gravis

graphics.and vision

Shape model fitting using Metropolis-Hastings

Marcel Luthi,

University of Basel



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Agenda

Reminder — Metropolis-Hastings algorithm

Case study: Landmark fitting with Metropolis-Hastings
e General setting
* Modelling
e Sampling

Other likelihood functions
* Non-correspondence points
* Active shape models

Misc. Topics
* Debugging Metropolis-Hastings sampler
e Sequential Bayesian updating
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Case study: Landmark fitting with
Metropolis-Hastings



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Problem setting

Given: 3
e Face model with m basis functions right'eye.c;er Ie:eye.corner_
* Landmarks points on model reference:
IR IR
* Observed (corresponding) 3D-positions of ® o
Iandmark right.lips.corner Ieft.lips.corr:er
ir, .., r ]
Goal:

* Find faces matching the landmark points
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Approach: Analysis by synthesis

' Comparison: p(D |6) |
A
[ [
right.eye.corner left.eye.corner_
Prior p(0)
[ [
right.lips.corner left.lips.corner

»

Parameters 6

Update 6 = Synthesis @(6) 1
i

\P E

Sampling through
Metroplis-Hastings
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Step 1: Defining the model parameters (our world)

* Shape-model-parameters:
al’ nany am

¢ Pose—pa rameters

* Translation:
t = (t,, ty, t,)
» Rotation: Euler angles (pitch, yaw, roll)
@, P,

Full parameter vector
0= (aop9,1t)
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Step 2: Synthesis function
Shape-model transformation for landmark point lf/‘
pslal(IF) = 1F + u(tF) + ) arfZiu(IF)

Pose transformation:
Pp [(p; lp; 19' t] (l{?) — R19,1/J,<P(lf) +1

Full transformation:
o015 = (@plo. ¥, 9,t] o pslal)(IF)
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Step 3: Likelihood function

For one landmark pair (1%, 1]):

p(1716,18) = N(p[6](IR), I350?)

For all landmarks (assuming independence):

(7, ..., 1|6, 1, .., IE) = HN(go[e](lf),Imaz)
[

9 |

right.eye.corner

Landmarks match target position up to zero-mean Gaussian
: o
NOISEe. right.lips.corner
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Step 4: Prior distributions

From KL-Expansion of GP
Model u ~ GP(u, k)

Shape - model priors:
a; ~ N(O, 1)

Translation prior

* Assuming model is aligned to target:
ty ty, t; ~ N(0,10)

* Otherwise: ty, t,, t, ~ U(—1000,1000)

Rotation prior

* Assuming model is well aligned to target and roation center is center of mass of model:
o, P,9 ~N(0,0.1)

e Otherwise: @, 1,9 ~ U(—m, m)
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Step 5: Inference

Posterior distribution:

p(1710,1R)P(6)
p(IT|6, IR)P(6)d6

P(OIT,IR) =7

i
Intractable:

e Approximate using sampling
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Step 5: Setup of Metropolis-Hastings algorithm

Proposals: Gaussian random walk proposals
"Q(0'16) = N(6,%g)"

* Blockwise updates

* Shape N(a, 0éLnxm )
* Rotation N(p,04), N(l/J, 01,2,),N(19, 3)
* Translation N(t, Gtzlgxg)

e Large mixture distributions as proposals
Choose proposal Q; with probability c;
Q(8'[6) = Xc;Q:(6'10)
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3D Fit to landmarks

* Influence of landmarks uncertainty on
final posterior?

* oM — Imm
* oM = 4mm
* oy = 10mm
* Only 4 landmark observations:

* Expect only weak shape impact

e Should still constrain pose

 Uncertain landmarks should be looser

12
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Posterior: Pose & Shape, 4mm

Ayaw = 0.511 A, = —1mm g, = 0.4
Byaw = 0.073 (4°) Gy, =4 mm Gq, = 0.6

(Estimation from samples)
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Posterior: Pose & Shape, 1mm

N

fiyaw = 0.50 fie, = —2 mm flo, = 1.5
Oyaw = 0.041 (2.4°) 6y, = 0.8 mm Oq, = 0.35
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Posterior: Pose & Shape, 10mm

N

fyaw = 0.49 flt, = —> mm Hay =

Oyaw = 0.11 (7°) 0y, = 10 mm Oq, = 0.6
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Traceplots

log(p(OII%,17) . | |
A

Imm Amm 10mm

v

I[terations
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Marginal distributions (shape coefficients «)

n
shapecoaff 1 pecoef ‘shapecoeff 3 shapaconff 1 shapacooff 2 shapecoeff 3 shapaconff 1 oef2  shapecoeffd
I g & I
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Other likelihood functions
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Reminder: Landmark likelihood

For one landmark pair (1%, 1]):

p(1716,18) = N(p[6](IR), I350?)

