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Section 4
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Regression basics

In regression we assume that a response variable y € R is a noisy
function of the input variable x € RY.

y =f(x)+n.
We often assume that f is linear, f(x) = w'x, and that 1 has a
zero-mean Gaussian distribution with constant variance, n ~ N(0, 0?).

This is can equivalently be written as

p(yx) = N(u(x), %), with p(x) = w'x.
In one dimension: p(x) = wp + wix and x = (1, x).
wp is the intercept or bias term and wj is the slope.

If wi > 0, we expect the output to increase as the input increases.
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Least Squares and Maximum Likelihood

e Fit n data points (x;, y;) to a model that has d + 1 parameters
wj, j=0,...,d.

Notation: x <— (1,x) ~> wyp is the intercept.

Frequentist view: w is an unknown parameter vector, not a RV.

We assume that the n observations are iid.

Linear model: y; = wix; +n;, 1; ~ N(0,02).
Observed y; generated from a normal distribution centered at w'x;.

@ Model predicts linear relationship between conditional expectation
of observations y; and inputs x;:

Elyilxi] = wo + wixin + - - - + waxig = w'x; = f(x;; w).
Note: the expectation operator is linear and E[n;] = 0.
Regression function = conditional expectation.
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LS and Maximum Likelihood

o Likelihood function: conditional probability of all observed y; given
their explanation, treated as a function of the model parameters w:

1
L(w) Hexp [—M(%‘ - WtXi)2

o Maximizing L = finding model that best explains observations:

w = arg max L(w) = arg mMi/n[—L(w)] = arg mMi/n[— log(L(w))]
= argmin Z(YI — w'x;)?

Least-squares fit = ML solution under Gaussian error model.

@ Wy g minimizes the residual sum of squares

RSS(w) =) 2 =) i~ flxisw)* = |ly — Xw]|.
i=1 i=1
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Least squares regression: Geometry

EN?.;SW(W) = 861)/!/ [y'y = 2y'Xw + w' X' Xw]
= X'y +2X'Xw =0
= w = (X'X)"1Xty
= Xty — Xw) = X'* = 0.
If follows that >/, Xjr; =0, Vj=0,1,...,d.
Residual is orthogonal to 1 (j = 0) and to every input dimension X,;.

Y

XL.1]

X[.2]
Adapted from Fig. 3.2 in (Hastie, Tibshirani, Friedman)
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Least squares regression: Geometry

X[.1]

XL.2]
Adapted from Fig. 3.2 in (Hastie, Tibshirani, Friedman)

The fitted values at the training inputs are
(F(x1),...,F(xn))t = § = X = X(X X) I Xty.

H = X(XtX)~1X*t is called “hat” matrix (puts hat on y)

Column vectors of X span the column space of X C R”.

Minimizing RSS(w) ~~ choose W such that r is orthogonal.

e 6 o6 o

Fitted values ¥ are orthogonal projection of y on column space.
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Least squares regression: Algebra

@ H is orthogonal projection on column space of X:
HX = X(X'X)71XIX = X.
o Fundamental theorem of linear algebra: the nullspace of X' is
the orthogonal complement of the column space of X.
o M = I, — H is orthogonal projection on nullspace of X*:
MX =(l,—H)X=X-X=0.
o H and M are symmetric (H* = H) and idempotent (MM = M)

The Algebra of Least Squares
o H creates fitted values: y = Hy ~~ y € Col(X)
@ M creates residuals: r = My ~» # € Null(X*) & Xtr =0
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Frequentist confidence limits

e Recall: y; = f(x;; w) + n;, with independent Gaussian noise.
o In matrix-vector form: y = Xw + n, with n ~ N(0,02/,).
w = (XIX)"1Xxty
= (X'X) Xt Xw + (XEX) 71Xy
=w+ (X'X)"1X'n
= w-w=(XX)"1Xin= An
o Linear functions of normals are normal:
N(0,0%1,) = An ~ N(0,02AAY).
Here: A= (XIX)"1Xt = AA! = (XtX)"!
e Conditioned on X and o2
W — w|X, 0% ~ N (0,0%(X"X) 7).
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Frequentist confidence limits

