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Section 4

Regression
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Regression basics

In regression we assume that a response variable y ∈ R is a noisy
function of the input variable x ∈ Rd .

y = f (x) + η.

We often assume that f is linear, f (x) = w tx, and that η has a
zero-mean Gaussian distribution with constant variance, η ∼ N(0, σ2).
This is can equivalently be written as

p(y |x) = N(µ(x), σ2), with µ(x) = w tx.
In one dimension: µ(x) = w0 + w1x and x = (1, x).
w0 is the intercept or bias term and w1 is the slope.
If w1 > 0, we expect the output to increase as the input increases.
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Least Squares and Maximum Likelihood

Fit n data points (x i , yi ) to a model that has d + 1 parameters
wj , j = 0, . . . , d .
Notation: x ← (1, x)  w0 is the intercept.
Frequentist view: w is an unknown parameter vector, not a RV.
We assume that the n observations are iid.
Linear model: yi = w tx i + ηi , ηi ∼ N(0, σ2).
Observed yi generated from a normal distribution centered at w tx i .
Model predicts linear relationship between conditional expectation
of observations yi and inputs x i :

E [yi |x i ] = w0 + w1xi1 + · · ·+ wdxid = w tx i = f (x i ; w).
Note: the expectation operator is linear and E [ηi ] = 0.
Regression function = conditional expectation.
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LS and Maximum Likelihood

Likelihood function: conditional probability of all observed yi given
their explanation, treated as a function of the model parameters w :

L(w) ∝
∏

i
exp

[
− 1

2σ2 (yi −w tx i )2
]

Maximizing L = finding model that best explains observations:
ŵ = arg max

w
L(w) = arg min

w
[−L(w)] = arg min

w
[− log(L(w))]

= arg min
w

∑
i

(yi −w tx i )2

Least-squares fit = ML solution under Gaussian error model.
ŵMLE minimizes the residual sum of squares

RSS(w) =
n∑

i=1
r2
i =

n∑
i=1

[yi − f (x i ; w)]2 = ‖y − Xw‖2.
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Least squares regression: Geometry

∂RSS(w)
∂w = ∂

∂w
[
y ty − 2y tXw + w tX tXw

]
= −2X ty + 2X tXw != 0

⇒ ŵ = (X tX )−1X ty
⇒ X t(y − X ŵ) = X t r̂ = 0.

If follows that
∑n

i=1 Xij ri = 0, ∀j = 0, 1, . . . , d .
Residual is orthogonal to 1 (j = 0) and to every input dimension X•j .

X[.,1]

X[.,2]

Adapted from Fig. 3.2 in (Hastie, Tibshirani, Friedman)
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Least squares regression: Geometry

X[.,1]

X[.,2]

Adapted from Fig. 3.2 in (Hastie, Tibshirani, Friedman)

The fitted values at the training inputs are
(f̂ (x1), . . . , f̂ (xn))t = ŷ = X ŵ = X (X tX )−1X ty .

H = X (X tX )−1X t is called “hat” matrix (puts hat on y)
Column vectors of X span the column space of X ⊂ Rn.
Minimizing RSS(w)  choose ŵ such that r is orthogonal.
Fitted values ŷ are orthogonal projection of y on column space.
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Least squares regression: Algebra

H is orthogonal projection on column space of X :
HX = X (X tX )−1X tX = X .

Fundamental theorem of linear algebra: the nullspace of X t is
the orthogonal complement of the column space of X .
M = In − H is orthogonal projection on nullspace of X t :

MX = (In − H)X = X − X = 0.
H and M are symmetric (Ht = H) and idempotent (MM = M)

The Algebra of Least Squares
H creates fitted values: ŷ = Hy  ŷ ∈ Col(X )
M creates residuals: r = My  r̂ ∈ Null(X t)⇔ X tr = 0
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Frequentist confidence limits

Recall: yi = f (x i ; w) + ηi , with independent Gaussian noise.
In matrix-vector form: y = Xw + η, with η ∼ N(0, σ2In).

