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Chapter 2: Generative models for discrete data

Foundations of Bayesian inference
Bayesian concept learning: the number game

The beta-binomial model: tossing coins

The Dirichlet-multinomial model: rolling dice
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Bayesian concept learning

Consider how a child learns the meaning of the word dog.
Presumably from positive examples, like “look at the cute dog!”

Negative examples much less likely, “look at that non-dog” (?)

Psychological research has shown that people can learn concepts
from positive examples alone.

@ Learning meaning of a word = concept learning = binary
classification: f(x) =1 if x is example of concept C, and 0 otherwise.

o Standard classification requires positive and negative examples...
Bayesian concept learning uses positive examples alone.

o Example: the number game: | choose some arithmetical concept C,
such as “prime number”. | give you a (random) series of positive
examples D = {x1,...,xy} drawn from C.

Question: does new X belong to C?
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The number game

(]

Consider integers in [1,100]. | tell you 16 is a positive example.

What are other positive examples? Difficult with only one example...

Intuition: numbers similar to 16 are more likely.

But what means similar? 17 (close by), 6 (one digit in common),
32 (also even and a power of 2), etc.

Represent this as a probability distribution:
p(X|D): probability that X € C given D.
~ posterior predictive distribution.

After seeing D = {16, 8,2,64}, you may guess that the concept is
“powers of two.

...if instead | tell you D = {16,23,19,20}...
How can we explain this behavior and emulate it in a machine?

Suppose we have a hypothesis space of concepts, #.
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Figure 3.1 in K. Murphy. Empirical predictive distribution averaged over 8 humans in the number game. First two rows: after
seeing D = {16} and D = {60}. This illustrates diffuse similarity. Third row: after seeing D = {16, 8, 2,64}. This illustrates

rule-like behavior (powers of 2). Bottom row: after seeing D = {16, 23,19, 20} ~~ focused similarity (numbers near 20)
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The number game

@ Version space: subset of H that is consistent with D.

@ As we see more examples, the version space shrinks and we become
increasingly certain about the concept.

@ But: version space is not the whole story:

> After seeing D = {16}, there are many consistent rules; how do you
combine them to predict if X € C?

> Also, after seeing D = {16, 8,2,64}, why did you choose the rule
“powers of two" and not “all even numbers”, or “powers of two except
for 32", which are equally consistent with the evidence?

o Bayesian explanation.
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The number game: Likelihood

@ Having seen D = {16,8,2,64}, we must explain why we chose
howo = “powers of two”, and not heyen = “even numbers”.

@ Key intuition: want to avoid suspicious coincidences. If the true
concept was heyven, how come we only saw powers of two?

o Formalization: assume that examples are sampled uniformly at
random from the extension of a concept, e.g.
heven = {2,4,6,...,100}.

o Given this assumption, the probability of independently sampling N
items (with replacement) from his p(D|h) = {ﬁ}

@ Size principle: the model favors the simplest hypothesis consistent
with the data. Known as Occam’s razor.

o William of Ockham (1287-1347):
When presented with competing hypotheses that make the same
predictions, select the simplest one.
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The number game: Likelihood

o Let D = {16} ~» p(D|hwo) = 1/6, since there are 6 powers of two
less than 100, but p(D|heven) = 1/50, since there are 50 even
numbers.

So the likelihood that h = hyy,o is higher than if h = heyen.
After 4 examples, p(D|hwwo) = (1/6)*, p(D|heven) = (1/50)*.
This is a likelihood ratio of almost 5000:1 in favor of huyo.

This quantifies our earlier intuition that D = {16, 8,2,64} would be a
very suspicious coincidence if generated by heven.
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The number game: Prior

e Given D = {16,8,2,64}, the concept
h = “powers of two except 32"
is more likely than
h = “powers of two",
since h' does not need to explain the coincidence that 32 is missing.
o However, h' seems “conceptually unnatural”.
o Capture such intuition by assigning low prior probability to
“unnatural” concepts.
@ Your prior might be different than mine, and this subjective aspect
of Bayesian reasoning is a source of much controversy.
@ But priors are actually quite useful:

> If you are told the numbers are from some arithmetic rule, then given
1200, 1500, and 900, you may think 400 is likely but 1183 is unlikely.