@ Distribution completely specified ~~ confidence limits:
Wi — wie ~ N(0,025%9),
where S¥< denotes the kth diagonal element of (XX)™1.
@ Thus, both z, and zx = —z, are standard normal:
zi = (wx — Wi)/Va2Skk ~ N(0,1)
o CDF:

P(Zk < kc) = —t%/2 dt =: (D(kc) =1—c¢

1 ke
e
o Upper limit for wy:

P(zk < k) = P(Vo2Skkz < Vo25kkk,)
(we — (Wi — Wy) > wy — Va2Skkk,)
= P(Wx > wg — \/mkc)
(

= P(wi < wy + VUzskka):].—C.

I
i}
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Frequentist confidence limits

Least-squares fit (red) and two lines with slopes according to upper (lower)
95% confidence limit (green).
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Standard parametric rate

@ Assume we have estimated the parameters based on n samples:
(Wp—w) ~ N(0,02(X'X)"H)
= N(0,0% (X'X/n)""-1/n)
(W, —w) ~ N(0,02(X'X/n)" )
——
-
@ Since for n — oo, X*X/n — X = const, this means that
W, converges to w at a rate of 1/\/n.

@ This is a very general result that holds in an asymptotic sense even
without assuming normality ~» central limit theorem.

@ Due to its universality, it is called the standard parametric rate.
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Basis functions

@ Can be generalized to model non-linear relationships by replacing x

with some non-linear function of the inputs, ¢(x):
ply|x) = N(w'e(x), o2).

@ Predictions can be based on a linear combination of a set of basis
functions ¢(x) = {go(x), g1(x), ..., gm(x)}, with gi(x) : R? — R.
Can model the intercept by setting go(x) = 1:

f(x;w) =wo + wigi(x) + - + Wmgm(x).
~» additive models

degree 1 degree 2

Fig 1.7 in K.Murphy
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Additive models

o Examples:
If x € RY and m=d+1, go(x) =1 and gi(x) = x;,i = 1,...,d, then
f(x;w) =wp+ wixy + -+ + wgxy.
If x €R, go(x) =1 and gi(x) = x',i=1,...,m, then
f(x;w)=wy+ wixt 4w ™.
@ Basis functions can capture various properties of the inputs.
Example: Document analysis

x = text document (collection of words)
1, if word i appears in the document
gi(x) = :
0, otherwise

fxiw) = wo+ Y wig(x).

i€words
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Additive models cont’d

@ We can also make predictions by gauging the
similarity of examples to prototypes.

@ For example, our additive regression function could be
f(x; w) = wo + wig1(x) + - + Wingm(x),

where the basis functions are radial basis functions

gk(x) = exp(— 5 x = x[*)

measuring the S|m||ar|ty to the prototypes xy.
@ The variance o controls how quickly the basis function vanishes as a
function of the distance to the prototype.

o Training examples themselves could serve as prototypes.
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Additive models cont’d

Can view additive models graphically in terms of units and weights.

WmYm

Yo 8n(X)

In neural networks the basis functions have adjustable parameters.
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Example: Polynomial regression

Polynomial basis functions. Degree = 1 Polynomial basis functions. Degree = 3
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Complexity and overfitting

With limited training examples our polynomial regression model may
achieve zero training error but nevertheless has a large expected error.

training — Z f(xi; w )2 ~0
expectation E(X7y)Np (v — f(x; W) >0

We suffer from over-fitting
~~ should reconsider our model ~~ model selection.

We will discuss model selection from a Bayesian perspective first.
A frequentist approach will follow later in the chapter on
statistical learning theory.
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Subsection 1

Bayesian Regression
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Bayesian interpretation: priors

@ Suppose our generative model takes an input x € R? and maps it to
a real valued output y according to

p(ylx, w,0%) = N(y|w'x, o%)
o We will keep o2 fixed and only try to estimate w.
o Given data D = {(x1,¥1),-..,(Xn, yn)}, the likelihood function is

n n 1 1
L(w;D) = [[ N(vilw'x;, o) =[] = <_i_ti2>-
(w;D) ,-|:|1 (vilw'x;,07) il:llzexp 552 (Vi = w'xi)
@ In classical regression we used the maximizing parameters w.

o In Bayesian analysis we keep all regression functions,
just weighted by their ability to explain the data.