For all landmarks (assuming independence):

(7, ..., 1|6, 1, .., IE) = HN(go[e](lf),Imaz)
[

9 |

right.eye.corner

Landmarks match target position up to zero-mean Gaussian
: o
NOISEe. right.lips.corner
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Likelihood for points without correspondence

Match any point on target surface

T'={pi,..ph}

For point pf on model
p(T'T|0) = N(closestPoint(T'T, p[0](pf)), Isx302)

* Corresponding points becomes closest point

For set of points py,, ..., pR

p(TT|0,pk, ...,pR) = HN(closestPomt(FT,(p[H (), I3x302)

Useful for registration/fitting of surface
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Likelihood for points without correspondence

For landmark/point p; on target without correspondence with model point
p(p;|6) = N(closestPoint(T[0],p])), I3x302)

* I'[8] is model instance:

I'[6] = {p[01(p)Ip; € TX}

For set of points pq, ..., Py,

n
p(pl, ..., pL|0) = 1_[ N (closestPoint(T[0],p])), I3x302)

=1
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Likelihood function: Active shape models

Shape is well matched if environment around profile points is likely under trained model.

* ASMs model each profile p(x;) as a normal

distribution \

p(p (xl-)) = N(,Lli, Zi) Extracts profile

(feature) from image

* Single profile point x;:
p(p(@[0](x))10,x; ) = N (1, Z;)

* Likelihood for all profile points:

p(o(@l01eI0,Te) = | [ M2
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Misc. Topics
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Sequential Bayesian updating

Update belief when data M4, ... M,, becomes available

p(6) - p(6|M;) - p(6|My, M;) — -

Possible implementation in Metropolis-Hastings:

* Posterior of previous step becomes proposal distribution
Q(0'10) = P(6")

* Known as Independent Metropolis-Hastings, as proposal does not depend on previous
state
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Metropolis-Hastings as filtering

Sampling from p(8) using Metropolis-Hastings can be seen as filtering

Q(6'16)

MH-Filter: Prior

reject

A

A

p(6)
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Sequential Bayesian updating using Metropolis-Hastings

Sequential belief update:
p(6) - p(6|M;)

MH-Filter: Prior MH-Filter: Information My

. p(Mq|67)
< —_ | S
o= (1' p<M1|e))

Q(6'16)

reject reject

A 4

p(6) p(0|1My)

A
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Sequential Bayesian updating using Metropolis-Hastings

Sequential belief update:

p(8) - p(6|M,) - p(0|My, M)

Q(6'16)

MH-Filter: Prior

MH-Filter: Information My

MH-Filter: Information M,

r < min (1,2%—1:32)
reject reject reject
p(0) p(6|M,) p(6|M,, M)
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Implementation in Scalismo

Scalismo provides special Filtering Proposal

e Can be used like any other proposal

val priorEvaluator : DistributionEvaluator[Sample] = ???
val proposalGen : ProposalGenerator[Sample] = ??7?

val metropolisFilterProposalGenl = MetropolisFilterProposal(proposalGen, priorEvaluator)

val likelihoodEvaluatorl : DistributionEvaluator[Sample] = ???
val metropolisFilterProposalGen2 = MetropolisFilterProposal(metropolisFilterProposalGen1, likelihoodEvaluatorl)

val likelihoodEvaluatorl : DistributionEvaluator[Sample] = ???

val mh = MetropolisHastings(metropolisFilterProposalGen2 , likelihoodEvaluator2)
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MH as propose-and-verify

* Metropolis algorithm formalizes propose-and-verify idea

* Propose and verify steps are completely independent.

Propose
Draw a sample x’ from Q (x'|x)

Verify

P(x") Q(x|x') 1} accept x’ as new sample

With probability &« = min { PO 0 x)’

29
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MH as propose-and-verity

 Decouples the steps of finding the solution from validating a solution

* Natural to integrate uncertain proposals Q
(e.g. automatically detected landmarks, ...)

e Possibility to include “local optimization” (e.g. a ICP or ASM updates,
gradient step, ...) as proposal

Anything more “informed” than random walk should improve convergence.
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MH as propose-and-verify

Advantage

e Can include proposals that fail sometimes

e Example: Landmark detector with only 90% accuracy

e Algorithm is robust to 10% failures of proposals

Disadvantage

* Caninclude proposals that fail always
* Example: Buggy proposal

e Algorithm is robust to failure. Buggy proposal is not detected
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Solution: Logging

We need to log the acceptance rate of every proposall

* Low acceptance rate indicates something is wrong -> Debug

* Optimal acceptance rate of random walk proposal:
* Between 20 and 30 %

* More sophisticated (and more expensive) proposals should have higher acceptance rate
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Summary: MCMC for 3D Fitting

* Modelling in the analysis-by-synthesis framework leads to intractable posterior
computation

* Need for using approximate inference

* Metropolis-Hastings algorithm provides powerful framework
* Propose and verify
* Propose update step
* Verify and accept with probability
e Can integrate uncertain information
* Allows for sequential update of information

e Samples converge to true distribution: More about this later!

33



