
Machine Learning

Volker Roth

Department of Mathematics & Computer Science
University of Basel

Volker Roth (University of Basel) Machine Learning 1 / 38

Section 3

Classification

Volker Roth (University of Basel) Machine Learning 2 / 38

Classification

Example
Sorting fish according to species using optical sensing

Features:
Length
Brightness
Width
Shape of fins

−2 0 2

−2

0

2

Linear Boundary

Volker Roth (University of Basel) Machine Learning 3 / 38

Bayesian Decision Theory

Assign observed x ∈ Rd into one of k classes. A classifier is a
mapping that assigns labels to observations

fα : x → {1, . . . , k}.

For any observation x there exists a set of k possible actions αi ,
i.e. k different assignments of labels.
The loss L incurred for taking action αi when the true label is j is
denoted by a loss matrix Lij = L(αi |c = j).
“Natural” 0− 1 loss function can be defined by simply counting
misclassifications: Lij = 1− δij , where

δij =
{

1 if i = j ,
0 otherwise.

Volker Roth (University of Basel) Machine Learning 4 / 38

Bayesian Decision Theory (cont’d)
A classifier is trained on a set of observed pairs
{(x1, c1), . . . , (xn, cn)} i.i.d.∼ p(x, c) = p(c|x)p(x)
The probability that a given x is member of class cj , i.e. the posterior
probability of membership in class j , is obtained via the Bayes rule:

P(cj |x) =
Given the label, observation is generated

p(x|c = j)
p(x)

Nature picks a label first
P(c = j) ,

where
p(x) =

∑k
j=1

p(x|c = j)P(c = j).

Given an observation x, the expected loss associated with choosing
action αi (the conditional risk or posterior expected loss) is

R(fαi |x) =
k∑

j=1
LijP(cj |x)

(if Lij =1−δij)=
∑
j 6=i

P(cj |x) = 1− P(ci |x).

Volker Roth (University of Basel) Machine Learning 5 / 38

Bayesian Decision Theory (cont’d)
Goal: minimize the overall risk of the classifier fα:

R(fα) =
∫

Rd
R
(
fα(x)|x

)
p(x) dx.

If fα(x) minimizes the conditional risk R(fα(x)|x) for every x, the
overall risk will be minimized as well.
This is achieved by the Bayes optimal classifier which chooses the
mapping

f (x) = argmin
i

k∑
j=1

Lij p(c = j |x).

For 0− 1 loss this reduces to classifying x to the class with highest
posterior probability:

f (x) = argmax
i

p(c = i |x).

Volker Roth (University of Basel) Machine Learning 6 / 38

Bayesian Decision Theory (cont’d)

Simplification: only 2 classes: c is Bernoulli RV.
Bayes optimal classifier is defined by the zero crossings of the
Bayes optimal discriminant function

G(x) = P(c1|x)− P(c2|x), or g(x) = log P(c1|x)
P(c2|x) .

Link to regression: use encoding {+1,−1} for the two possible
states c1,2 of c. The conditional expectation of c|x equals the Bayes
discriminant function:

E [c|x] =
∑

c∈{+1,−1}
cP(c|x) = P(c1|x)− P(c2|x) = G(x).

Classification can be viewed as a (local) approximation of
G(x) = E [c|x] near its zero crossings.

Volker Roth (University of Basel) Machine Learning 7 / 38

Linear Discriminant Functions

Problem: direct approximation of G would require the knowledge of
the Bayes optimal discriminant.
One approach: Define a parametrized family of classifiers Fw from
which we can choose one (or more) function(s) by some inference
mechanism.
One such family is the set of linear discriminant functions
g(x; w) = w0 + w tx.
Two-category case: Decide c1 if g(x; w) > 0 and c2 if g(x; w) < 0.
Equation g(x; w) = 0 defines the decision surface.
Linearity of g(x; w) hyperplane w is orthogonal to any vector
lying in the plane.
The hyperplane divides the feature space into half-spaces
R1 (“positive side”) and R2 (“negative side”).

