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Case study: Landmark fitting with
Metropolis-Hastings
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Problem setting
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Given:
• Face model with 𝑚 basis functions
• Landmarks points on model reference:

l1
R, … , 𝑙𝑛

𝑅

• Observed (corresponding) 3D-positions of 
landmark

𝑙1
𝑇 , … , 𝑙𝑛

𝑇

Goal:
• Find faces matching the landmark points
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Approach: Analysis by synthesis

Parameters 𝜃

Comparison: 𝑝 D 𝜃)

Update 𝜃 Synthesis 𝜑(𝜃)

Prior 𝑝(𝜃)
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Sampling through
Metroplis-Hastings 
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Step 1: Defining the model parameters (our world)

• Shape-model-parameters:
𝛼1, … , 𝛼𝑚

• Pose-parameters

• Translation:
𝑡 = (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)

• Rotation: Euler angles (pitch, yaw, roll)
𝜑,𝜓, 𝜗

Full parameter vector 
𝜃 = 𝛼, 𝜑, 𝜓, 𝜗, 𝑡
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KL-Expansion of GP
Model 𝑢 ∼ 𝐺𝑃 𝜇, 𝑘

Step 2: Synthesis function

Shape-model transformation for landmark point 𝑙𝑖
𝑅:

𝜑𝑆 𝛼 𝑙𝑖
𝑅 = 𝑙𝑖

𝑅 + 𝜇 𝑙𝑖
𝑅 +෍

𝑖=𝑛

𝑚

𝛼𝑖 𝜆𝑖𝜙𝑖 𝑙𝑖
𝑅

Pose transformation:

𝜑𝑃 𝜑,𝜓, 𝜗, 𝑡 𝑙𝑖
𝑅 = 𝑅𝜗,𝜓,𝜑 𝑙𝑖

𝑅 + 𝑡

Full transformation:

𝜑 𝜃 (𝑙𝑖
𝑅) = 𝜑𝑝 𝜑,𝜓, 𝜗, 𝑡 ∘ 𝜑𝑆 𝛼 (𝑙𝑖

𝑅)
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Step 3: Likelihood function

For one landmark pair (𝑙𝑖
𝑅 , 𝑙𝑖

𝑇): 

𝑝 𝑙𝑖
𝑇 𝜃, 𝑙𝑖

𝑅 = 𝑁 𝜑 𝜃 𝑙𝑖
𝑅 , 𝐼3𝑥3𝜎

2

For all landmarks (assuming independence):

𝑙1
𝑇 , … , 𝑙𝑛

𝑇 𝜃, 𝑙1
𝑅 , … , 𝑙𝑛

𝑅 =ෑ

𝑖

𝑁 𝜑 𝜃 𝑙𝑖
𝑅 , 𝐼2𝑥2𝜎

2
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Landmarks match target position up to zero-mean Gaussian 
noise.
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Step 4: Prior distributions

Shape - model priors:
𝛼𝑖 ∼ 𝑁(0, 1)

Translation prior

• Assuming model is aligned to target:
𝑡𝑥, 𝑡𝑦, 𝑡𝑧 ∼ 𝑁(0, 10)

• Otherwise: 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 ∼ 𝑈 −1000, 1000

Rotation prior

• Assuming model is well aligned to target and roation center is center of mass of model:
𝜑,𝜓, 𝜗 ∼ 𝑁 0, 0.1

• Otherwise: 𝜑,𝜓, 𝜗 ∼ 𝑈(−𝜋, 𝜋)

From KL-Expansion of GP
Model 𝑢 ∼ 𝐺𝑃 𝜇, 𝑘
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Step 5: Inference

Posterior distribution:

𝑃 𝜃 𝑙𝑇 , 𝑙𝑅 =
𝑝 𝑙𝑇|𝜃, 𝑙𝑅 𝑃 𝜃

∫ 𝑝 𝑙𝑇|𝜃, 𝑙𝑅 𝑃 𝜃 𝑑𝜃

Intractable:

• Approximate using sampling
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Step 5: Setup of Metropolis-Hastings algorithm

Proposals: Gaussian random walk proposals
"𝑄 𝜃′|𝜃 = 𝑁(𝜃, Σ𝜃)"

• Blockwise updates

• Shape 𝑁(𝛼, 𝜎𝑆
2𝐼𝑚×𝑚 )

• Rotation 𝑁(𝜑, 𝜎𝜑
2), 𝑁 𝜓, 𝜎𝜓

2 , 𝑁(𝜗, 𝜎𝜗
2)

• Translation 𝑁(𝑡, 𝜎𝑡
2𝐼3×3)

• Large mixture distributions as proposals

Choose proposal 𝑄𝑖 with probability 𝑐𝑖
𝑄 𝜃′|𝜃 = ∑𝑐𝑖𝑄𝑖(𝜃

′|𝜃)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

3D Fit to landmarks

• Influence of landmarks uncertainty on 
final posterior?

