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Chapter 2: Generative models for discrete data

Foundations of Bayesian inference
Bayesian concept learning: the number game
The beta-binomial model: tossing coins
The Dirichlet-multinomial model: rolling dice
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Bayesian concept learning

Consider how a child learns the meaning of the word dog.
Presumably from positive examples, like “look at the cute dog!”
Negative examples much less likely, “look at that non-dog” (?)
Psychological research has shown that people can learn concepts
from positive examples alone.
Learning meaning of a word = concept learning = binary
classification: f (x) = 1 if x is example of concept C , and 0 otherwise.
Standard classification requires positive and negative examples...
Bayesian concept learning uses positive examples alone.
Example: the number game: I choose some arithmetical concept C ,
such as “prime number”. I give you a (random) series of positive
examples D = {x1, . . . , xN} drawn from C .
Question: does new x̃ belong to C?
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The number game

Consider integers in [1, 100]. I tell you 16 is a positive example.
What are other positive examples? Difficult with only one example...
Intuition: numbers similar to 16 are more likely.
But what means similar? 17 (close by), 6 (one digit in common),
32 (also even and a power of 2), etc.
Represent this as a probability distribution:
p(x̃ |D): probability that x̃ ∈ C given D.
 posterior predictive distribution.
After seeing D = {16, 8, 2, 64}, you may guess that the concept is
“powers of two”.
...if instead I tell you D = {16, 23, 19, 20}...
How can we explain this behavior and emulate it in a machine?
Suppose we have a hypothesis space of concepts, H.
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Figure 3.1 in K. Murphy. Empirical predictive distribution averaged over 8 humans in the number game. First two rows: after

seeing D = {16} and D = {60}. This illustrates diffuse similarity. Third row: after seeing D = {16, 8, 2, 64}. This illustrates

rule-like behavior (powers of 2). Bottom row: after seeing D = {16, 23, 19, 20}  focused similarity (numbers near 20)
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The number game

Version space: subset of H that is consistent with D.
As we see more examples, the version space shrinks and we become
increasingly certain about the concept.
But: version space is not the whole story:
I After seeing D = {16}, there are many consistent rules; how do you

combine them to predict if x̃ ∈ C?
I Also, after seeing D = {16, 8, 2, 64}, why did you choose the rule

“powers of two” and not “all even numbers”, or “powers of two except
for 32”, which are equally consistent with the evidence?

Bayesian explanation.
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The number game: Likelihood

Having seen D = {16, 8, 2, 64}, we must explain why we chose
htwo = “powers of two”, and not heven = “even numbers”.
Key intuition: want to avoid suspicious coincidences. If the true
concept was heven, how come we only saw powers of two?
Formalization: assume that examples are sampled uniformly at
random from the extension of a concept, e.g.
heven = {2, 4, 6, . . . , 100}.
Given this assumption, the probability of independently sampling N
items (with replacement) from h is p(D|h) =

[
1
|h|

]N
.

Size principle: the model favors the simplest hypothesis consistent
with the data. Known as Occam’s razor.
William of Ockham (1287-1347):
When presented with competing hypotheses that make the same
predictions, select the simplest one.
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The number game: Likelihood

Let D = {16}  p(D|htwo) = 1/6, since there are 6 powers of two
less than 100, but p(D|heven) = 1/50, since there are 50 even
numbers.
So the likelihood that h = htwo is higher than if h = heven.
After 4 examples, p(D|htwo) = (1/6)4, p(D|heven) = (1/50)4.
This is a likelihood ratio of almost 5000:1 in favor of htwo.
This quantifies our earlier intuition that D = {16, 8, 2, 64} would be a
very suspicious coincidence if generated by heven.
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The number game: Prior
Given D = {16, 8, 2, 64}, the concept

h′ = “powers of two except 32”
is more likely than

h = “powers of two”,
since h′ does not need to explain the coincidence that 32 is missing.
However, h′ seems “conceptually unnatural”.
Capture such intuition by assigning low prior probability to
“unnatural” concepts.
Your prior might be different than mine, and this subjective aspect
of Bayesian reasoning is a source of much controversy.
But priors are actually quite useful:
I If you are told the numbers are from some arithmetic rule, then given

