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Reminder: Analysis by synthesis

Parameters 𝜃

Comparison: 𝑝 D 𝜃)
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Reminder: The Metropolis-Hastings Algorithm

• Initialize with sample 𝒙

• Generate next sample, with current sample 𝒙
1. Draw a sample 𝒙′ from 𝑄(𝒙′|𝒙) (“proposal”)

2. With probability 𝛼 = min
𝑃 𝑥′

𝑃 𝑥

𝑄 𝑥|𝑥′

𝑄 𝑥′|𝑥
, 1 accept 𝒙′ as new state 𝒙

3. Emit current state 𝒙 as sample

3

Requirements:
• Proposal distribution 𝑄(𝒙′|𝒙) – must generate samples
• Target distribution 𝑃 𝒙 – with point-wise evaluation

Result:
• Stream of samples approximately from 𝑃 𝒙

Target distribution 
In our case: 𝑝 𝜃 𝐷𝑎𝑡𝑎)

Tuning “knob” –
influences 

convergence
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Reminder: The Metropolis-Hastings Algorithm

• Target: 𝑃 𝒙

• Proposal: 𝑄 𝒙′ 𝒙 = 𝒩(𝒙′|𝒙, 𝜎2𝐼2)

• Initial State 𝑥0

The sampled state at step 𝑖 is a random variable 𝑋𝑖 ∼ 𝑃𝑖 𝑥
• Initially close to our starting point 𝑥0

• “forgets” starting point after some time
Convergence: Distribution of 𝑋𝑖 becomes 𝑃(𝑥) if 𝑖 → ∞
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The big picture

Markov chain

Equilibrium 
distribution

Distribution 𝑃(𝑥)

Metropolis Hastings 
Algorithm

induces

converges to samples from

is

If Markov 
Chain is a-

periodic and 
irreducable

it…

… which satisfies detailed
balance condition for P(x) … an aperiodic and irreducable
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Understanding Markov Chains
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Markov Chain

• Sequence of random variables 𝑋𝑖 𝑖=1
𝑁 , 𝑋𝑖 ∈ 𝑆 with Markov Property

𝑃 𝑋𝑖|𝑋1, 𝑋2, … , 𝑋𝑖−1 = 𝑃 𝑋𝑖|𝑋𝑖−1

• Simplifications: (for our analysis)

• Discrete state space: 𝑆 = {1, 2, … , 𝐾}

• Homogeneous Chain: 𝑃 𝑋𝑖 = 𝑙 𝑋𝑖−1 = 𝑚 = 𝑇𝑙𝑚

• Can be simulated, for any given initial distribution 𝑋1

Transition probability

State space
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Automatically true if we use 
computers (e.g. 32 bit floats)
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Example: Markov Chain

• Simple weather model: dry (D) or rainy (R) hour
• Condition in next hour? 𝑋𝑡+1

• State space 𝑆 = {𝐷, 𝑅}

• Stochastic: 𝑃(𝑋𝑡+1|𝑋𝑡)

• Depends only on current condition 𝑋𝑡

• Draw samples from chain:
• Initial: 𝑋0 = 𝐷

• Evolution: 𝑃 𝑋𝑡+1 𝑋𝑡

• Long-term Behavior
• Does it converge? Average probability of rain?

• Dynamics? How quickly will it converge?

DDDDDDDDRRRRRRRRRRRDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DDDDDDDDDRDD...
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Discrete Homogeneous Markov Chain

Formally linear algebra:

• Distribution (vector):

𝑃 𝑋𝑖 : 𝒑𝒊 =
𝑃(𝑋𝑖 = 1)

⋮
𝑃(𝑋𝑖 = 𝐾)

• Transition probability (transition matrix):

𝑃 𝑋𝑖 𝑋𝑖−1 : 𝑇 =
𝑃 1 ← 1 ⋯ 𝑃 1 ← 𝐾

⋮ ⋱ ⋮
𝑃 𝐾 ← 1 ⋯ 𝑃 𝐾 ← 𝐾

𝑇𝑙𝑚 = 𝑃 𝑙 ← 𝑚 = 𝑃 𝑋𝑖 = 𝑙 𝑋𝑖−1 = 𝑚
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Evolution of the Initial Distribution

• Evolution of 𝑃 𝑋1 → 𝑃(𝑋2):

𝑃 𝑋2 = 𝑙 = ෍

𝑚∈𝑆

𝑃 𝑙 ← 𝑚 𝑃 𝑋1 = 𝑚

𝒑2 = 𝑇𝒑1

• Evolution of 𝑛 steps:

𝒑𝑛+1 = 𝑇𝑛𝒑1

• Is there a stable distribution 𝒑∗? (steady-state)

𝒑∗ = 𝑇𝒑∗ A stable distribution is an 
eigenvector of 𝑇 with 
eigenvalue 𝜆 = 1
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Steady-State Distribution: 𝒑∗

• It exists:

• 𝑇 subject to normalization constraint: left eigenvector to eigenvalue 1

෍

𝑙

𝑇𝑙𝑚 = 1 ⇔ 1 … 1 𝑇 = 1 … 1

• T has eigenvalue 𝜆 = 1 (left-/right eigenvalues are the same)

• Steady-state distribution as corresponding right eigenvector
𝑇𝒑∗ = 𝒑∗

• Does any arbitrary initial distribution evolve to 𝒑∗?

