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Reminder: Analysis by synthesis
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Sampling with Metroplis-Hastings
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Reminder: The Metropolis-Hastings Algorithm

Tuning “knob” —
Requirements: / influences
* Proposal distribution Q(x'|x) — must generate samples convergence

* Target distribution P(x) — with point-wise evaluation \

Result:

Target distribution
* Stream of samples approximately from P(x)

In our case: p(@|Data)

* Initialize with sample x

e Generate next sample, with current sample x

1. Draw asample x’ from Q(x'|x) (“proposal”)
P(x") Q(x|x") 1
P(x) Q(x'|x)’
3.  Emit current state x as sample

2. With probability a = min{ } accept x" as new state x
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Reminder: The Metropolis-Hastings Algorithm

* Target: P(x)
* Proposal:  Q(x'|x) = N (x'|x,0%1,) |
e Initial State x, ) ///

The sampled state at step i is a random variable X; ~ P;(x)
* |nitially close to our starting point x,

* “forgets” starting point after some time

Convergence: Distribution of X; becomes P(x) if i = o
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The big picture

... which satisfies detailed

balance condition for P(x) ... an aperiodic and irreducable
If Markov Markov chain W: induces Metropoli§ Hastings
T J Algorithm
periodic and
irreducable
it... converges to i samples from

'

ibution N Oibton P(:)
distribution g Distribution P(x)
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Understanding Markov Chains
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Markov Chain

/ State space

 Sequence of random variables {X;}Y,, X; € S with Markov Property

P(Xi|X17X27 "'rXi—l) — P(Xilxi—l) ‘\

, e , Automatically true if we use
* Simplifications: (for our analysis) /

computers (e.g. 32 bit floats)

Transition probability

* Discrete state space: § = {1, 2, ..., K}

* Homogeneous Chain: P(X; = l|X;_1 = m) = Ty,

* Can be simulated, for any given initial distribution Xy

1/6 1/3
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Example: Markov Chain

0.05
0.95 0.8

T

e Simple weather model: dry (D) or rainy (R) hour

e Condition in next hour? X1 G

» State space S = {D, R} ~_

 Stochastic: P(X¢4+1|X¢) 0.2
* Depends only on current condition X;

* Draw samples from chain:
DDDDDDDDRRRRRRRRRRRDDDDDDDDDDD

* Initial: Xo = D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
* Evolution: P(X¢411X¢) DDDDDDDDDRDD. . .

* Long-term Behavior
* Does it converge? Average probability of rain?
e Dynamics? How quickly will it converge?
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Discrete Homogeneous Markov Chain

Formally linear algebra:

 Distribution (vector):

P(X;=1)]
P(Xy): pi = :
P(X; = K))
* Transition probability (transition matrix):
P(1«<1) -+ P« K)
P(Xilxi—l): T =
P(K«<1) -+ P(K<K)]

Tim = Pl <« m) = P(X; = l|X;_, =m)
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Evolution of the Initial Distribution

e Evolution of P(X;) — P(X>):

P(X,=1) = z P(l « m)P(X; =m)

meS
P, =1Tpq
* Evolution of n steps:
Pn+1 =T"py

* |s there a stable distribution p*? (steady-state)

. . A stable distribution is an
p =Tp eigenvector of T with
eigenvalued =1
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Steady-State Distribution: p*

* |t exists:

e T subject to normalization constraint: left eigenvector to eigenvalue 1

ZTlm=1 1 .. 1T=[1 .. 1]
l

* T has eigenvalue A = 1 (left-/right eigenvalues are the same)

e Steady-state distribution as corresponding right eigenvector
Tp” =p°
* Does any arbitrary initial distribution evolve to p*?

e Convergence?

* Unigueness?

11
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Equilibrium Distribution: p*

 Additional requirement for T: (T");,,, > 0 foralln > N,

The chain is called irreducible and aperiodic (implies ergodic)
* All states are connected using at most N, steps

e Return intervals to a certain state are irregular

e Perron-Frobenius theorem for positive matrices:
* PF1:A; = 1is asimple eigenvalue with 1d eigenspace (uniqueness)

* PF2: A, = lisdominant, all |[4;] < 1, i # 1 (convergence)

e p* is a stable attractor, called equilibrium distribution

12
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Convergence
* Time evolution of arbitrary distribution pg, Eigenbasis:
P =T"p, Te; = ;}ieir Al <A1 =1, |A] = [Ag41l
* Expand pg in Eigen basis of T Do = z c;e;
K K K i
Tpy = Tz c;ie; = z c;Te; = z cilie;
i i i