ŵ = (X tX )−1X ty
= (X tX )−1X tXw + (X tX )−1X tη

= w + (X tX )−1X tη

⇒ ŵ −w = (X tX )−1X t η =: Aη

Linear functions of normals are normal:
η ∼ N(0, σ2In) ⇒ Aη ∼ N(0, σ2AAt).

Here: A = (X tX )−1X t ⇒ AAt = (X tX )−1

Conditioned on X and σ2:
ŵ −w |X , σ2 ∼ N

(
0, σ2(X tX )−1

)
.
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Frequentist confidence limits
Distribution completely specified  confidence limits:

ŵk − wk ∼ N(0, σ2Skk),
where Skk denotes the kth diagonal element of (X tX )−1.
Thus, both z ′k and zk = −z ′k are standard normal:

zk := (wk − ŵk)/
√
σ2Skk ∼ N(0, 1)

CDF:

P(zk < kc) = 1√
2π

∫ kc

−∞
e−t2/2 dt =: Φ(kc) = 1− c

Upper limit for wk :
P(zk < kc) = P(

√
σ2Skkzk <

√
σ2Skkkc)

= P(wk − (wk − ŵk) > wk −
√
σ2Skkkc)

= P(ŵk > wk −
√
σ2Skkkc)

= P(wk < ŵk +
√
σ2Skkkc) = 1− c.
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Frequentist confidence limits
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Standard parametric rate

Assume we have estimated the parameters based on n samples:
(ŵn −w) ∼ N(0, σ2 (X tX

)−1)
= N(0, σ2 (X tX/n

)−1 · 1/n)
√

n(ŵn −w) ∼ N(0, σ2(X tX/n︸ ︷︷ ︸
→Σ

)−1)

Since for n→∞, X tX/n→ Σ = const, this means that
ŵn converges to w at a rate of 1/

√
n.

This is a very general result that holds in an asymptotic sense even
without assuming normality  central limit theorem.
Due to its universality, it is called the standard parametric rate.
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Basis functions
Can be generalized to model non-linear relationships by replacing x
with some non-linear function of the inputs, φ(x):

p(y |x) = N(w tφ(x), σ2).
Predictions can be based on a linear combination of a set of basis
functions φ(x) = {g0(x), g1(x), . . . , gm(x)}, with gi (x) : Rd 7→ R.
Can model the intercept by setting g0(x) = 1:

f (x; w) = w0 + w1g1(x) + · · ·+ wmgm(x).
 additive models
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Fig 1.7 in K.Murphy
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Additive models

Examples:
If x ∈ Rd and m = d + 1, g0(x) = 1 and gi (x) = xi , i = 1, . . . , d , then

f (x; w) = w0 + w1x1 + · · ·+ wdxd .

If x ∈ R, g0(x) = 1 and gi (x) = x i , i = 1, . . . ,m, then
f (x ; w) = w0 + w1x1 + · · ·+ wmxm.

Basis functions can capture various properties of the inputs.
Example: Document analysis

x = text document (collection of words)

gi (x) =
{

1, if word i appears in the document
0, otherwise

f (x; w) = w0 +
∑

i∈words
wigi (x).
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Additive models cont’d

We can also make predictions by gauging the
similarity of examples to prototypes.
For example, our additive regression function could be

f (x; w) = w0 + w1g1(x) + · · ·+ wmgm(x),
where the basis functions are radial basis functions

gk(x) = exp(− 1
2σ2 ‖x − xk‖2)

measuring the similarity to the prototypes xk .
The variance σ2 controls how quickly the basis function vanishes as a
function of the distance to the prototype.
Training examples themselves could serve as prototypes.
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Additive models cont’d

Can view additive models graphically in terms of units and weights.
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In neural networks the basis functions have adjustable parameters.
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Example: Polynomial regression
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Complexity and overfitting

With limited training examples our polynomial regression model may
achieve zero training error but nevertheless has a large expected error.

training 1
n

n∑
i=1

(yi − f (x i ; ŵ)2 ≈ 0

expectation E(x,y)∼p (y − f (x; ŵ)2 � 0

We suffer from over-fitting
 should reconsider our model  model selection.