• 𝜎LM = 1mm

• 𝜎LM = 4mm

• 𝜎LM = 10mm

• Only 4 landmark observations:

• Expect only weak shape impact

• Should still constrain pose

• Uncertain landmarks should be looser

12
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Posterior: Pose & Shape, 4mm
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Ƹ𝜇yaw = 0.511

ො𝜎yaw = 0.073 (4°)

Ƹ𝜇tx = −1mm

ො𝜎tx = 4 mm

Ƹ𝜇𝛼1 = 0.4

ො𝜎𝛼1 = 0.6

(Estimation from samples)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Posterior: Pose & Shape, 1mm
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Ƹ𝜇yaw = 0.50

ො𝜎yaw = 0.041 (2.4°)

Ƹ𝜇tx = −2mm

ො𝜎tx = 0.8 mm

Ƹ𝜇𝛼1 = 1.5

ො𝜎𝛼1 = 0.35
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Posterior: Pose & Shape, 10mm
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Ƹ𝜇yaw = 0.49

ො𝜎yaw = 0.11 (7°)

Ƹ𝜇tx = −5mm

ො𝜎tx = 10 mm

Ƹ𝜇𝛼1 = 0

ො𝜎𝛼1 = 0.6
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Traceplots

4mm1mm 10mm

log(𝑝(𝜃|𝑙𝑅, 𝑙𝑇)

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
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Marginal distributions (shape coefficients 𝛼)

4mm1mm 10mm
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Other likelihood functions
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Reminder: Landmark likelihood
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Landmarks match target position up to zero-mean Gaussian 
noise.

For one landmark pair (𝑙𝑖
𝑅 , 𝑙𝑖

𝑇): 

𝑝 𝑙𝑖
𝑇 𝜃, 𝑙𝑖

𝑅 = 𝑁 𝜑 𝜃 𝑙𝑖
𝑅 , 𝐼3𝑥3𝜎

2

For all landmarks (assuming independence):

𝑙1
𝑇 , … , 𝑙𝑛

𝑇 𝜃, 𝑙1
𝑅 , … , 𝑙𝑛

𝑅 =ෑ

𝑖

𝑁 𝜑 𝜃 𝑙𝑖
𝑅 , 𝐼2𝑥2𝜎

2
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Likelihood for points without correspondence

Match any point on target surface 
Γ𝑇 = {𝑝1

𝑇 , … 𝑝𝑛
𝑇}

For point 𝑝𝑖
𝑅 on model

𝑝 Γ𝑇 𝜃 = 𝑁 closestPoint Γ𝑇 , 𝜑 𝜃 (𝑝𝑖
𝑅) , 𝐼3×3𝜎

2

• Corresponding points becomes closest point

Useful for registration/fitting of surface

For set of points 𝑝1
𝑅, … , 𝑝𝑛

𝑅

𝑝 Γ𝑇 𝜃, 𝑝1
𝑅, … , 𝑝𝑛

𝑅 =ෑ

𝑖=1

𝑛

𝑁 closestPoint Γ𝑇, 𝜑 𝜃 (𝑝𝑖
𝑅) , 𝐼3×3𝜎

2



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Likelihood for points without correspondence

For landmark/point 𝑝𝑖
𝑇 on target without correspondence with model point

𝑝 𝑝𝑖 𝜃 = 𝑁 closestPoint Γ[𝜃], 𝑝𝑖
𝑇) , 𝐼3×3𝜎

2

• Γ[𝜃] is model instance:

Γ[𝜃] = {𝜑[𝜃](𝑝𝑖
𝑅)|𝑝𝑖

𝑅 ∈ Γ𝑅}

For set of points 𝑝1, … , 𝑝𝑛

𝑝 𝑝1
𝑇, … , 𝑝𝑛

𝑇 𝜃 =ෑ

𝑖=1

𝑛

𝑁 closestPoint Γ[𝜃], 𝑝𝑖
𝑇) , 𝐼3×3𝜎

2
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𝜌1

𝑥1

Likelihood function: Active shape models

• ASMs model each profile 𝜌(𝑥𝑖) as a normal 
distribution  

𝑝 𝜌(𝑥𝑖) = 𝑁(𝜇𝑖 , Σ𝑖)

• Single profile point 𝑥𝑖:
𝑝 𝜌(𝜑[𝜃](𝑥𝑖))|𝜃, 𝑥𝑖 = 𝑁(𝜇𝑖 , Σ𝑖)

• Likelihood for all profile points:

𝑝 𝜌(𝜑[𝜃](𝑥))|𝜃, Γ𝑅 =ෑ

𝑖

𝑁(𝜇𝑖 , Σ𝑖)