1200, 1500, and 900, you may think 400 is likely but 1183 is unlikely.
I But if you are told that the numbers are examples of healthy cholesterol

levels, you would probably think 400 is unlikely and 1183 is likely.
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The number game: Prior
The prior is the mechanism to formalize background knowledge.
Without this, rapid learning is impossible.
Example: use a simple prior which puts uniform probability on 30
simple arithmetical concepts.
To make things more interesting, we make the concepts “even” and
“odd” more likely a priori.
We also include two “unnatural” concepts, namely “powers of 2, plus
37” and “powers of 2, except 32”, but give them low prior weight.

From Figure 3.2 in K. Murphy. Prior.
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The number game: Posterior
The posterior is simply the likelihood times the prior, normalized:

p(h|D) = 1
p(D)p(D|h)p(h) = p(h)I(D ∈ h)/|h|N∑

h′∈H p(h′)I(D ∈ h′)/|h|N ,

where I(D ∈ h) = 1 iff the data are in extension of hypothesis h.
After seeing D = {16, 8, 2, 64}, the likelihood is much more peaked
on the powers of two concept, so this dominates the posterior.
In general, when we have enough data, the posterior p(h|D) becomes
peaked on a single concept, namely the MAP estimate

p(h|D)→ δĥMAP(h),
where

ĥMAP = arg max
h

p(h|D)

is the posterior mode, and δ is the Dirac measure

δx (A) =
{

1 , if x ∈ A,
0 otherwise
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The number game: Posterior

Note that the MAP estimate can be written as
ĥMAP = arg max

h
p(h|D) = arg max

h
[log p(D|h) + log p(h)]

Likelihood depends exponentially on N, prior stays constant
 as we get more data, the MAP estimate converges to the
maximum likelihood estimate (MLE):

ĥMLE = arg max
h

p(D|h) = arg max
h

log p(D|h).

 Enough data overwhelms the prior.
If the true hypothesis is in the hypothesis space, then the MAP/ ML
estimate will converge upon this hypothesis. Thus Bayesian inference
(and ML estimation) are consistent estimators.
We also say that the hypothesis space is identifiable in the limit,
meaning we can recover the truth in the limit of infinite data.
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Figure 3.2 in K. Murphy. Prior, likelihood and posterior for D = {16}.
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Figure 3.3 in K. Murphy. Prior, likelihood and posterior for D = {16, 8, 2, 64}.
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Figure 3.4 in K. Murphy. Posterior over hypotheses and predictive distribution
after seeing D = {16}. A dot means this number is consistent with h.
Right: p(h|D). Weighed sum of dots  p(x̃ ∈ C |D) (top).
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The number game: Posterior predictive distribution
Posterior = internal belief state about the world.
Test these beliefs by making predictions.
The posterior predictive distribution is given by

p(x̃ ∈ C |D) =
∑

h
p(x̃ |h)p(h|D)

 weighted average of the predictions of each hypothesis
 Bayes model averaging.
Small dataset  vague posterior p(h|D)  broad predictive
distribution.
Once we have “figured things out”, posterior becomes a delta
function centered at the MAP estimate:

p(x̃ ∈ C |D) =
∑

h
p(x̃ |h)δĥMAP(h) = p(x̃ |ĥ)

 Plug-in approximation. In general, under-represents uncertainty!
Typically, predictions by plug-in and Bayesian approach quite different
for small N although they converge to same answer as N →∞.
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Figure 3.5 in K. Murphy. Predictive distributions for the model using the full
hypothesis space.
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The beta-binomial model