@ Our knowledge about w after seeing the data is defined by the
posterior distribution p(w|D).
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Bayesian regression: Prior and posterior

@ We specify our prior belief about the parameter values as p(w).
For instance, we could prefer small parameter values:

p(w)=N (w\0,7'2I>
The smaller 72 is, the smaller values of w we prefer
prior to seeing the data.
e Posterior proportional to prior p(w) times likelihood:
p(wD) x L(w: D)p(w)
@ Here: posterior is Gaussian p(w|D, c?) = N(w|wy, Viy) with mean
wy and covariance V) given by
wy = (XX +ADIXy, Wy =o?(XEX + )7

with A = &.
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Bayesian regression: Posterior computation

Given variables x € R% and y € R%, assume linear Gaussian system:

p(x) = N(x[pee; 2x) (> prior)
p(y|x) = N(y|Ax + b,%,) (~ likelihood)

o The posterior is also Gaussian:
p(X|y) = N(x“"’x|y7 ZX|y)
Ty = I FATETA
By = Tapy (AT, My = B) + 500 ) -
Gaussian likelihood and Gaussian prior form a conjugate pair.
@ The normalization constant (denominator in Bayes formula) is
p(y) = N(y|Ap, + b, T, + AT A").
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Bayesian regression: Posterior predictive

@ Prediction of y for new x: use posterior as weights for predictions
based on individual w's ~~ Posterior predictive:

ply|x.D,0?) = / p(yIx, w. o*)p(wD) dw

ox(x) =0+ x VNx.

@ The variance in this prediction, o%(x), depends on two terms:
» the variance of the observation noise, o2
> the variance in the parameters, Vy
~> depends on how close x is to training data D
~ error bars get larger as we move away from training points.
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Bayesian regression: Posterior predictive

@ By contrast, the plugin approximation uses only the ML-parameter
estimate with the degenerate distribution p(w|D, 02) = 64 (w):
p(ylx,D,0%) ~ [ plylx, w,0%)du(w) dw = p(y|x, W,0?) = N(y|x" i, 0?).

plugin approximation (MLE)

= prediction
training data

Posterior predictive (known variance)

rediction
Q training data

-6

-6 -4 -2 0 2 4 6

Fig. 7.12 in (K. Murphy). Example with quadratic basis functions: posterior predictive distribution (mean and £10).
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Sampling from posterior predictive

Left: plugin approximation: f(y) = ¢(x)'w
where ¢(x) is the expanded input vector (1, x, x?)t.

Right: sampled functions ¢(x)tw(s), where W(S) are samples from the
posterior

functions sampled from plugin approximation to posterior

functions sampled from posterior

1001

-8 = -4 -2 0 2 4 6 8

Fig. 7.12 in (K Murphy)
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MAP approximation and ridge regression

o Posterior proportional to prior p(w) = N (w|0, 72/) times likelihood.
o The MAP estimate is
wwmap = arg max{log[L(w; D)] + log[p(w)]}
— arg min{— log{L(w; D)] — loglp(w)]}

o1 1
= arg mln{ﬁ > (yi— whx;)? + ?wtw}
i

2
—argmm{z i — wix;) Jr%wtw}

T
—argmm{z i — wix)2 4+ Awiw}

@ In classical statistics, th|s is called ridge regression:
-1
WMAP = Wiidge = (XtX + )\I) Xt_y
@ In regularization theory, this is an example of
Tikhonov Regularization.
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Subsection 2

Bayesian model selection
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Example: Polynomial regression
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Bayesian regression (again)

@ Suppose our parametrized model Fp takes an input x € RY and maps
it to a real valued output y according to

p(y|x,0,0%) = N(y; 6°x,07)
We will keep o2 fixed and only try to estimate 6.
Given data D = {(x1,)1), .-, (Xn, ¥n)}, define likelihood

n "1 1
L(6;D) = [ N(yi; 6'xi.0%) = || > exp (—M(Yi - 9tXi)2> :
i=1 i=1

In classical regression we used the maximizing parameters 6.