We will discuss model selection from a Bayesian perspective first.
A frequentist approach will follow later in the chapter on
statistical learning theory.
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Subsection 1

Bayesian Regression
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Bayesian interpretation: priors

Suppose our generative model takes an input x ∈ Rd and maps it to
a real valued output y according to

p(y |x,w , σ2) = N(y |w tx, σ2)
We will keep σ2 fixed and only try to estimate w .
Given data D = {(x1, y1), . . . , (xn, yn)}, the likelihood function is

L(w ;D) =
n∏

i=1
N(yi |w tx i , σ

2) =
n∏

i=1

1
Z exp

(
− 1

2σ2 (yi −w tx i )2
)
.

In classical regression we used the maximizing parameters ŵ .
In Bayesian analysis we keep all regression functions ,
just weighted by their ability to explain the data.
Our knowledge about w after seeing the data is defined by the
posterior distribution p(w |D).
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Bayesian regression: Prior and posterior

We specify our prior belief about the parameter values as p(w).
For instance, we could prefer small parameter values:

p(w) = N
(
w |0, τ2I

)
The smaller τ2 is, the smaller values of w we prefer
prior to seeing the data.
Posterior proportional to prior p(w) times likelihood:

p(w |D) ∝ L(w ;D)p(w)
Here: posterior is Gaussian p(w |D, σ2) = N(w |wN ,VN) with mean
wN and covariance VN given by

wN = (X tX + λI)−1X ty , VN = σ2(X tX + λI)−1,

with λ = σ2

τ2 .
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Bayesian regression: Posterior computation

Given variables x ∈ Rdx and y ∈ Rdy , assume linear Gaussian system:

p(x) = N(x|µx ,Σx ) ( prior)
p(y |x) = N(y |Ax + b,Σy ) ( likelihood)

The posterior is also Gaussian:
p(x|y) = N(x|µx |y ,Σx |y )

Σ−1
x |y = Σ−1

x + AtΣ−1
y A

µx |y = Σx |y
(
AtΣ−1

y (y − b) + Σ−1
x µx

)
.

Gaussian likelihood and Gaussian prior form a conjugate pair.
The normalization constant (denominator in Bayes formula) is

p(y) = N(y |Aµx + b,Σy + AΣxAt).
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Bayesian regression: Posterior predictive

Prediction of y for new x: use posterior as weights for predictions
based on individual w ’s  Posterior predictive:

p(y |x,D, σ2) =
∫

p(y |x,w , σ2)p(w |D) dw

=
∫

N(y |xtw , σ2)N(w |wN ,VN)

= N(y |w t
Nx, σ2

N(x)), with
σ2

N(x) = σ2 + xtVNx.
The variance in this prediction, σ2

N(x), depends on two terms:
I the variance of the observation noise, σ2

I the variance in the parameters, VN
 depends on how close x is to training data D
 error bars get larger as we move away from training points.
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Bayesian regression: Posterior predictive

By contrast, the plugin approximation uses only the ML-parameter
estimate with the degenerate distribution p(w |D, σ2) = δŵ (w):
p(y |x,D, σ2) ≈

∫
p(y |x,w , σ2)δŵ (w) dw = p(y |x, ŵ , σ2) = N(y |xtŵ , σ2).
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Fig. 7.12 in (K. Murphy). Example with quadratic basis functions: posterior predictive distribution (mean and ±1σ).
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Sampling from posterior predictive
Left: plugin approximation: f (y) = φ(x)tŵ ,
where φ(x) is the expanded input vector (1, x , x2)t .
Right: sampled functions φ(x)tw (s), where w (s) are samples from the
posterior
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MAP approximation and ridge regression
Posterior proportional to prior p(w) = N

(
w |0, τ2I

)
times likelihood.