• Convergence?

• Uniqueness?
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Equilibrium Distribution: 𝒑∗

• Additional requirement for 𝑇: Tn
𝑙𝑚 > 0 for all 𝑛 > 𝑁0

The chain is called irreducible and aperiodic (implies ergodic)

• All states are connected using at most 𝑁0 steps

• Return intervals to a certain state are irregular

• Perron-Frobenius theorem for positive matrices:

• PF1: 𝜆1 = 1 is a simple eigenvalue with 1d eigenspace (uniqueness)

• PF2: 𝜆1 = 1 is dominant, all 𝜆𝑖 < 1, 𝑖 ≠ 1 (convergence)

• 𝒑∗ is a stable attractor, called equilibrium distribution
𝑇𝒑∗ = 𝒑∗

12



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Convergence

• Time evolution of arbitrary distribution 𝒑0

𝒑𝑛 = 𝑇𝑛𝒑0

• Expand 𝒑0 in Eigen basis of 𝑇
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𝑇𝒑0 = T ෍

𝑖

𝐾

𝑐𝑖𝑒𝑖 = ෍

𝑖

𝐾

𝑐𝑖T𝑒𝑖 = ෍

𝑖

𝐾

𝑐𝑖𝜆𝑖𝒆𝑖

𝑇𝑛𝒑0 = ෍

𝑖

𝐾

𝑐𝑖𝜆𝑖
𝑛𝒆𝑖 = 𝑐1𝒆1 + 𝜆2

𝑛𝑐2𝒆2 + 𝜆3
𝑛𝑐3𝒆3 + ⋯

Eigenbasis: 
𝑇𝒆𝑖 = 𝜆𝑖𝒆𝑖 , 𝜆𝑖 < 𝜆1 = 1, 𝜆𝑘 ≥ |𝜆𝑘+1|

𝒑0 = ෍

𝑖

𝐾

𝑐𝑖𝒆𝑖
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Convergence (II)

𝑇𝑛𝒑0 = ෍

𝑖

𝐾

𝑐𝑖𝜆𝑖
𝑛𝒆𝑖 = 𝑐1𝒆𝟏 + 𝜆2

𝑛𝑐2𝒆2 + 𝜆3
𝑛𝑐3𝒆3 + ⋯

≈ 𝒑∗ + 𝜆2
𝑛𝑐2𝒆2

• We have convergence:

𝑇𝑛𝒑0

𝑛→∞
𝒑∗

• Rate of convergence:

𝒑𝑛 − 𝒑∗ ≈ 𝜆2
𝑛𝑐2𝒆2 = 𝜆2

𝑛 𝑐2

Normalizations:
𝒆1 = 1

σ𝑖 𝑝𝑖
∗ = 1

𝑐1𝒆𝟏 = 𝒑∗(𝑛 ≫ 1)
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Example: Weather Dynamics

Rain forecast for stable versus mixed weather:

𝑊𝑠 =
0.95 0.2
0.05 0.8

stable 𝑊𝑚 =
0.85 0.6
0.15 0.4

mixed

𝒑∗ =
0.8
0.2 𝒑∗ =

0.8
0.2

Eigenvalues: 1, 0.75 Eigenvalues: 1, 0.25

RDDDDDDDDDDDDDDD

RDDDRDDDDDDDD...

RRRRDDDDDDDDDDDD

DDDDDDDDDDDDD...

Rainy now, next hours? Rainy now, next hours?

Long-term average 
probability of rain: 20%
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Markov Chain: First Results

• Aperiodic and irreducible chains are ergodic:
(every state reachable after > 𝑁 steps, irregular return time)

• Convergence towards a unique equilibrium distribution 𝒑∗

• Equilibrium distribution 𝒑∗

• Eigenvector of 𝑇 with eigenvalue 𝜆 = 1:  
𝑇𝒑∗ = 𝒑∗

• Rate of convergence: 

Exponential decay with second largest eigenvalue ∝ 𝜆2
𝑛
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Only useful if we can design chain with desired equilibrium distribution!
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Detailed Balance

• Special property of some Markov chains

Distribution 𝑝 satisfies detailed balance if the total flow of probability between every pair of states is equal, 
(we have a local equilibrium):

𝑝 𝑙 ← 𝑚 𝑝 𝑚 = 𝑝 𝑚 ← 𝑙 𝑝 𝑙

• Detailed balance implies: 𝑝 is the equilibrium distribution

𝑇𝒑 𝑙 = ෍

𝑚

𝑇𝑙𝑚𝑝𝑚 = ෍

𝑚

𝑇𝑚𝑙𝑝𝑙 = 𝑝𝑙

• Most MCMC methods construct chains which satisfies detailed balance. 
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The Metropolis-Hastings Algorithm
MCMC to draw samples from an arbitrary distribution
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Idea of Metropolis Hastings algorithm