In Bayesian analysis we keep all regression functions, just weighted
by their ability to explain the data.

Knowledge about @ after seeing the data defined by posterior p(6|D).
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Bayesian regression (again)

@ We specify our prior belief about the parameter values as p(8).
For instance, we could prefer small parameter values:

p(8) = N(8;0,72)
Small 72 ~+ small @ preferred prior to seeing data.
@ Posterior proportional to prior p(8) times likelihood:
p(61D) x L(6; D)p(6)

@ Normalization constant, a.k.a. marginal likelihood:

ply|F.X) = [ L(6:D)p(6]F)db.
N——
p(y|6,X)
depends on model + data but not on specific parameter values.
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Example: Bayesian regression

@ Goal: choose among regression model families, specified by different
feature mappings x — ¢(x).
o Example: linear ¢1(x) and quadratic ¢o(x).
@ The model families we compare are:
Fi o p(ylx,01,0%) = N(y|6i¢1(x),0%)
Fa o plylx,02,0%) = N(y|63¢2(x),0?).
e Focusing on p(y|F,X) = [ L(8;D)p(0)db, two possibilities:
» F too flexible: posterior p(€|D) requires many training examples
before it focuses on useful parameter values;

» F too simple: posterior concentrates quickly but the predictions
remain poor.

@ Pragmatic choice: Select the family whose marginal likelihood
(a.k.a. Bayesian score) is larger.

o After seeing data D we would select model Fi if
p(y|F1, X) > p(y|F2, X).
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Approximating the marginal likelihood

@ Problem: In most cases we cannot compute the marginal likelihood in
closed form ~~ approximations are needed.

@ A specific approximation will lead to the
Bayesian Information Criterion (BIC).

o Key insight: when computing

pYIF.X) = [ p(y10. X)p(8]F)db.

the integrand is a product of two densities ~» integrand itself is an
unnormalized density.

o Laplace’s approximation uses a clever trick to approximate such
integrals...
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Approximation details: Laplace’'s Method

@ Assume unnormalized density p*(€) has peak
at 0. Goal: calculate normalizing constant

4:/&@&

@ Taylor-expand logarithm around i P(0)
mpwe)z|ny(m._gw._m2+.”7
where ,
c:= —% Inp*(0)],_s-
(note that first order term vanishes)
In p*(6)
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Laplace's Method (cont'd)

@ Approximate p*(#) by unnormalized
Gaussian

Q'(0):=p* (D) exp [~c/2- (0~ 0)]

@ A normalized Gaussian would be:

5oy L (0 0)2
Q| p=10,07)= Zo exp 52 ¥ |
with ZQ = \/ﬁ fexp |: (9 9) :| do In P*(Q) & In Q*(@)
e Approximate Z, = [ p*(0) df by
Zp %/Q*(Q) do

— p*(h) / exp [~c/2- (0 0] do

p*(0) & Q*(0)
= p*(0)\/27/c ~» c is the inverse variance
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Laplace's Method (cont'd)

@ Multivariate generalization in d dimensions:
second derivative ~~ Hessian matrix

0%1In p*(0)
Hy= "~
Lﬂxﬁ@x/ap[;WéYHWéﬂde
P [ LA H‘—i

where the last equation follows from the properties of the
determinant: |aM| = a?|M| for M € R9*9 2 € R.

@ Another interpretation: complicated distribution p(@) is approximated
by Gaussian centered at the mode 6:

p(0) ~ N (0| =0, = H™Y).
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Example: Bayesian logistic regression

(]

Linear logistic regression: model parameters are simply the weights w.

Likelihood: p(y|x, w) = Ber(y|sigm(w'x))

Unfortunately, there is no convenient conjugate prior. Let's use a
standard Gaussian prior: p(w) = N(w|0, Vo)

Laplace's approximation of posterior:
p(w|D) =~ N(w|w*, H™)
w” = argmax J[w], J[w] = logp(y|x, w) + log p(w)
—_—— ——

likelihood prior

H=V?J(w)

w*
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data

-5 0

Log-Unnormalised Posterior

Fig 8.5 in K.Murphy
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Bayesian LOGREG: Approximating the posterior predictive

@ Posterior ~» can compute credible intervals etc.
@ But in machine learning, interest usually focuses on prediction.