The MAP estimate is
wMAP = arg max{log[L(w ;D)] + log[p(w)]}

= arg min{− log[L(w ;D)]− log[p(w)]}

= arg min{ 1
2σ2

∑
i

(yi −w tx i )2 + 1
2τ2 w tw}

= arg min{
∑

i
(yi −w tx i )2 + σ2

τ2 w tw}

= arg min{
∑

i
(yi −w tx i )2 + λw tw}

In classical statistics, this is called ridge regression:
wMAP = w ridge = (X tX + λI)−1X ty .

In regularization theory, this is an example of
Tikhonov Regularization.
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Subsection 2

Bayesian model selection
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Example: Polynomial regression
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Bayesian regression (again)

Suppose our parametrized model Fθ takes an input x ∈ Rd and maps
it to a real valued output y according to

p(y |x,θ, σ2) = N(y ; θtx, σ2)
We will keep σ2 fixed and only try to estimate θ.
Given data D = {(x1, y1), . . . , (xn, yn)}, define likelihood

L(θ;D) =
n∏

i=1
N(yi ; θtx i , σ

2) =
n∏

i=1

1
Z exp

(
− 1

2σ2 (yi − θtx i )2
)
.

In classical regression we used the maximizing parameters θ̂.
In Bayesian analysis we keep all regression functions, just weighted
by their ability to explain the data.
Knowledge about θ after seeing the data defined by posterior p(θ|D).
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Bayesian regression (again)

We specify our prior belief about the parameter values as p(θ).
For instance, we could prefer small parameter values:

p(θ) = N(θ; 0, τ2I)
Small τ2  small θ preferred prior to seeing data.
Posterior proportional to prior p(θ) times likelihood:

p(θ|D) ∝ L(θ;D)p(θ)
Normalization constant, a.k.a. marginal likelihood:

p(y |F ,X ) =
∫

L(θ;D)︸ ︷︷ ︸
p(y |θ,X)

p(θ|F)dθ,

depends on model + data but not on specific parameter values.
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Example: Bayesian regression
Goal: choose among regression model families, specified by different
feature mappings x → φ(x).
Example: linear φ1(x) and quadratic φ2(x).
The model families we compare are:

F1 : p(y |x,θ1, σ
2) = N(y |θt

1φ1(x), σ2)
F2 : p(y |x,θ2, σ

2) = N(y |θt
2φ2(x), σ2).

Focusing on p(y |F ,X ) =
∫

L(θ;D)p(θ)dθ, two possibilities:
I F too flexible: posterior p(θ|D) requires many training examples

before it focuses on useful parameter values;
I F too simple: posterior concentrates quickly but the predictions

remain poor.
Pragmatic choice: Select the family whose marginal likelihood
(a.k.a. Bayesian score) is larger.
After seeing data D we would select model F1 if
p(y |F1,X ) > p(y |F2,X ).
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Approximating the marginal likelihood

Problem: In most cases we cannot compute the marginal likelihood in
closed form  approximations are needed.
A specific approximation will lead to the
Bayesian Information Criterion (BIC) .
Key insight: when computing

p(y |F ,X ) =
∫

p(y |θ,X )p(θ|F)dθ,

the integrand is a product of two densities  integrand itself is an
unnormalized density.
Laplace’s approximation uses a clever trick to approximate such
integrals...
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Approximation details: Laplace’s Method

Assume unnormalized density p∗(θ) has peak
at θ̂. Goal: calculate normalizing constant

Zp =
∫

p∗(θ)dθ

Taylor-expand logarithm around θ̂:
ln p∗(θ) ≈ ln p∗(θ̂)− c

2 (θ − θ̂)2 + · · · ,

where

c := − ∂2

∂θ2 ln p∗(θ)
∣∣
θ=θ̂.