» But if you are told that the numbers are examples of healthy cholesterol
levels, you would probably think 400 is unlikely and 1183 is likely.
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The number game: Prior
@ The prior is the mechanism to formalize background knowledge.
Without this, rapid learning is impossible.

@ Example: use a simple prior which puts uniform probability on 30
simple arithmetical concepts.

@ To make things more interesting, we make the concepts “even” and
“odd"” more likely a priori.

@ We also include two “unnatural” concepts, namely “powers of 2, plus
37" and “powers of 2, except 32", but give them low prior weight.

0 0.1
prior

powers of 2 + (37}
powers of 2 - {32}

From Figure 3.2 in K. Murphy. Prior.

Volker Roth (University of Basel) 10 / 32



The number game: Posterior

@ The posterior is simply the likelihood times the prior, normalized:
1 p(MI(D € h)/|hN
p(h|D) = p(DIh)p(h) = ,
p(D)” Ywen P(W)UD € K)/|hM
where I(D € h) = 1 iff the data are in extension of hypothesis h.

o After seeing D = {16,8,2,64}, the likelihood is much more peaked
on the powers of two concept, so this dominates the posterior.
@ In general, when we have enough data, the posterior p(h|D) becomes
peaked on a single concept, namely the MAP estimate
p(h|D) = dpuae (h),
where
HMAP

= arg max p(h|D)

is the posterior mode, and ¢ is the Dirac measure

54(A) = 1 ,ifxeA,
x 10 otherwise
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The number game: Posterior

@ Note that the MAP estimate can be written as

HMAP _ arg max p(h|D) = arg mi?x[log p(D|h) + log p(h)]

o Likelihood depends exponentially on N, prior stays constant
~> as we get more data, the MAP estimate converges to the
maximum likelihood estimate (MLE):

AMLE — arg max p(D|h) = arg max log p(D|h).

~> Enough data overwhelms the prior.

o If the true hypothesis is in the hypothesis space, then the MAP/ ML
estimate will converge upon this hypothesis. Thus Bayesian inference
(and ML estimation) are consistent estimators.

@ We also say that the hypothesis space is identifiable in the limit,
meaning we can recover the truth in the limit of infinite data.
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Figure 3.2 in K. Murphy. Prior, likelihood and posterior for D = {16}.

Volker Roth (University of Basel) 13 / 32



even|

odd
squares
mult of 3
mult of 4]
mult of 5|
mult of 6
mult of 7
mult of 8
mult of 9
mult of 10|
endsin 1
ends in 2
endsin 3
endsin 4
endsin5
endsin 6
endsin7
endsin 8
endsin9
powers of 2]
powers of 3
powers of 4]
powers of 5
powers of 6
powers of 7]
powers of §
powers of 9|
powers of 10}
all

powers of 2 + {37]
powers of 2 - {32

data=16 8 2 64
5

Figure 3.3 in K. Murphy. Prior, likelihood and posterior for D = {16, 8, 2, 64}.
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Figure 3.4 in K. Murphy. Posterior over hypotheses and predictive distribution

after seeing D = {16}. A dot means this number is consistent with h.
Right: p(h|D). Weighed sum of dots ~» p(x € C|D) (top).
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The number game: Posterior predictive distribution

o Posterior = internal belief state about the world.
Test these beliefs by making predictions.

@ The posterior predictive distribution is given by
p(x € C|D) = Zp(x|h (h|D)

~ weighted average of the predictions of each hypothesis
~> Bayes model averaging.

e Small dataset ~~ vague posterior p(h|D) ~~ broad predictive
distribution.

@ Once we have “figured things out”, posterior becomes a delta
function centered at the MAP estimate:

p(% € CID) =Y _ p(%|h)8hune (h) = p(%|h)
h

~> Plug-in approximation. In general, under-represents uncertainty!
o Typically, predictions by plug-in and Bayesian approach quite different
for small N although they converge to same answer as N — oc.
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hypothesis space.
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The beta-binomial model

@ Number game: inferring a distribution of a discrete variable drawn
from a finite hypothesis space, h € H, given a
series of discrete observations.