@ The posterior predictive distribution has the form

plyIx. D) = [ p(ylx, w)p(w|D) dw.
Here (and in most cases), this integral is intractable.
@ The simplest approximation is the plug-in approximation
ply =1|x,D) = p(y = 1|x, w")
@ But such a plug-in estimate underestimates the uncertainty.
o Better: Monte Carlo approximation
15
p(y’X7 D) ~ g Z sigm((ws)tx),
s=1

where w® ~ p(w|D) are samples from the Gaussian approximation to
the posterior.
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MC approx of p(y=1x)
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Approximating the marginal likelihood

p(OIF) = [ p(Dl6): pl61F)d8

1 flat prior

p(DI6") - p(8"|F)|H/(2m)| 72 = p(DIB)|H/(2m)| 2

~

A 1
logp(D|F) =~ logp(D|0)— 5 log|H|+ C, with 6 =0pmin F.

Q

@ Focus on last term:
n
H= Z Hi, with H; =VgVglogp(D;|0).
i=1
Let's approximate each H; with a fixed matrix H’
log |H| = log |nH'| = log(n9|H'|) = dlog n + log(|H'|).
@ For model selection, last term can be dropped, because it is
independent of F and n.
A d
log p(D|.F) ~ log p(D|0) — > logn+ C = BIC(F,n|D)+ C.
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Intuitive interpretation of BIC

@ The Shannon information content of a specific outcome a of a
random experiment is

h(a) = — log, P(a) = log Pa)’

It measures the “surprise” (in bits):
Outcomes that are less probable have larger values of surprise.

1

o Information theory: Can find a code so that the number of bits
used to encode each symbol a € A is essentially — log, P(a).

o Here:
DL of observations given model

n

. d
~BIC(F, n[D) = 3" | — loga p(yilxi, w) | + 5 loga(n)
i=1

surprise of y;

@ The sum of surprises of all observations is the description length of
the observations given the (most probable) model in F.
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Intuitive interpretation of BIC

@ Second term: description length of the model. Intuitive explanation:
» The model, i.e. w € RY, was estimated based on n samples.
» Can quantize every component into y/n levels. Why?
» Remember the standard parametric rate:
1/+/n represents the magnitude of the estimation error
~ no need for encoding with greater precision.
» Grid of (/n)9 possible values for describing a model.
» We need log,((v/n)) = log, n(?/2) = (d/2) log, n bits to encode w.
o In summary: -BIC = DL(data|model) + DL(model).

@ Maximizing BIC = minimizing joint DL of data and model
~» Minimum Description Length principle.
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Example: Bayesian logistic regression
Example: polynomial logistic regression, n = 100.
¢1(x) = (17X1aX2)tv ¢2(X) = (17X17X2a (Xl +X2)2)t_

n . d
—BIC = Z (—logo p(yi|xi, w)) + 5 log,(n)
i=1

+
+

+ ot
+ t+ Ty

+

degree ‘ #(param) ‘ DL(data) ‘ DL(model) ‘ BIC score
1 3 16.36 bits | 9.97 bits -26.33
2 4 15.77 bits | 13.29 bits | -29.06
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Example: Bayesian logistic regression
Example: polynomial logistic regression, n = 100.
¢1(x) = (17X1aX2)tv ¢2(X) = (17X17X2a (Xl +X2)2)t_

n . d
—BIC = Z (—logo p(yi|xi, w)) + 5 log,(n)
i=1

degree ‘ #(param) ‘ DL(data) ‘ DL(model) ‘ BIC score
1 3 58.56 bits | 9.97 bits -68.53
2 4 38.05 bits | 13.29 bits | -51.34
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Subsection 3

Sparse models
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Sparse Models

@ Sometimes, we have many more dimensions d than training cases n.
o Corresponding design matrix X is “short and fat”, rather than
“tall and skinny".
o This is called small n , large d problem.
o For example, with gene microarrays, it is common to measure the

expression levels of d =z 20,000 genes, but to only get n ~ 100
samples (for instance, from 100 patients).