(note that first order term vanishes)

p∗(θ)

ln p∗(θ)
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Laplace’s Method (cont’d)

Approximate p∗(θ) by unnormalized
Gaussian

Q∗(θ) := p∗(θ̂) exp
[
−c/2 · (θ − θ̂)2

]
A normalized Gaussian would be:

Q(θ | µ = θ̂, σ2) = 1
ZQ

exp
[
−(θ − θ̂)2

2σ2

]
,

with ZQ =
√

2πσ2 =
∫

exp
[
− (θ−θ̂)2

2σ2

]
dθ

Approximate Zp =
∫

p∗(θ) dθ by

Zp ≈
∫

Q∗(θ) dθ

= p∗(θ̂)
∫

exp
[
−c/2 · (θ − θ̂)2

]
dθ

= p∗(θ̂)
√

2π/c  c is the inverse variance

ln p∗(θ) & ln Q∗(θ)

p∗(θ) & Q∗(θ)
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Laplace’s Method (cont’d)

Multivariate generalization in d dimensions:
second derivative  Hessian matrix

Hij = ∂2 ln p∗(θ)
∂θi∂θj

∣∣∣∣
θ=θ̂

Zp ≈ p∗(θ̂)
∫

exp
[
−1

2(θ − θ̂)tH(θ − θ̂)
]

dθ

= p∗(θ̂)
√

(2π)d

|H| = p∗(θ̂)
∣∣∣∣ H
2π

∣∣∣∣− 1
2
,

where the last equation follows from the properties of the
determinant: |aM| = ad |M| for M ∈ Rd×d , a ∈ R.
Another interpretation: complicated distribution p(θ) is approximated
by Gaussian centered at the mode θ̂:

p(θ) ≈ N (θ|µ = θ̂,Σ = H−1).
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Example: Bayesian logistic regression

Linear logistic regression: model parameters are simply the weights w .
Likelihood: p(y |x,w) = Ber(y |sigm(w tx))
Unfortunately, there is no convenient conjugate prior. Let’s use a
standard Gaussian prior: p(w) = N(w |0,V0)
Laplace’s approximation of posterior:

p(w |D) ≈ N(w |w∗,H−1)
w∗ = arg max J [w ], J [w ] = log p(y |x,w)︸ ︷︷ ︸

likelihood

+ log p(w)︸ ︷︷ ︸
prior

H = ∇2J(w)
∣∣∣∣
w∗
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Fig 8.5 in K.Murphy
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Bayesian LOGREG: Approximating the posterior predictive
Posterior  can compute credible intervals etc.
But in machine learning, interest usually focuses on prediction.
The posterior predictive distribution has the form

p(y |x,D) =
∫

p(y |x,w)p(w |D) dw .

Here (and in most cases), this integral is intractable.
The simplest approximation is the plug-in approximation

p(y = 1|x,D) ≈ p(y = 1|x,w∗)
But such a plug-in estimate underestimates the uncertainty.
Better: Monte Carlo approximation

p(y |x,D) ≈ 1
S

S∑
s=1

sigm((w s)tx),

where w s ∼ p(w |D) are samples from the Gaussian approximation to
the posterior.

Volker Roth (University of Basel) Machine Learning 45 / 70



p(y=1|x, wMAP)
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Approximating the marginal likelihood

p(D|F) =
∫

p(D|θ) · p(θ|F)dθ

≈ p(D|θ∗) · p(θ∗|F)|H/(2π)|− 1
2

flat prior
≈ p(D|θ̂)|H/(2π)|− 1

2

log p(D|F) ≈ log p(D|θ̂)− 1
2 log |H|+ C , with θ̂ = θMLE in F .

Focus on last term:

H =
n∑

i=1
Hi , with Hi = ∇θ∇θ log p(Di |θ).