• Design a Markov Chain, which satisfies the detailed balance condition

𝑇𝑀𝐻 𝑥′ ← 𝑥 𝑃 𝑥 = 𝑇𝑀𝐻 𝑥 ← 𝑥′ 𝑃 𝑥′

• Ergodicity ensures that chain converges to this distribution
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Attempt 1: A simple algorithm

• Initialize with sample 𝒙

• Generate next sample, with current sample 𝒙

1. Draw a sample 𝒙′ from 𝑄(𝒙′|𝒙) (“proposal”)

2. Emit current state 𝒙 as sample

• It’s a Markov chain

• Need to choose Q for every P to satisfy detailed balance
𝑄 𝑥′ ← 𝑥 𝑃 𝑥 = 𝑄 𝑥 ← 𝑥′ 𝑃 𝑥′
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Attempt 2: More general solution

• Initialize with sample 𝒙

• Generate next sample, with current sample 𝒙
1. Draw a sample 𝒙′ from 𝑄(𝒙′|𝒙) (“proposal”)

2. With probability 𝛼(x, x′) emit 𝒙′ as new sample

3. With probability 1 − 𝛼(x, x′) emit 𝑥 as new sample

• It’s a Markov chain

• Decouples Q from P through acceptance rule a

• How to choose a?
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What is the acceptance function a?

𝑇𝑀𝐻 𝑥′ ← 𝑥 𝑃 𝑥 = 𝑇𝑀𝐻 𝑥 ← 𝑥′ 𝑃 𝑥′

𝑎 𝑥′ 𝑥 𝑄 𝑥′ 𝑥 𝑃 𝑥 = 𝑎 𝑥 𝑥′ 𝑄 𝑥 𝑥′ 𝑃 𝑥′

Case A: x’ = x

• Detailed balance trivially satisfied for every a(x’,x)

Case B: 𝑥′ ≠ 𝑥

• We have the following requirement
𝑎 𝑥′ 𝑥

𝑎 𝑥 𝑥′ =
𝑄 𝑥 𝑥′ 𝑃 𝑥′

𝑄 𝑥′ 𝑥 𝑃 𝑥
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What is the acceptance function a?

Requirement: Choose 𝑎(𝑥′|𝑥) such that
𝑎 𝑥′ 𝑥

𝑎 𝑥 𝑥′ =
𝑄 𝑥 𝑥′ 𝑃 𝑥′

𝑄 𝑥′ 𝑥 𝑃 𝑥

• 𝑎 𝑥 𝑥′ is probability distribution 𝑎 𝑥 𝑥′ ≤ 1 and 𝑎 𝑥 𝑥′ ≥ 0

• Easy to check that:

𝑎 𝑥′ 𝑥 = min 1,
𝑄 𝑥 𝑥′ 𝑃 𝑥′

𝑄 𝑥′ 𝑥 𝑃 𝑥

satisfies this property.
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What is the acceptance function a?

Case 2: 

𝑄 𝑥 𝑥′ 𝑃 𝑥′

𝑄 𝑥′ 𝑥 𝑃 𝑥
>1

𝑎 𝑥′ 𝑥

𝑎 𝑥 𝑥′ =
min 1,

𝑄 𝑥 𝑥′ 𝑃 𝑥′

𝑄 𝑥′ 𝑥 𝑃 𝑥

min 1,
𝑄 𝑥′ 𝑥 𝑃 𝑥
𝑄 𝑥 𝑥′ 𝑃 𝑥′

=
1

𝑄 𝑥′ 𝑥 𝑃 𝑥
𝑄 𝑥 𝑥′ 𝑃 𝑥′

=
𝑄 𝑥 𝑥′ 𝑃 𝑥′

𝑄 𝑥′ 𝑥 𝑃 𝑥

Case 1: 

𝑄 𝑥′ 𝑥 𝑃 𝑥

𝑄 𝑥 𝑥′ 𝑃 𝑥′
>1

𝑎 𝑥′ 𝑥

𝑎 𝑥 𝑥′ =
min 1,

𝑄 𝑥 𝑥′ 𝑃 𝑥′

𝑄 𝑥′ 𝑥 𝑃 𝑥

min 1,
𝑄 𝑥′ 𝑥 𝑃 𝑥
𝑄 𝑥 𝑥′ 𝑃 𝑥′

=

𝑄 𝑥 𝑥′ 𝑃 𝑥′

𝑄 𝑥′ 𝑥 𝑃 𝑥

1
=

𝑄 𝑥 𝑥′ 𝑃 𝑥′

𝑄 𝑥′ 𝑥 𝑃 𝑥
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The big picture

Markov chain

Equilibrium 
distribution

Distribution 𝑝(𝑥)

Metropolis Hastings 
Algorithm

induces
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If Markov 
Chain is a-
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it…
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balance condition for p(x) … an aperiodic and irreducable