Volker Roth (University of Basel) Machine Learning 8 / 38

Decision Hyperplanes
g(x; w) defines distance r from x to the hyperplane: x = xp + r w

‖w‖ .
g(xp) = 0 ⇒ g(x) = r‖w‖ ⇔ r = g(x)/‖w‖.

x

g(x) =
 0w

x1

x2

x3

w 0 /||
w
||

r

H

xp

R1

R2

FIGURE 5.2. The linear decision boundary H, where g(x) = wtx+w0 = 0, separates the
feature space into two half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0). From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

Fig 5.2 in (Duda& Hart)
Volker Roth (University of Basel) Machine Learning 9 / 38

Generalized Linear Discriminant Functions

Use basis functions {b1(x), . . . , bm(x)}, where each bi (x) : Rd 7→ R, and
g(x; w) = w0 + w1b1(x) + · · ·+ wmbm(x) =: w ty (note that we have
redefined y here in order to be consistent with the following figure)

0

-1

0

1

2

y2

0

2

4

y3

0.5

1

1.5

2

2.5

y1

1-1 20-2
x

R1R1 R2

y = ()1
x

x2

R2

R1

ˆ

ˆ

FIGURE 5.5. The mapping y = (1, x, x2)t takes a line and transforms it to a parabola
in three dimensions. A plane splits the resulting y-space into regions corresponding to
two categories, and this in turn gives a nonsimply connected decision region in the
one-dimensional x-space. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Fig 5.5 in (Duda& Hart)

Volker Roth (University of Basel) Machine Learning 10 / 38

Generalized Linear Discriminant Functions
Use basis functions {b1(x), . . . , bm(x)}, where each bi (x) : Rd 7→ R, and

g(x; w) = w0 + w1b1(x) + · · ·+ wmbm(x) =: w ty .

y2

w

R2
R1

R1

R2

R1

x1

x2

x1

x2
y1

y3

H
y

= ()x 1

x 2

α
x 1

x 2

ˆ

ˆ

ˆ

FIGURE 5.6. The two-dimensional input space x is mapped through a polynomial func-
tion f to y. Here the mapping is y1 = x1, y2 = x2 and y3 ∝ x1x2. A linear discriminant
in this transformed space is a hyperplane, which cuts the surface. Points to the positive

side of the hyperplane Ĥ correspond to category ω1, and those beneath it correspond to
category ω2. Here, in terms of the x space, R1 is a not simply connected. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.

Fig 5.6 in (Duda& Hart)

Volker Roth (University of Basel) Machine Learning 11 / 38

Separable Case
Consider sample {y i , ci}ni=1. If there exists f (y ; w) = y tw which is
positive for all examples in class 1 and negative for all examples in
class 2, we say that the sample is linearly separable.
“Normalization”: replace all samples labeled c2 by their negatives
simply write y tw > 0 for all samples.
Each sample places a constraint on the possible location of w
solution region.

y1

y2

separating plane

solution

region

y1

y2

"separating" plane

solution

region

aa

FIGURE 5.8. Four training samples (black for ω1, red for ω2) and the solution region in
feature space. The figure on the left shows the raw data; the solution vectors leads to a
plane that separates the patterns from the two categories. In the figure on the right, the
red points have been “normalized”—that is, changed in sign. Now the solution vector
leads to a plane that places all “normalized” points on the same side. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.

Fig 5.8 in (Duda& Hart)

Volker Roth (University of Basel) Machine Learning 12 / 38

Separable Case: margin
Different solution vectors may have different
margins b : y tw ≥ b > 0.
Intuitively, large margins are good.

solution

region

y1

y2

y3

a1

a2

solution

region

a2

a1

y1

y2

y3

b/||y
2 ||

b/||y 1
||

b
/|
|y

3
||

}

}

}

FIGURE 5.9. The effect of the margin on the solution region. At the left is the case of
no margin (b = 0) equivalent to a case such as shown at the left in Fig. 5.8. At the right
is the case b > 0, shrinking the solution region by margins b/‖yi‖. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.