@ Q: what is the smallest set of features that can accurately predict
the response in order to prevent overfitting, to reduce the cost of

building a diagnostic device, or to help with scientific insight into
the problem?
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Bayesian variable selection

o Let 7; = 1 if feature j is relevant, and let 7; = 0 otherwise.
@ Our goal is to compute the posterior over models
exp(—f(7))
p(v|D) = Y
>y exp(—f (7))

where (=) is the cost function:

f(v) = —[log p(D|v) + log p(7)].

@ For example, suppose we generate n = 20 samples from a d = 10
dimensional linear regression model, y; ~ N(th,-,az), in which
K =5 elements of w are non-zero.

210

e Enumerate all = 1024 models and compute p(v|D) for each one.
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Bayesian variable selection

log p(model, data)
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Fig 13.1 in K. Murphy: Score function f(«y) for all possible models.
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Bayesian variable selection

p(modelldata) ; Plgammag)idata
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Fig 13.1 in K. Murphy. Left: Posterior over all 1024 models. Vertical scale has
been truncated at 0.1 for clarity. Right: Marginal inclusion probabilities

p(v; = 1|D). The true model is {2, 3,6,8,9}
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Bayesian variable selection

@ Interpreting the posterior over a large number of models is difficult
~> seek summary statistics.

@ A natural one is the posterior mode, or MAP estimate
4 = argmax p(y|D) = arg min (7).
@ However, the mode is often not representative of the full posterior
mass. A better summary is the median model, computed using

¥ ={j:p(y=1/D)> 0.5}
This requires computing the posterior marginal inclusion
probabilities p(v; = 1|D).
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Bayesian variable selection

@ The above example illustrates the gold standard for variable
selection: the problem was small (d = 10)
~> we were able to compute the full posterior exactly.

o Of course, variable selection is most useful in the cases where the
number of dimensions is large.

o There are 29 possible models (bit vectors) ~ impossible to compute
the full posterior in general.

e Even finding summaries (MAP, or marginal inclusion probabilities) is
intractable
~> algorithmic speedups necessary.

e But first, focus on the computation of p(v|D).
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The spike and slab model

@ The posterior is given by

p(v|D) o< p(v)p(D|)
@ It is common to use the following prior:

d
p(v) = [[Ber(vjlmo) = my1°(1 — mo)= o,
Jj=1
log p(v|m0) = —Allv[lo + const.,

where 7 is the probability that a feature is relevant,

and ||v|lo = 27:1 7j is the {g pseudo-norm, i.e., the number of

non-zero elements.

e A=log 1;—:0 controls the sparsity of the model.

o Setting o2 =1, we can write the likelihood as follows:

P(DIY) = p(y1X.7) = [ p(yIX. w.7)p(w]7) dw

Volker Roth (University of Basel) 59 /70



The spike and slab model

@ Prior p(w|vy). If 4j = 0, feature j is irrelevant, so we expect w; = 0.
If v, = 1, we expect w; to be non-zero.

o Standardized inputs ~~ reasonable prior is N(0,02), where o2,

reflects our expectation of the coefficients associated with the
relevant variables:

Jo(wj)  if ;=0
w; i) =
p(wj|;) {N(ij|070_§v) else
@ The first term is a spike at the origin.

o As 02, — oo, the distribution p(w;|y; = 1) approaches a uniform
distribution ~~ slab of constant height.

o Spike and slab model (Mitchell and Beauchamp 1988).

o Full Bayesian treatment is computationally challenging!
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Simplifying the model

o Assume 02, — oo (~ uniform prior p(w;|y;) over nonzero
components) and approximate the likelihood using BIC:

log p(D|vy) = /p(y!X, w,y)p(wl|vy) dw

A 1
~ log p(y| X, wy) — 5

> linlo  logn,
——

degrees of freedom

where W, is the ML estimate.