K
TnpO — Z Ciﬂ?ei = (C1€14 + Agczez + Ag'CBeB 4 ...

i
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Convergence (ll)

K
T"po = z ciAie; = cieq + A5cye, + Afczes + -

l
~ n* n
n>1) ~Pp +12C282 ceq =p’

* We have convergence:

, n-o Normalizations:
T"py—p le, || =1
xipi =1

* Rate of convergence:
pn — DIl = Az c2€20l = (2] | ca]
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Example: Weather Dynamics

Rain forecast for stable versus mixed weather:

0.95 0.2 < 0 o - 0.85 0.6
stable W, = [ C D mixed W, = [
0.05 0.8 U 0.15 0.4

p* = [0-8 ) Long-term average . « 108
0.2 probability of rain: 20% p = 0.2
Eigenvalues: 1, 0.75 oe - xed wester rany | | Eigenvalues: 1, 0.25
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Markov Chain: First Results

* Aperiodic and irreducible chains are ergodic:
(every state reachable after > N steps, irregular return time)

e Convergence towards a unique equilibrium distribution p*

* Equilibrium distribution p*

* Eigenvector of T with eigenvalue A = 1:

* Rate of convergence:

Exponential decay with second largest eigenvalue o |1, |"

Only useful if we can design chain with desired equilibrium distribution!
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Detailed Balance

» Special property of some Markov chains

Distribution p satisfies detailed balance if the total flow of probability between every pair of states is equal,
(we have a local equilibrium):

p(l « m)p(m) =p(m < Dp()

* Detailed balance implies: p is the equilibrium distribution

(Tp), = z TymPm = Z Toup1 = P
m m

e Most MCMC methods construct chains which satisfies detailed balance.
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The Metropolis-Hastings Algorithm

MCMC to draw samples from an arbitrary distribution

19
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ldea of Metropolis Hastings algorithm

e Design a Markov Chain, which satisfies the detailed balance condition

Tyg(x" < x)P(x) = Tyu(x < x")P(x")

e Ergodicity ensures that chain converges to this distribution
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Attempt 1: A simple algorithm

Initialize with sample x

Generate next sample, with current sample x
1. Draw asample x’ from Q(x'|x) (“proposal”)

2.  Emit current state x as sample

It’s @ Markov chain

Need to choose Q for every P to satisfy detailed balance

Q(x" « x)P(x) = Q(x « x")P(x')
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Attempt 2: More general solution

Initialize with sample x

* Generate next sample, with current sample x
1. Draw asample x’ from Q(x'|x) (“proposal”)
2. With probability a(x,x") emit x" as new sample

3. With probability 1 — a(x,x") emit x as new sample

It’s @ Markov chain

Decouples Q from P through acceptance rule a

* How to choose a?
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What is the acceptance function a?

Typ(x" < x)P(x) = Tyy(x < x")P(x")
a(x'|x)Q(x'[x)P(x) = alx|x)Q(x|x)P(x’)
CaseA: x" =x
* Detailed balance trivially satisfied for every a(x’,x)
Case B:x" + x

* We have the following requirement

a(x'|x) _ Qxlx)P(x')
a(elx) ~ QGTOP()
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What is the acceptance function a?

Requirement: Choose a(x'|x) such that
a(x’|x) _ Qx|x)P(x’)
a(x|x’)  QQx'|x)P(x)

e a(x|x") is probability distribution a(x|x’) <1 and a(x|x’) =0

e Easy to check that:

Q(xlx’)P(x’)>

a(x'|x) = min (1, 0 PG

satisfies this property.
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What is the acceptance function a?

Case 1:

Q(x’|x)P(x)
Q(x|x’)P(xr)

min( Q(xIx’)P(x’)) Qx|x)P(x")

a(x'[x) " Q(x'|x)P(x) Q(x'x)P(x) Q(x|x")P(x')

a(x|x) . Q(x'|x)P(x) 1 ~ Q(x|x)P(x)
mm( Qx |x)P<x)>

Case 2:

Q(x|x’)P(x’)>1
Q(x’|x)P(x)
(. QUx]xHP(x)

a(x’lx)_“““(1 Q(x’ |x)P<x)> 1 Q(x|x")P(x")

a(x|x") min( Q(x' Ix)P(x)) Q' IPR) ~ Q&x'[0)P(x)
"Qx[xHYP(x))  Qx|x)P(x")
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The big picture

... which satisfies detailed

balance condition for p(x) ... an aperiodic and irreducable
If Markov Markov chain W: induces Metropoli§ Hastings
T J Algorithm
periodic and
irreducable
it... converges to i samples from

'

riutior N Ditrution p(x)
distribution g Distribution p(x)