Fig 5.9 in (Duda& Hart)

Volker Roth (University of Basel) Machine Learning 13 / 38

Gradient Descent
Solve y tw > 0 by defining J(w) such that a minimizer of J is a
solution.
Start with initial w(1), and choose next value by moving in the
direction of steepest gradient: w(k + 1) = w(k)− η(k)∇J(w(k)).
Alternatively, use second order expansion (Newton):
w(k + 1) = w(k)− H−1∇J(w(k)).

a1

a2

J(a)

FIGURE 5.10. The sequence of weight vectors given by a simple gradient descent
method (red) and by Newton’s (second order) algorithm (black). Newton’s method typi-
cally leads to greater improvement per step, even when using optimal learning rates for
both methods. However the added computational burden of inverting the Hessian ma-
trix used in Newton’s method is not always justified, and simple gradient descent may
suffice. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

Fig 5.10 in (Duda& Hart)
Volker Roth (University of Basel) Machine Learning 14 / 38

Minimizing the Perceptron Criterion

Solve y tw > 0 by defining J(w) such that a minimizer of J is a
solution.
Most obvious: number of misclassifications, but not differentiable.
Alternative choice: Jp(w) =

∑
y∈M−y tw , where M(w) is the set of

samples misclassified by w .
Since y tw < 0 ∀y ∈M, Jp is non-negative, and zero only if w is a
solution.
Gradient: ∇J(w) = −

∑
y∈M y

w(k + 1) = w(k) + η(k)
∑

y∈M
y .

This defines the Batch Perceptron algorithm.

Volker Roth (University of Basel) Machine Learning 15 / 38

Minimizing the Perceptron Criterion (2)

a2

a1

y1
y2

solution
region

-2

0

2

4

-2

0

2

4

0

5

10

y3

y1
y3

y3

Jp(a)

FIGURE 5.12. The Perceptron criterion, Jp(a), is plotted as a function of the weights a1

and a2 for a three-pattern problem. The weight vector begins at 0, and the algorithm
sequentially adds to it vectors equal to the “normalized” misclassified patterns them-
selves. In the example shown, this sequence is y2, y3, y1, y3, at which time the vector
lies in the solution region and iteration terminates. Note that the second update (by y3)
takes the candidate vector farther from the solution region than after the first update
(cf. Theorem 5.1). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Fig 5.12 in (Duda& Hart)

Volker Roth (University of Basel) Machine Learning 16 / 38

Fixed-Increment Single Sample Perceptron

Fix learning rate η(k) = 1.
Sequential single-sample updates: use superscripts y1, y2, . . . for
misclassified samples y ∈M. Ordering is irrelevant.
Simple algorithm:

w(1) arbitrary
w(k + 1) = w(k) + yk , k ≥ 1

Perceptron Convergence Theorem
If the samples are linearly separable, the sequence of weight vectors given
by the Fixed-Increment Single Sample Perceptron algorithm will terminate
at a solution vector.

Proof: exercises.
Volker Roth (University of Basel) Machine Learning 17 / 38

Issues

A number of problems with the perceptron algorithm:
When the data are separable, there are many solutions, and which
one is found depends on the starting values.
In particular, no separation margin can be guaranteed (however, there
exist modified versions...)
The number of steps can be very large.
When the data are not separable, the algorithm will not necessarily
converge, and cycles may occur. The cycles can be long and
therefore hard to detect.
Method “technical” in nature, no (obvious) probabilistic
interpretation (but we will see that there is one).

But the perceptron algorithm is historically important (1957, one of the
first ML algorithms!), was even implemented in analog hardware(!)

Volker Roth (University of Basel) Machine Learning 18 / 38

Generative (or Informative) vs Discriminative

Notation: For the following discussion it is more convenient to go
back to the original x-vectors (potentially after some basis expansion)
instead of using the “normalized” representation y .
Two main strategies:

I Generative: Generative classifiers specify how to generate data using
the class densities . Likelihood/posterior of each class is examined
and classification is done by assigning to the most likely class.