@ Another view of this model: minimize the negative log likelihood
under a {y constraint (or penalty in the Lagrangian form)

minimize — log p(y|X, w) + Al|w||o.

@ Practical problem: ¢y is highly non-convex!
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Vector norms
The vector p-norms (¢, norms) are defined by
n 1/p
Ixllp =D x| , 1<p<oo,
i=1

[1X[loo = max(|xal, -- - [xa])-

05 (-

-05 |-

Quartl, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17428655
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Simplifying the model further

@ When we have many variables, it is computationally difficult to find
the posterior mode
o ldea: replace discrete variables with continuous ones. Use continuous

priors that “encourage” w; = 0 by putting a lot of probability density
near the origin, such as a zero-mean Laplace distribution.

d d
p(wlN) = [ Lap(w;]0, 1/A) o T] exp(—Alw;))
j=1 j=1
o Let us perform MAP estimation with this prior:
f(w) = — log p(D|w) — log p(w|A) = NLL(w) + A|lw]];.

where ||w|[; = Zle |w;j| is the £1 norm of w and NNL means

negative log-likelihood.
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The Lasso

@ For suitably large A, the estimate w will be sparse.

@ Can be thought of as a convex approximation to the non-convex {g
objective.

@ This model has the colorful name least absolute shrinkage and
selection operator.

o For linear regression, NLL(w) = RSS(w),
a.k.a. basis pursuit denoising (Chen et al. 1998).

Za
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The Lasso

o Unfortunately, the ||w||; term is not differentiable at 0
~> non-smooth optimization problem.

e The subderivative or subgradient of a (convex) function
f:Z — R at a point xp is a scalar ¢ such that

f(x)—f(x0) > c(x —x0), Vx €T

where Z is some interval containing xg.
Note that c is a linear lower bound to 7 at xp.

Fig. 13.4 in (K. Murphy)
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The Lasso

@ The set of all subderivatives is called the subdifferential
o For the absolute value function f(x) = |x|:
-1 ,ifx <0
0f(x) =4[-1,1] ,ifx=0
+1 Jif x>0

@ For least-squares regression, it is easy to show that

O Rss(w) = aw—g

Iw;
n
_ 2
3 = 2) x;
i=1

n
G = 2 xjlyi—w'x; ;).
i=1

where w_; is w without component ;.
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The Lasso

@ ¢j is (proportional to) the correlation between the j'th feature x; and
the residual due to other features, r_; =y — x* w_;.

@ The magnitude of ¢; is an indication of how relevant feature j is for
predicting y.
@ Adding the /1 penalty term:
wf(w) = (ajwj — G) + Ay ||y

ajwj — ¢ — A if wp <0
= S[-¢—=A—¢+A ,ifw=0
ajwj — ¢+ A cifw; >0
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The Lasso

@ Depending on the value of ¢;, the solution to d,,f(w) = 0 can occur
at 3 different values of w;:
(c+AN)/a ifg<—A
wj =10 if g e [N ]
(c—N)/a; ,ifcg>A
o We can write this as follows:

ci A
W = soft (J; ) ,
aj 4j

where soft(a; d) = sign(a)(]a] — 9)+ and x; = max(x, 0) is the
positive part of x.

@ This is called soft thresholding.
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The Lasso

/ C
/ o k

Fig. 13.5 in (K. Murphy). Black line: Least squares fit wy = cx/ax.

The red line (the regularized estimate) Wy (ck), shifts the black line down (or up)

by A, except when —X < ¢, < A, in which case it sets wy = 0.

By contrast, hard thresholding sets values of wy to 0 if =\ < ¢, < A,
but it does not shrink the values of w, outside of this interval.
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Lasso Algorithms: Coordinate-wise Descent

Sometimes it is hard to optimize all variables simultaneously, but it is easy
to optimize them one by one.

Can solve for j-th coefficient w; with all other coefficients held fixed:
W = argmin f(w + ze;),
where e; is the j-th unit vector. Cycle (potentially many times) through

these component-wise updates:
for j=1,...,d do:

n
aj = 2ZX5
i=1
n
G = 2 xjlyi—wixi_j)
i=1

w; = soft <Cj;)\>.
9 g
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