@ This made the computations simple: just needed to sum, multiply
and divide.

@ Often, the K unknown parameters are continuous,
so the hypothesis space is (some subset) of RX .

@ This complicates mathematics (replace sums with integrals), but the
basic ideas are the same.

@ Example: inferring the probability that a coin shows up heads, given a
series of observed coin tosses.
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The beta-binomial model: Likelihood

@ Suppose X; ~ Ber(6), where X; = 1 represents “heads”,
and 0 € [0, 1] is the probability of heads.

@ Assuming iid data, the likelihood is

N
p(DI0) = oM (1 —0)%, Ny = TI(x; = 1) heads,
i=1

N
No =Y I(x; = 0) tails.
i=1

o {Ny, Np} are a sufficient statistics of the data:
all we need to know to infer 6.

e Formally: s(D) is a sufficient statistic for D if p(6|D) = p(8|s(D)).
@ Two datasets with same sufficient statistics
~~ same estimated value for 0.
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The beta-binomial model: Likelihood

@ Suppose we observe the count of the number of heads Ny in a fixed
number N = Ny + Ny of trials: Ny ~ Bin(N1|N, 8), where

N
Bin(Ny|N, 6) = (/\/ )9"’1(1 —)N-M,
1

@ The factor (,0/1) is independent of
~ likelihood for binomial sampling = Bernoulli likelihood.

@ Any inferences we make about € will be the same whether we observe
the counts, D = (N, N), or a sequence of trials, D = {xq,...,xn}.
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The beta-binomial model: Prior

o Need a prior over the interval [0,1]. Would be convenient if the prior
had the same form as the likelihood: p(6) o< 671(1 — 6)72.

@ Then, the posterior would be
p(A|D) o 0N1+71(1 _ 0)N0+’Yz_
Prior and posterior have the same form ~~ conjugate prior.

@ In the case of the Bernoulli likelihood, the conjugate prior is the
beta distribution:

Beta(f|a, b) o< 271(1 — 9)b~1
@ The parameters of the prior are called hyper-parameters.
We can set them to encode our prior beliefs.

o If we know “nothing” about 6, we can use a uniform prior.
Can be represented by a beta distribution with a = b = 1.
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The beta-binomial model

Prior (orange): a = 2, b = 2, Likelihood (blue): NO =17, N1 =3 Prior (orange): a = 5, b = 2, Likelihood (blue): NO = 13, N1 = 11
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a) Updating a Beta(2,2) prior with a Binomial likelihood with sufficient
statistics Ny = 3, Np = 17 to yield a Beta(5, 19) posterior. (b) Updating a
Beta(5,2) prior with a Binomial likelihood with sufficient statistics

Ny =11, Ny = 13 to yield a Beta(16, 15) posterior.
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The beta-binomial model: Posterior

@ Multiplying with the beta prior we get the following posterior:
p(0|D) x Bin(N1|N, 0)Beta(f|a, b) x Beta(8| N1 + a, No + b)
@ Posterior is obtained by adding the prior hyper-parameters to the

empirical counts
~> hyper-parameters are known as pseudo counts.

@ The strength of the prior, also known as the equivalent sample size,
is the sum of the pseudo counts, ag = a + b.

@ Plays a role analogous to the data set size, Ny + Ng = N.
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The beta-binomial model: Posterior predictive distribution

@ So far: focus on inference of unknown parameter(s).

@ Let us now turn our attention to
prediction of future observable data.