Let’s approximate each Hi with a fixed matrix H ′

log |H| = log |nH ′| = log(nd |H ′|) = d log n + log(|H ′|).
For model selection, last term can be dropped, because it is
independent of F and n.

log p(D|F) ≈ log p(D|θ̂)− d
2 log n + C = BIC(F , n|D) + C .
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Intuitive interpretation of BIC
The Shannon information content of a specific outcome a of a
random experiment is

h(a) = − log2 P(a) = log 1
P(a) .

It measures the “surprise” (in bits):
Outcomes that are less probable have larger values of surprise.
Information theory: Can find a code so that the number of bits
used to encode each symbol a ∈ A is essentially − log2 P(a).
Here:

−BIC(F , n|D) =

DL of observations given model︷ ︸︸ ︷
n∑

i=1

− log2 p(yi |x i , ŵ)︸ ︷︷ ︸
surprise of yi

 + d
2 log2(n)

The sum of surprises of all observations is the description length of
the observations given the (most probable) model in F .
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Intuitive interpretation of BIC

Second term: description length of the model. Intuitive explanation:
I The model, i.e. ŵ ∈ Rd , was estimated based on n samples.
I Can quantize every component into

√
n levels. Why?

I Remember the standard parametric rate:
1/
√

n represents the magnitude of the estimation error
 no need for encoding with greater precision.

I Grid of (
√

n)d possible values for describing a model.
I We need log2((

√
n)d ) = log2 n(d/2) = (d/2) log2 n bits to encode ŵ .

In summary: -BIC = DL(data|model) + DL(model).
Maximizing BIC = minimizing joint DL of data and model
 Minimum Description Length principle.
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Example: Bayesian logistic regression
Example: polynomial logistic regression, n = 100.
φ1(x) = (1, x1, x2)t , φ2(x) = (1, x1, x2, (x1 + x2)2)t .

−BIC =
n∑

i=1
(− log2 p(yi |x i , ŵ)) + d

2 log2(n)

−3 −2 −1 0 1 2

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

degree #(param) DL(data) DL(model) BIC score
1 3 16.36 bits 9.97 bits -26.33
2 4 15.77 bits 13.29 bits -29.06
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Example: Bayesian logistic regression
Example: polynomial logistic regression, n = 100.
φ1(x) = (1, x1, x2)t , φ2(x) = (1, x1, x2, (x1 + x2)2)t .

−BIC =
n∑

i=1
(− log2 p(yi |x i , ŵ)) + d

2 log2(n)

−4 −2 0 2 4 6

−
4

−
2

0
2

degree #(param) DL(data) DL(model) BIC score
1 3 58.56 bits 9.97 bits -68.53
2 4 38.05 bits 13.29 bits -51.34

Volker Roth (University of Basel) Machine Learning 51 / 70



Subsection 3

Sparse models
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Sparse Models

Sometimes, we have many more dimensions d than training cases n.
Corresponding design matrix X is “short and fat”, rather than
“tall and skinny”.
This is called small n , large d problem .
For example, with gene microarrays , it is common to measure the
expression levels of d ≈ 20, 000 genes, but to only get n ≈ 100
samples (for instance, from 100 patients).
Q: what is the smallest set of features that can accurately predict
the response in order to prevent overfitting , to reduce the cost of
building a diagnostic device, or to help with scientific insight into
the problem?
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Bayesian variable selection

Let γj = 1 if feature j is relevant, and let γj = 0 otherwise.
Our goal is to compute the posterior over models

p(γ|D) = exp(−f (γ))∑
γ′ exp(−f (γ ′)) ,

where f (γ) is the cost function:
f (γ) = −[log p(D|γ) + log p(γ)].