Number game: inferring a distribution of a discrete variable drawn
from a finite hypothesis space , h ∈ H, given a
series of discrete observations.
This made the computations simple: just needed to sum, multiply
and divide.
Often, the K unknown parameters are continuous ,
so the hypothesis space is (some subset) of RK .
This complicates mathematics (replace sums with integrals), but the
basic ideas are the same.
Example: inferring the probability that a coin shows up heads, given a
series of observed coin tosses.
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The beta-binomial model: Likelihood

Suppose Xi ∼ Ber(θ), where Xi = 1 represents “heads”,
and θ ∈ [0, 1] is the probability of heads.
Assuming iid data, the likelihood is

p(D|θ) = θN1(1− θ)N0 , N1 =
N∑

i=1
I(xi = 1) heads,

N0 =
N∑

i=1
I(xi = 0) tails.

{N1,N0} are a sufficient statistics of the data:
all we need to know to infer θ.
Formally: s(D) is a sufficient statistic for D if p(θ|D) = p(θ|s(D)).
Two datasets with same sufficient statistics
 same estimated value for θ.
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The beta-binomial model: Likelihood

Suppose we observe the count of the number of heads N1 in a fixed
number N = N1 + N0 of trials: N1 ∼ Bin(N1|N, θ), where

Bin(N1|N, θ) =
(

N
N1

)
θN1(1− θ)N−N1 .

The factor
(N

N1

)
is independent of θ

 likelihood for binomial sampling = Bernoulli likelihood.
Any inferences we make about θ will be the same whether we observe
the counts, D = (N1,N), or a sequence of trials, D = {x1, . . . , xN}.
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The beta-binomial model: Prior

Need a prior over the interval [0, 1]. Would be convenient if the prior
had the same form as the likelihood: p(θ) ∝ θγ1(1− θ)γ2 .

Then, the posterior would be
p(θ|D) ∝ θN1+γ1(1− θ)N0+γ2 .

Prior and posterior have the same form  conjugate prior.
In the case of the Bernoulli likelihood, the conjugate prior is the
beta distribution:

Beta(θ|a, b) ∝ θa−1(1− θ)b−1

The parameters of the prior are called hyper-parameters.
We can set them to encode our prior beliefs.
If we know “nothing” about θ, we can use a uniform prior.
Can be represented by a beta distribution with a = b = 1.
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The beta-binomial model

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

Prior (orange): a = 2, b = 2, Likelihood (blue): N0 = 17, N1 = 3

x

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

Prior (orange): a = 5, b = 2, Likelihood (blue): N0 = 13, N1 = 11

x

a) Updating a Beta(2, 2) prior with a Binomial likelihood with sufficient
statistics N1 = 3,N0 = 17 to yield a Beta(5, 19) posterior. (b) Updating a
Beta(5, 2) prior with a Binomial likelihood with sufficient statistics
N1 = 11,N0 = 13 to yield a Beta(16, 15) posterior.
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The beta-binomial model: Posterior

Multiplying with the beta prior we get the following posterior:
p(θ|D) ∝ Bin(N1|N, θ)Beta(θ|a, b) ∝ Beta(θ|N1 + a,N0 + b)

Posterior is obtained by adding the prior hyper-parameters to the
empirical counts
 hyper-parameters are known as pseudo counts.
The strength of the prior, also known as the equivalent sample size ,
is the sum of the pseudo counts, α0 = a + b.
Plays a role analogous to the data set size, N1 + N0 = N.
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The beta-binomial model: Posterior predictive distribution

So far: focus on inference of unknown parameter(s).
Let us now turn our attention to
prediction of future observable data.
Consider predicting the probability of heads in a single future trial
under a Beta(N1 + a,N0 + b) posterior
 posterior predictive distribution:

p(x̃ = 1|D) =
∫ 1

0
p(x̃ = 1|θ)p(θ|D) dθ

=
∫ 1

0
θBeta(θ|N1 + a,N0 + b)︸ ︷︷ ︸

p(θ|D)

dθ

= E [θ|D] = N1 + a
N1 + N0 + a + b

{Note : µ[Beta(α, β)] = α

α + β
}
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Overfitting and the black swan paradox

