translation prior

• Assuming model is aligned to target:

 $t_x, t_y, t_z \sim N(0, 10)$

• Otherwise: $t_x, t_y, t_z \sim U(-1000, 1000)$

Rotation prior

• Assuming model is well aligned to target and roation center is center of mass of model:

 $\varphi,\psi,\vartheta\sim N(0,0.1)$

• Otherwise: $\varphi, \psi, \vartheta \sim U(-\pi, \pi)$

From KL-Expansion of GP Model $u \sim GP(\mu, k)$

Step 5: Inference

Posterior distribution:

$$P(\theta | l^T, l^R) = \frac{p(l^T | \theta, l^R) P(\theta)}{\int p(l^T | \theta, l^R) P(\theta) d\theta}$$

Intractable:

• Approximate using sampling

Step 5: Setup of Metropolis-Hastings algorithm

Proposals: Gaussian random walk proposals "o(a'|a) =

 $"Q(\theta'|\theta) = N(\theta, \Sigma_{\theta})"$

- Blockwise updates
 - Shape $N(\alpha, \sigma_S^2 I_{m \times m})$
 - Rotation $N(\varphi, \sigma_{\varphi}^2), N(\psi, \sigma_{\psi}^2), N(\vartheta, \sigma_{\vartheta}^2)$
 - Translation $N(t, \sigma_t^2 I_{3\times 3})$
- Large mixture distributions as proposals Choose proposal Q_i with probability c_i

 $Q(\theta'|\theta) = \sum c_i Q_i(\theta'|\theta)$

3D Fit to landmarks

- Influence of landmarks uncertainty on final posterior?
 - $\sigma_{\rm LM} = 1 {\rm mm}$
 - $\sigma_{\rm LM} = 4 {\rm mm}$
 - $\sigma_{\rm LM} = 10 {\rm mm}$
- Only 4 landmark observations:
 - Expect only weak shape impact
 - Should still constrain pose
- Uncertain landmarks should be looser

Posterior: Pose & Shape, 4mm

 $\begin{aligned} \hat{\mu}_{yaw} &= 0.511 & \hat{\mu}_{t_x} &= -1 \text{ mm} & \hat{\mu}_{\alpha_1} &= 0.4 \\ \hat{\sigma}_{yaw} &= 0.073 \text{ (4°)} & \hat{\sigma}_{t_x} &= 4 \text{ mm} & \hat{\sigma}_{\alpha_1} &= 0.6 \\ \end{aligned}$ (Estimation from samples)

Posterior: Pose & Shape, 1mm

$$\hat{\mu}_{yaw} = 0.50 \qquad \hat{\mu}_{t_x} = -2 \text{ mm} \qquad \hat{\mu}_{\alpha_1} = 1.5 \\ \hat{\sigma}_{yaw} = 0.041 (2.4^\circ) \qquad \hat{\sigma}_{t_x} = 0.8 \text{ mm} \qquad \hat{\sigma}_{\alpha_1} = 0.35$$

Posterior: Pose & Shape, 10mm

$$\hat{\mu}_{yaw} = 0.49$$
 $\hat{\mu}_{t_x} = -5 \text{ mm}$ $\hat{\mu}_{\alpha_1} = 0$
 $\hat{\sigma}_{yaw} = 0.11 (7^\circ)$ $\hat{\sigma}_{t_x} = 10 \text{ mm}$ $\hat{\sigma}_{\alpha_1} = 0.6$

Traceplots

Iterations

Marginal distributions (shape coefficients α)

1mm

4mm

10mm

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Other likelihood functions

Reminder: Landmark likelihood

For one landmark pair (l_i^R, l_i^T) :

$$p(l_i^T | \theta, l_i^R) = N(\varphi[\theta](l_i^R), I_{3x3}\sigma^2)$$

For all landmarks (assuming independence):

$$\left(l_{1}^{T},\ldots,l_{n}^{T}\middle|\theta,l_{1}^{R},\ldots,l_{n}^{R}\right)=\prod_{i}N(\varphi[\theta](l_{i}^{R}),I_{2x2}\sigma^{2})$$

Landmarks match target position up to zero-mean Gaussian noise.