For example, suppose we generate n = 20 samples from a d = 10
dimensional linear regression model, yi ∼ N(w txi , σ

2), in which
K = 5 elements of w are non-zero.
Enumerate all 210 = 1024 models and compute p(γ|D) for each one.
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Bayesian variable selection
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Fig 13.1 in K. Murphy: Score function f (γ) for all possible models.
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Bayesian variable selection
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Fig 13.1 in K. Murphy. Left: Posterior over all 1024 models. Vertical scale has
been truncated at 0.1 for clarity. Right: Marginal inclusion probabilities
p(γj = 1|D). The true model is {2, 3, 6, 8, 9}
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Bayesian variable selection

Interpreting the posterior over a large number of models is difficult
 seek summary statistics.
A natural one is the posterior mode, or MAP estimate

γ̂ = arg max p(γ|D) = arg min f (γ).
However, the mode is often not representative of the full posterior
mass. A better summary is the median model, computed using

γ̂ = {j : p(γj = 1|D) > 0.5}
This requires computing the posterior marginal inclusion
probabilities p(γj = 1|D).
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Bayesian variable selection

The above example illustrates the gold standard for variable
selection: the problem was small (d = 10)
 we were able to compute the full posterior exactly.
Of course, variable selection is most useful in the cases where the
number of dimensions is large.
There are 2d possible models (bit vectors)  impossible to compute
the full posterior in general.
Even finding summaries (MAP, or marginal inclusion probabilities) is
intractable
 algorithmic speedups necessary.
But first, focus on the computation of p(γ|D).
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The spike and slab model

The posterior is given by
p(γ|D) ∝ p(γ)p(D|γ)

It is common to use the following prior:

p(γ) =
d∏

j=1
Ber(γj |π0) = π

‖γ‖0
0 (1− π0)d−‖γ‖0 ,

log p(γ|π0) = −λ‖γ‖0 + const.,
where π0 is the probability that a feature is relevant,
and ‖γ‖0 =

∑d
j=1 γj is the `0 pseudo-norm, i.e., the number of

non-zero elements.
λ = log 1−π0

π0
controls the sparsity of the model.

Setting σ2 = 1, we can write the likelihood as follows:

p(D|γ) = p(y |X ,γ) =
∫

p(y |X ,w ,γ)p(w |γ) dw
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The spike and slab model

Prior p(w |γ). If γj = 0, feature j is irrelevant, so we expect wj = 0.
If γj = 1, we expect wj to be non-zero.
Standardized inputs  reasonable prior is N(0, σ2

w ), where σ2
w

reflects our expectation of the coefficients associated with the
relevant variables:

p(wj |γj) =
{
δ0(wj) , if γj = 0
N(wj |0, σ2

w ) , else
The first term is a spike at the origin.
As σ2

w →∞, the distribution p(wj |γj = 1) approaches a uniform
distribution  slab of constant height.
Spike and slab model (Mitchell and Beauchamp 1988).
Full Bayesian treatment is computationally challenging!
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Simplifying the model

Assume σ2
w →∞ ( uniform prior p(wj |γj) over nonzero

components) and approximate the likelihood using BIC:

log p(D|γ) =
∫

p(y |X ,w ,γ)p(w |γ) dw

≈ log p(y |X , ŵγ)− 1
2 ‖ŵγ‖0︸ ︷︷ ︸

degrees of freedom

log n,

where ŵγ is the ML estimate.
Another view of this model: minimize the negative log likelihood
under a `0 constraint (or penalty in the Lagrangian form)

minimize − log p(y |X ,w) + λ‖w‖0.

Practical problem: `0 is highly non-convex!
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Vector norms
The vector p-norms (`p norms) are defined by

‖x‖p =
( n∑

i=1
|xi |p

)1/p

, 1 ≤ p ≤ ∞,

‖x‖∞ = max(|x1|, · · · |xn|).