Suppose that we plug-in the MLE, i.e., we use p(x̃ |D) ≈ Ber(x̃ |θ̂MLE).
Can perform quite poorly when the sample size is small: suppose we
have seen N = 3 tails  θ̂MLE = 0/3 = 0
 heads seem to be impossible.
This is called the zero count problem or sparse data problem.
Even highly relevant in the era of “big data”: think about partitioning
(patient) data based on (personalized) criteria.
Analogous to a problem in philosophy called black swan paradox:
A black swan was a metaphor for something that could not exist.
Bayesian solution: use a uniform prior: a = b = 1.
Plugging in the posterior gives Laplace’s rule of succession

p(x̃ = 1|D) = N1 + 1
N1 + N0 + 2

Justifies common practice of adding 1 to empirical counts.
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The Dirichlet-multinomial model

So far: inferring the probability that a coin comes up heads.
Generalization: probability that a die with K sides comes up as face k.
Likelihood: observe N dice rolls D = {x1, . . . , xN}, xi ∈ {1, . . . ,K}.

iid assumption  p(D|θ) =
K∏

k=1
θNk

k ,

where Nk is the number of times event k occurred (these are the
sufficient statistics for this model).
Prior: θ lives in K -dim probability simplex. Conjugate prior with this
property: Dirichlet distribution

p(θ|α) = Dir(θ|α) = 1
B(α)

K∏
k=1

θαi−1
k .
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Dirichlet distribution

wikimedia.org/w/index.php?curid=49908662
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The Dirichlet-multinomial model

Posterior:
p(θ|D) ∝ p(D|θ)p(θ|α)

∝
K∏

k=1
θNk

k

K∏
k=1

θαi−1
k

∝
K∏

k=1
θNk +αk−1

k

= Dir(θ|α1 + N1, . . . , αK + NK )
Note that we (again) add pseudo-counts αk to empirical counts Nk .
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The Dirichlet-multinomial model

Posterior predictive:

p(X̃ = j |D) =
∫

p(X̃ = j |θ)p(θ|D) dθ, {write θ = (θ−j , θj)t}

=
∫

p(X̃ = j |θj)
[∫

p(θ−jθj |D) dθ−j

]
dθj

=
∫
θjp(θj |D) dθj

= E [θj |D] = Nj + aj∑
k(Nk + ak)

Note: This Bayesian smoothing avoids the zero-count problem.
Even more important in the multinomial case, since we partition the
data into many categories.
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Example: Simple language model

Goal: predict which words might occur next in a sequence.
Bag of words model: assume that i ’th word Xi ∈ {1, . . . ,K} is
sampled independently from other words using Cat(θ) distribution.
Suppose we observe the following sequence (children’s nursery rhyme)

Mary had a little lamb, little lamb, little lamb,
Mary had a little lamb, its fleece as white as snow

Suppose our vocabulary consists of the following words:

mary lamb little big fleece white black snow rain unk
1 2 3 4 5 6 7 8 9 10

unk stands for unknown (all other words)
Standard procedure: strip off punctuation, and remove any stop
words such as “a”, “as”, “the”, etc.
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Example: Simple language model

Replace each word by its index into the vocabulary to get:

1 10 3 2 3 2 3 2
1 10 3 2 10 5 6 8

Count how often each word occurred  histogram of word counts:
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Example: Simple language model

Denote above counts by Nj , use a Dir(α) prior
 posterior predictive

p(X̃ = j |D) = E [θj |D] = Nj + aj∑
k(Nk + ak)

If we set αj = 1, we get

p(X̃ = j |D) =
( 3

27 ,
5

27 ,
5

27 ,
1

27 ,
2

27 ,
2

27 ,
1

27 ,
2

27 ,
1

27 ,
5

27

)
Peaks at X = 2 (“lamb”), X = 3 (“little”) and X = 10 (“unk”).
Note that the words “big”, “black” and “rain” are predicted to occur
with non-zero probability in the future, even though they have never
been seen before.
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