Extracts profile
(feature)  from image

Shape is well matched if environment around profile points is likely under trained model.
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Misc. Topics
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Sequential Bayesian updating

Update belief when data 𝑀1, …𝑀𝑛 becomes available

𝑝 𝜃 → 𝑝 𝜃 𝑀1 → 𝑝 𝜃 𝑀1, 𝑀2 → ⋯

Possible implementation in Metropolis-Hastings:

• Posterior of previous step becomes proposal distribution
𝑄 𝜃′ 𝜃 = 𝑃(𝜃′)

• Known as Independent Metropolis-Hastings, as proposal does not depend on previous
state
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Metropolis-Hastings as filtering

MH-Filter: Prior

𝑄(𝜃′|𝜃) r ≤ min 1,
𝑝(𝜃′)

𝑝 𝜃

𝑝(𝜃)

reject

Sampling from 𝑝(𝜃) using Metropolis-Hastings can be seen as filtering 



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Sequential Bayesian updating using Metropolis-Hastings

MH-Filter: Prior

𝑄(𝜃′|𝜃) r ≤ min 1,
𝑝(𝜃′)

𝑝 𝜃

MH-Filter: Information 𝑀1

r ≤ min 1,
𝑝(𝑀1|𝜃′)

𝑝 𝑀1|𝜃

𝑝(𝜃) 𝑝(𝜃|𝑀1)

reject reject

Sequential belief update:
𝑝 𝜃 → 𝑝 𝜃 𝑀1
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Sequential Bayesian updating using Metropolis-Hastings

MH-Filter: Prior

𝑄(𝜃′|𝜃) r ≤ min 1,
𝑝(𝜃′)

𝑝 𝜃

MH-Filter: Information 𝑀1

r ≤ min 1,
𝑝(𝑀1|𝜃′)

𝑝 𝑀1|𝜃

MH-Filter: Information 𝑀2

r ≤ min 1,
𝑝(𝑀2|𝜃

′)

𝑝 𝑀2|𝜃

𝑝(𝜃) 𝑝(𝜃|𝑀1) 𝑝(𝜃|𝑀1, 𝑀2)

reject reject reject

Sequential belief update:
𝑝 𝜃 → 𝑝 𝜃 𝑀1 → 𝑝(𝜃|𝑀1, 𝑀2)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Implementation in Scalismo

Scalismo provides special Filtering Proposal

• Can be used like any other proposal

val priorEvaluator : DistributionEvaluator[Sample] = ???
val proposalGen : ProposalGenerator[Sample] = ???

val metropolisFilterProposalGen1 = MetropolisFilterProposal(proposalGen, priorEvaluator)

val likelihoodEvaluator1 : DistributionEvaluator[Sample] = ???
val metropolisFilterProposalGen2 = MetropolisFilterProposal(metropolisFilterProposalGen1, likelihoodEvaluator1)

val likelihoodEvaluator1 : DistributionEvaluator[Sample] = ???

val mh = MetropolisHastings(metropolisFilterProposalGen2 , likelihoodEvaluator2)
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• Metropolis algorithm formalizes propose-and-verify idea

• Propose and verify steps are completely independent.

Propose
Draw a sample 𝑥′ from 𝑄(𝑥′|𝑥)

Verify

With probability 𝛼 = min
𝑃 𝑥′

𝑃 𝑥

𝑄 𝑥|𝑥′

𝑄 𝑥′|𝑥
, 1 accept 𝒙′ as new sample 

MH as propose-and-verify

29
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MH as propose-and-verify

• Decouples the steps of finding the solution from validating a solution

• Natural to integrate uncertain proposals Q 
(e.g. automatically detected landmarks, ...)

• Possibility to include “local optimization” (e.g. a ICP or ASM updates, 
gradient step, …) as proposal

Anything more “informed” than random walk should improve convergence.
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MH as propose-and-verify

Advantage

• Can include proposals that fail sometimes

• Example: Landmark detector with only 90% accuracy

• Algorithm is robust to 10% failures of proposals

Disadvantage

• Can include proposals that fail always

• Example: Buggy proposal

• Algorithm is robust to failure. Buggy proposal is not detected
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Solution: Logging

• Low acceptance rate indicates something is wrong -> Debug

• Optimal acceptance rate of random walk proposal:

• Between 20 and 30 %

• More sophisticated (and more expensive) proposals should have higher acceptance rate

We need to log the acceptance rate of every proposal!
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Summary: MCMC for 3D Fitting

• Modelling in the analysis-by-synthesis framework leads to intractable posterior 
computation
• Need for using approximate inference

• Metropolis-Hastings algorithm provides powerful framework
• Propose and verify

• Propose update step

• Verify and accept with probability

• Can integrate uncertain information

• Allows for sequential update of information

• Samples converge to true distribution: More about this later!
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