Quartl, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17428655
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Simplifying the model further

When we have many variables, it is computationally difficult to find
the posterior mode
Idea: replace discrete variables with continuous ones. Use continuous
priors that “encourage” wj = 0 by putting a lot of probability density
near the origin, such as a zero-mean Laplace distribution.

p(w |λ) =
d∏

j=1
Lap(wj |0, 1/λ) ∝

d∏
j=1

exp(−λ|wj |)

Let us perform MAP estimation with this prior:
f (w) = − log p(D|w)− log p(w |λ) = NLL(w) + λ‖w‖1.

where ‖w‖1 =
∑d

j=1 |wj | is the `1 norm of w and NNL means
negative log-likelihood.
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The Lasso
For suitably large λ, the estimate ŵ will be sparse.
Can be thought of as a convex approximation to the non-convex `0
objective.
This model has the colorful name least absolute shrinkage and
selection operator.
For linear regression, NLL(w) = RSS(w),
a.k.a. basis pursuit denoising (Chen et al. 1998).
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The Lasso
Unfortunately, the ‖w‖1 term is not differentiable at 0
 non-smooth optimization problem.
The subderivative or subgradient of a (convex) function
f : I → R at a point x0 is a scalar c such that

f (x)− f (x0) ≥ c(x − x0), ∀x ∈ I
where I is some interval containing x0.
Note that c is a linear lower bound to f at x0.

X
0

X

c(x − x
0
)

f(x) − f(x
0
)

c’

c

Fig. 13.4 in (K. Murphy)
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The Lasso

The set of all subderivatives is called the subdifferential
For the absolute value function f (x) = |x |:

∂f (x) =


−1 , if x < 0
[−1, 1] , if x = 0
+1 , if x > 0

For least-squares regression, it is easy to show that
∂

∂wj
RSS(w) = ajwj − cj

aj = 2
n∑

i=1
x2

ij

cj = 2
n∑

i=1
xij(yi −w t

−jx i ,−j).

where w−j is w without component j .
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The Lasso

cj is (proportional to) the correlation between the j ’th feature x j and
the residual due to other features, r−j = y − xt

−jw−j .
The magnitude of cj is an indication of how relevant feature j is for
predicting y .
Adding the `1 penalty term:

∂wj f (w) = (ajwj − cj) + λ∂wj‖w‖1

=


ajwj − cj − λ , if wj < 0
[−cj − λ,−cj + λ] , if wj = 0
ajwj − cj + λ , if wj > 0
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The Lasso

Depending on the value of cj , the solution to ∂wj f (w) = 0 can occur
at 3 different values of wj :

ŵj =


(cj + λ)/aj , if cj < −λ
0 , if cj ∈ [−λ, λ]
(cj − λ)/aj , if cj > λ

We can write this as follows:

ŵj = soft
(

cj
aj

; λaj

)
,

where soft(a; δ) = sign(a)(|a| − δ)+ and x+ = max(x , 0) is the
positive part of x .
This is called soft thresholding.

Volker Roth (University of Basel) Machine Learning 68 / 70



The Lasso
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Fig. 13.5 in (K. Murphy). Black line: Least squares fit wk = ck/ak .
The red line (the regularized estimate) ŵk(ck), shifts the black line down (or up)
by λ, except when −λ ≤ ck ≤ λ, in which case it sets wk = 0.
By contrast, hard thresholding sets values of wk to 0 if −λ ≤ ck ≤ λ,
but it does not shrink the values of wk outside of this interval.
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Lasso Algorithms: Coordinate-wise Descent
Sometimes it is hard to optimize all variables simultaneously, but it is easy
to optimize them one by one.
Can solve for j-th coefficient wj with all other coefficients held fixed:

ŵj = arg min
z

f (w + zej),

where ej is the j-th unit vector. Cycle (potentially many times) through
these component-wise updates:
for j = 1, . . . , d do:

aj = 2
n∑

i=1
x2

ij

cj = 2
n∑

i=1
xij(yi −w t

−jx i ,−j)

wj = soft
(

cj
aj

; λaj

)
.

Volker Roth (University of Basel) Machine Learning 70 / 70


	Regression
	Bayesian Regression
	Bayesian model selection
	Sparse models