I Discriminative: These classifiers focus on modeling the
class boundaries or the class membership probabilities directly.
No attempt is made to model the underlying class conditional densities.

Volker Roth (University of Basel) Machine Learning 19 / 38

Generative Classifiers

Central idea: model the conditional class densities p(x|c).
Assuming a parametrized class conditional density pw j (x|c = j) and
collecting all model parameters in a vector w , a typical (Frequentist)
approach now proceeds by maximizing the log likelihood

ŵMLE = argmax
w

n∑
i=1

log pw (x i |ci)

The resulting estimate ŵMLE might then be plugged into Bayes rule
to compute the posteriors:

P(cj |x) = pŵMLE (x|c = j)
p(x) P(c = j).

Volker Roth (University of Basel) Machine Learning 20 / 38

Generative Classifiers: LDA

In Linear Discriminant Analysis (LDA), a Gaussian model is used
where all classes share a common covariance matrix Σ:

pw (x|c = j) = N (x; µj ,Σ).

The resulting discriminant functions are linear:

g(x) = log P(c1|x)
P(c2|x) = log P(c1)N (x; µ1,Σ)

P(c2)N (x; µ2,Σ)

= log P(c1)
P(c2) −

1
2 (µ1 + µ2)t Σ−1 (µ1 − µ2)︸ ︷︷ ︸

w0

+(µ1 − µ2)t Σ−1x︸ ︷︷ ︸
w tx

= w0 + w tx, with w = Σ−1(µ1 − µ2).

Volker Roth (University of Basel) Machine Learning 21 / 38

LDA algorithm

Let Σ̂ be an estimate of the shared covariance matrix Σ:
Σc = 1

nc

∑
x∈Xc

(x −mc)(x −mc)t , c ∈ {c1, c2}

Σ̂ = 1
2(Σ1 + Σ2).

Let mj an estimate of µj :

mc = 1
nc

∑
x∈Xc

x, nc = |Xc |.

Fisher’s LDA finds the weight vector

wF = Σ̂−1(m1 −m2).

This wF asymptotically coincides with the Bayes-optimal w
if Gaussian model is correct .

Volker Roth (University of Basel) Machine Learning 22 / 38

LDA

−2 0 2

−2

0

2

Linear Boundary

Fig 4.5 in K. Murphy

Volker Roth (University of Basel) Machine Learning 23 / 38

Fishers discriminant and least squares

Remark: The Fisher vector ŵF = Σ−1
W (m1 −m2) coincides with the

solution of the LS problem ŵLS = arg minw ‖Aw − b‖2 if

n1 = # samples in class 1
n2 = # samples in class 2

b =

+1/n1
·

+1/n1
−1/n2
·

−1/n2

, A =

xt
1
·

xt
n1

xt
n1+1
·

xt
n1+n2

,

with m = 1
n

n∑
i=1

x i = 0 (i.e. origin in sample mean).

Volker Roth (University of Basel) Machine Learning 24 / 38

Fishers discriminant and least squares (cont’d)

Proofsketch:

Shared covariance matrix also called “within class covariance”
ΣW ∝

∑
x∈Xc (x −mc)(x −mc)t , c = c1, or c = c2.

Its counterpart is the “between class covariance”
ΣB ∝ (m1 −m2)(m1 −m2)t

The sum of both is the “total covariance” ΣB + ΣW = ΣT
ΣT ∝

∑
i (x i −m)(x i −m)t = AtA.

We know that wF ∝ Σ−1
W (m1 −m2) ΣW wF ∝ (m1 −m2).

Now ΣBwF = (m1 −m2)(m1 −m2)twF ΣBwF ∝ (m1 −m2).

ΣT wF = (ΣB + ΣW)wF ΣT wF ∝ (m1 −m2).
With AtA = ΣT , Atb = m1 −m2, we arrive at
wF ∝ Σ−1

T (m1 −m2) = Σ−1
T Atb = (AtA)−1Atb = wLS .