@ Consider predicting the probability of heads in a single future trial
under a Beta(N; + a, Np + b) posterior
~~ posterior predictive distribution:

(5 =11D) = [ p(x = 10)p(61D) 00

1
:/ 6 Beta(0|Ny + a, No + b) df
0

p(6|D)
N1+a
= E[0|D] =
[17] Ni+No+a+b
«
Note : u|Bet =
(Note : lBetala, 0)] = )
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Overfitting and the black swan paradox

o Suppose that we plug-in the MLE, i.e., we use p(%|D) ~ Ber(%|OuLg).
@ Can perform quite poorly Yvhen the sample size is small: suppose we
have seen N = 3 tails ~» Oy g =0/3=0
~> heads seem to be impossible.
@ This is called the zero count problem or sparse data problem.
o Even highly relevant in the era of “big data”: think about partitioning
(patient) data based on (personalized) criteria.
@ Analogous to a problem in philosophy called black swan paradox:
A black swan was a metaphor for something that could not exist.
@ Bayesian solution: use a uniform prior: a=b = 1.
o Plugging in the posterior gives Laplace’s rule of succession
Ny +1
N1 + No + 2
Justifies common practice of adding 1 to empirical counts.

p(% = 1D) =
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The Dirichlet-multinomial model

@ So far: inferring the probability that a coin comes up heads.
o Generalization: probability that a die with K sides comes up as face k.

o Likelihood: observe N dice rolls D = {x1,...,xn}, xi € {1,...,K}.
K
iid assumption ~~ p(D|0) = H 9/’(ij
k=1
where Ny is the number of times event k occurred (these are the
sufficient statistics for this model).
@ Prior: 0 lives in K-dim probability simplex. Conjugate prior with this
property: Dirichlet distribution
K

p(0]a) = Dir(0lar) = H
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Dirichlet distribution
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The Dirichlet-multinomial model

@ Posterior:
p(0|D) o< p(D|0)p(0]cx)

K K

o [To2 TT o5 !
k=1 k=1
K

o H GLVk-I—ak—l
k=1

= Dir(0|a1 + Ni,...,ax + NK)

o Note that we (again) add pseudo-counts « to empirical counts Ny.
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The Dirichlet-multinomial model

@ Posterior predictive:

p(X = D) = [ p(X =10)p(61D) b, {write 6 = (6-;.6))'}
—/ X = jlo;) UP(9—191\D) df_;| dob

= [om(esIp) do

= E1D] = 2
2k (Nic + ak)
@ Note: This Bayesian smoothing avoids the zero-count problem.
Even more important in the multinomial case, since we partition the
data into many categories.
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Example: Simple language model

@ Goal: predict which words might occur next in a sequence.

o Bag of words model: assume that i'th word X; € {1,..., K} is
sampled independently from other words using Cat(@) distribution.

@ Suppose we observe the following sequence (children’s nursery rhyme)

Mary had a little lamb, little lamb, little lamb,
Mary had a little lamb, its fleece as white as snow

@ Suppose our vocabulary consists of the following words:

mary lamb little big fleece white black snow rain unk
1 2 3 4 5 6 7 8 9 10
unk stands for unknown (all other words)

@ Standard procedure: strip off punctuation, and remove any stop

words such as “a”, “as”, “the", etc.
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Example: Simple language model

@ Replace each word by its index into the vocabulary to get:

110323 232
110 3 21056 8

@ Count how often each word occurred ~~ histogram of word counts:

Token | 1 2 3 4 5 6 7 8 9 10
Word | mary lamb little big fleece white black snow rain unk
Count | 2 4 4 0 1 1 0 1 0 3

Volker Roth (University of Basel) Machine Learning 31/32



Example: Simple language model

@ Denote above counts by N;, use a Dir(a) prior
~~ posterior predictive
~ N: + a;
p(X = j|D) = E[¢;|D - J 9
( J‘ ) [J’ ] Zk(Nk+ak)
If we set oj = 1, we get
> 3 55 1 2 2 1 2 1 5
X=jD)=|z=,7=175y 75,75, 751 75+ 7=+ == ==
P(X =JID) (27’ 27°27°27°27° 27 27° 27’ 271 27)
@ Peaks at X =2 (“lamb"), X = 3 (“little”) and X = 10 (“unk").
@ Note that the words “big”, “black” and “rain” are predicted to occur
with non-zero probability in the future, even though they have never
been seen before.
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