Likelihood for points without correspondence

Match any point on target surface

$$\Gamma^T = \{p_1^T, \dots p_n^T\}$$

For point p_i^R on model

$$p(\Gamma^{T}|\theta) = N(\text{closestPoint}(\Gamma^{T}, \varphi[\theta](p_{i}^{R})), I_{3\times 3}\sigma^{2})$$

• Corresponding points becomes closest point

For set of points
$$p_1^R, \dots, p_n^R$$

 $p(\Gamma^T | \theta, p_1^R, \dots, p_n^R) = \prod_{i=1}^n N(\text{closestPoint}(\Gamma^T, \varphi[\theta](p_i^R)), I_{3 \times 3}\sigma^2)$

Useful for registration/fitting of surface

Likelihood for points without correspondence

For landmark/point p_i^T on target without correspondence with model point $p(p_i|\theta) = N(\text{closestPoint}(\Gamma[\theta], p_i^T)), I_{3\times 3}\sigma^2)$

• $\Gamma[\theta]$ is model instance:

 $\Gamma[\theta] = \{\varphi[\theta](p_i^R) | p_i^R \in \Gamma^R\}$

For set of points $p_1, ..., p_n$ $p(p_1^T, ..., p_n^T | \theta) = \prod_{i=1}^n N(\text{closestPoint}(\Gamma[\theta], p_i^T)), I_{3\times 3}\sigma^2)$

Likelihood function: Active shape models

Shape is well matched if environment around profile points is likely under trained model.

• ASMs model each profile $\rho(x_i)$ as a normal distribution $p(\rho(x_i)) = N(\mu_i, \Sigma_i)$

Extracts profile (feature) from image

- Single profile point x_i : $p(\rho(\varphi[\theta](x_i))|\theta, x_i) = N(\mu_i, \Sigma_i)$
- Likelihood for all profile points:

 $p(\rho(\varphi[\theta](x))|\theta, \Gamma_R) = \prod_i N(\mu_i, \Sigma_i)$

UNIVERSITÄT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Misc. Topics

Sequential Bayesian updating

```
Update belief when data M_1, \dots M_n becomes available
```

$$p(\theta) \rightarrow p(\theta|M_1) \rightarrow p(\theta|M_1, M_2) \rightarrow \cdots$$

Possible implementation in Metropolis-Hastings:

- Posterior of previous step becomes proposal distribution $Q(\theta'|\theta) = P(\theta')$
- Known as Independent Metropolis-Hastings, as proposal does not depend on previous state

Metropolis-Hastings as filtering

Sampling from $p(\theta)$ using Metropolis-Hastings can be seen as filtering

Sequential Bayesian updating using Metropolis-Hastings

Sequential belief update:

 $p(\theta) \to p(\theta|M_1)$

Sequential Bayesian updating using Metropolis-Hastings

Sequential belief update:

 $p(\theta) \to p(\theta|M_1) \to p(\theta|M_1,M_2)$

Implementation in Scalismo

Scalismo provides special Filtering Proposal

• Can be used like any other proposal

val priorEvaluator : DistributionEvaluator[Sample] = ???
val proposalGen : ProposalGenerator[Sample] = ???

val metropolisFilterProposalGen1 = MetropolisFilterProposal(proposalGen, priorEvaluator)

val likelihoodEvaluator1 : DistributionEvaluator[Sample] = ???
val metropolisFilterProposalGen2 = MetropolisFilterProposal(metropolisFilterProposalGen1, likelihoodEvaluator1)

```
val likelihoodEvaluator1 : DistributionEvaluator[Sample] = ???
```

val mh = MetropolisHastings(metropolisFilterProposalGen2, likelihoodEvaluator2)

MH as propose-and-verify

- Metropolis algorithm formalizes *propose-and-verify idea*
 - Propose and verify steps are completely independent.

Propose

Draw a sample x' from Q(x'|x)

Verify

With probability
$$\alpha = \min\left\{\frac{P(x')}{P(x)}\frac{Q(x|x')}{Q(x'|x)}, 1\right\}$$
 accept x' as new sample

MH as propose-and-verify

- Decouples the steps of finding the solution from validating a solution
- Natural to integrate uncertain proposals Q (e.g. automatically detected landmarks, ...)
- Possibility to include "local optimization" (e.g. a ICP or ASM updates, gradient step, ...) as proposal

Anything more "informed" than random walk should improve convergence.

MH as propose-and-verify

Advantage

- Can include proposals that fail sometimes
 - Example: Landmark detector with only 90% accuracy
 - Algorithm is robust to 10% failures of proposals

Disadvantage

- Can include proposals that fail always
 - Example: Buggy proposal
 - Algorithm is robust to failure. Buggy proposal is not detected

Solution: Logging

We need to log the acceptance rate of every proposal!

• Low acceptance rate indicates something is wrong -> Debug

- Optimal acceptance rate of random walk proposal:
 - Between 20 and 30 %
- More sophisticated (and more expensive) proposals should have higher acceptance rate

Summary: MCMC for 3D Fitting

- Modelling in the analysis-by-synthesis framework leads to intractable posterior computation
 - Need for using approximate inference
- Metropolis-Hastings algorithm provides powerful framework
 - Propose and verify
 - Propose update step
 - Verify and accept with probability
 - Can integrate uncertain information
 - Allows for sequential update of information
 - Samples converge to true distribution: More about this later!