Volker Roth (University of Basel) Machine Learning 25 / 38

Fishers discriminant and least squares (cont’d)
Focus on last equation. For notational simplicity, denote the
least-squares estimate wLS by w .
Introducing the “residual sum of squares” as the least-squares cost
function, the equation follows from:

RSS(w) =
n∑

i=1
[bi −w tx i]2

∂RSS(w)
∂w = ∂

∂w
[
btb − 2btAw + w tAtAw

]
= −2Atb + 2AtAw != 0⇒ w = (AtA)−1Atb.

Atb = AtAw are called the normal equations.
We have used the following results from matrix calculus:

∂

∂x y tx = y

∂

∂x xtMx = 2Mx, if M is symmetric

Volker Roth (University of Basel) Machine Learning 26 / 38

Fishers discriminant and least squares (cont’d)

+ 1

Two-class LDA solution viewed as indicator regression.
Magenta curve: Bayes-optimal discriminant function
G(x) = P(c = +1|x)− P(c = −1|x)
Red line: Regression fit zero crossing determines the separating
hyperplane (vertical blue line).

Volker Roth (University of Basel) Machine Learning 27 / 38

Discriminative classifiers

Discriminative classifiers focus directly on the discriminant function.
In general, they are more flexible with regard to the class conditional
densities they are capable of modeling.
Notation: Can use any class encoding scheme. Here: c ∈ {0, 1}.
Bayes formula:

g(x) = log P(c = 1|x)
P(c = 0|x)

= log p(x|c = 1)P(c = 1)
p(x|c = 0)P(c = 0) ,

Can model any conditional probabilities that are exponential “tilts” of
each other:

p(x|c = 1) = eg(x)p(x|c = 0)P(c = 0)
P(c = 1)

Volker Roth (University of Basel) Machine Learning 28 / 38

Logistic Regression (LOGREG)

Logistic regression uses a linear discriminant function,
i.e. g(x) = w tx + w0.
For the special case p(x|c) = N (x; µ0,1,Σ), same as LDA:

p(x|c = 1) = N (x,µ1,Σ) = eg(x)N (x; µ0,Σ) P(c = 0)
P(c = 1)

⇒ g(x) = w0 + w tx = log P(c = 1)N (x; µ1,Σ)
P(c = 0)N (x; µ0,Σ)

−2 0 2

−2

0

2

Linear Boundary

Fig 4.5 in K. Murphy

Volker Roth (University of Basel) Machine Learning 29 / 38

Logistic Regression (LOGREG)
Two-class problem with Bernoulli RV c taking values in {0, 1}
 sufficient to represent P(1|x), since P(0|x) = 1− P(1|x).
“Success probability” of the Bernoulli RV: π(x) := P(1|x).
Probability of miss (c = 0) or hit (c = 1) as a function of x:

p(c|x) = π(x)c(1− π(x))1−c , π(x) = P(1|x) = E [c|x].
Basketball example:

● ● ● ● ●

●

●

● ● ● ● ● ●

● ●

● ● ● ● ●

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance

H
it

(1
)

or
 M

is
s

(0
)

Adapted from Fig. 7.5.1 in (B. Flury)

Volker Roth (University of Basel) Machine Learning 30 / 38

Logistic Regression (LOGREG)
LOGREG: g(x) = w tx + w0 = log P(c=1|x)

P(c=0|x) = log π(x)
1−π(x)

This implies π(x)
1−π(x) = exp{g(x)}

⇒ π(x) = P(c = 1|x) = exp{g(x)}
1+exp{g(x)} =: σ(g(x)).

Sigmoid or logistic “squashing function” σ(z) = ez

1+ez = 1
1+e−z

turns linear predictions into probabilities

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Simple extension for K classes: the softmax function:
P(c = k|x) = exp{gk (x)}∑K

m=1 exp{gm(x)}
.

Volker Roth (University of Basel) Machine Learning 31 / 38

Logistic Regression (LOGREG)

Assume that w0 is “absorbed” in w using x ← (1, x). Estimate w by
maximizing the conditional likelihood

ŵDISCR = argmax
w

n∏
i=1

(π(x i ; w))ci (1− π(x i ; w))1−ci ,

or by maximizing the corresponding log likelihood l :

l(w) =
n∑

i=1
[ci log π(x i ; w) + (1− ci) log(1− π(x i ; w))] .

The score functions are defined as the gradient of l :

s(w) = ∂

∂w l(w) =
n∑

i=1
x i (ci − πi).

Volker Roth (University of Basel) Machine Learning 32 / 38

Logistic Regression (LOGREG)

πi depends non-linearly on w
 equation system s(w) = 0 cannot be solved analytically
 iterative techniques needed.
Newton’s method: Update w at the r -th step as

w (r+1) = w (r) + {H(r)}−1s(r),

where H(r) is the Hessian of l , evaluated at w (r):

H(r) =
(

∂2l
∂w ∂w t

) ∣∣∣∣
w=w (r)

=
n∑

i=1
π

(r)
i (1− π(r)

i)x ixt
i .

Volker Roth (University of Basel) Machine Learning 33 / 38

Logistic Regression (LOGREG)

Newton updates Iterated Re-weighted Least Squares (IRLS):
The Hessian H(r) is equal to (X tW (r)X), with

W = diag {π1(1− π1), . . . , πn(1− πn)}.
Score functions : s(r) = X tW (r)e(r), where e is a vector with entries

ej = (cj − πj)/Wjj .

With q(r) := Xw (r) + e(r), the updates read
H(r)w (r+1) = H(r)w (r) + s(r)

(X tW (r)X)w (r+1) = X tW (r)q(r).

These are the normal equations of a LS problem ‖Aw − b‖2

with input matrix A = (W (r))1/2X and r.h.s. b = (W (r))1/2q(r).
The values Wii are functions of w iteration is needed.

Volker Roth (University of Basel) Machine Learning 34 / 38

Logistic Regression (LOGREG)
Simple binary classification problem in R2. Solved with LOGREG using
polynomial basis functions.

−4 −2 0 2 4 6

−
4

−
2

0
2

Volker Roth (University of Basel) Machine Learning 35 / 38

Loss functions

LOGREG maximizes log likelihood

l(w) =
n∑

i=1
[ci log π(x i ; w) + (1− ci) log(1− π(x i ; w))] ,

where z = w tx, π = 1
1+e−z , 1− π = e−z

1+e−z .
This is the same as minimizing

−l(w) =
n∑

i=1
[−ci log π − (1− ci) log(1− π)]

=:
n∑

i=1
Loss(ci , zi).

Volker Roth (University of Basel) Machine Learning 36 / 38

Loss functions

−2 −1 0 1 2 3

0
1

2
3

4

Using {0, 1} encoding of the two classes, and approximating a target with
c = +1. Black: 0/1-loss, red: logistic loss, blue: quadratic loss (LDA).

Volker Roth (University of Basel) Machine Learning 37 / 38

LOGREG and Perceptron
Gradient of negative log-likelihood:

∇w (r) = ∂

∂w − l(w)
∣∣
w (r) =

n∑
i=1

x i (πi − ci).

Gradient descent: w (r+1) = w (r) − η∇w (r) .
Assume stream of data online update for new observation x i :

w (r+1) = w (r) − η(πi − ci)x i , with πi = P(c = 1|x i ,w (r)).
Now consider approximation: define most probable label
ĉi = arg maxc∈{0,1} P(c|x i ,w (r)) and replace πi with ĉi .
If we predicted correctly, then ĉi = ci approximate gradient is zero
 update has no effect.
If ĉi = 0 but ci = 1: w (r+1) = w (r) − η(ĉi − ci)x i = w (r) + ηx i .
Note that this is again the perceptron algorithm.
Simple solution to most problems of the perceptron: use exact
gradient instead of approximation based on most probable labels.

Volker Roth (University of Basel) Machine Learning 38 / 38

	Classification

