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Section 6

Elements of Statistical Learning Theory
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A 'black box’ model of learning

LM

y

G Generates i.i.d. samples x according to unknown pdf p(x).

S Outputs values y according to unknown p(y|x).

LM Observes pairs (x1,y1),---,(Xn, ¥n) ~ p(x,y) = p(x)p(y|x).
Tries to capture the relation between x and y.
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Expected Risk

Learning Process: frequentist view

The learning process is the process of choosing an appropriate function
from a given set of functions.

Note: from a Bayesian viewpoint we would rather define a
distribution over functions.
A good function should incur only a few errors ~~ small expected risk:

Expected Risk
The quantity
R[f] = E(x,y)Np{LOSS(y7 f(x))}

is called the expected risk and measures the loss averaged over the
unknown distribution.

Volker Roth (University of Basel) 4/41



Empirical Risk

@ The best possible risk is infs R[f]. The infimum is often achieved at a
minimizer f, that we call target function.

@ ...but we just have a sample S. To find “good” functions we typically
have to restrict ourselves to a hypothesis space H containing
functions with some property (regularity, smoothness etc.)

@ In a given hypothesis space H, denote by f* the best possible
function that can be implemented by the learning machine.

Empirical risk
The empirical risk of a function f is

Rermplf] = % S Loss(yi, F(x7))-
i=1

Denote by fs € ‘H the empirical risk minimizer on sample S.
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Hypothesis space

= 5 DA
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Generalization

@ SLT gives results for bounding the error on the unseen data, given
only the training data.

@ There needs to be a relation that couples past and future.

Sampling Assumption
The only assumption of SLT is that all samples (past and future) are iid. J

Typical structure of a bound: With probability 1 — ¢ it holds that

known

R[fn] < Remp[fn] + \/

Slo

(capacity(’H) +1In f;)’

confidence term

with some constants a, b > 0.
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Convergence of random variables

Definition (Convergence in Probability)

Let X1, X3, ... be random variables. We say that X,, converges in
probability to the random variable X as n — oo, iff, for all € > 0,

P(|X, — X| >¢) — 0, as n — oc.

We write X, 2 X as n — .
v
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The simplest case: Binary classification

Binary classification with 0/1 loss

Our analysis considers the case where

F:X o {—1,1}, and L(y,f(x)) = %|1 )yl

@ Note: We can use any hypothesis space and apply the signum
function:

H' = {f =sign(f)|f € H}
o Similar results from SLT also available other classification loss
functions and for regression (but we will not discuss this here).
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Consistency of ERM

The principle of empirical risk minimization is consistent if for any ¢ > 0,

Jim_ P(IRIf] = RIF)| > ) =0

and
Jim_ P((Remlfe] = RI£]| > ) =0
4
R[fn]
Remplfn)
R[f*] 1 T =
n
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A counter example

Why is bounding P(|Remp[fn] — R[f*]| > €) not sufficient? )

1

o3|

o3|

o 15 1%
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Hoeffding's inequality

Theorem (Hoeffding)

Let &, i € [0, n] be n independent instances of a bounded random variable

&, with values in [a, b]. Denote their average by Q, = %Z, &. Then for
any e >0,

P(Q,— E(&) >¢) 2ne?
Ao ER=d } < exp(— ) (1
and
2 2
P(1Qn — E(©)] 2 €) < 2e0(~ (5 —55) (2)
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Hoeffding's inequality
Let & be the 0/1 loss function:

£= 31— F(x)y| = Ly, F(3)).

Then
1 1<
Qulfl =12 &= > L F(xi)) = Remplf]
i=1 i=1
and

E[§] = E[L(y, f(x))] = RIf].

l.i.d. sampling assumption: &; are independent instances of bounded
random variable &, with values in [0, 1].

Hoeffding's Inequality for fixed functions
P(|Remp[f] — RIf]] > €) < 2exp(—2ne?) J
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Hoeffding's inequality

Hoeffding's inequality gives us rates of convergence for any fixed function. J

Example: Let f € H be an arbitrary fixed function
@ For e = 0.1 and n = 100,
P(|Remp[f] — R[f]| > 0.1) < 0.28
@ For e =0.1 and n = 200,
P(|Remp[f] — R[f]| > 0.1) < 0.04

Caution!
Hoeffding's inequality does not tell us that

P(|Remplfa] — RIfa]| > €) < 2exp(—2ne?).

Because:
@ f, is chosen to minimize Remp.
@ This is not a fixed function!!
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Consistency

Risk

Remp

P o by
For each fixed function f, Remp[f] ﬁ R[f] (downward arrow).

This does not mean that the empirical risk minimizer f,, will lead to a
value of risk that is as good as possible, R[f*] (consistency).
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Conditions for consistency

Let
fp=arg min Remplf]
= in R[f
arg min R(f]
then

R[f]— R[f*] > 0,Vf € H
Remp[f] - Remp[fn] >0, VfeH
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Conditions for consistency

Let
fp=arg min Remplf]
= in R[f
arg min R(f]
then

Rlf.] = R[f*] > 0,
Remp[f] - Remp[fn] >0, VfeH
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Conditions for consistency

Let
fp=arg min Remplf]
= in R[f
arg min R(f]
then

R[f,] = R[f*] > 0,
Remp[f*] - Remp[fn] Z 07
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Conditions for consistency

>0 >0
0 < R[fy] — R[f*] + Rempl[f*] — Remplfnl
= R[fn] - Remp[fn] + Remp[f*] - R[f*]
< ?EQ(R[’(] — Remp[f]) + Remp[f*] — R[f"]

P
P Hoeffding: ———0
Assumption: —0 n— 00

n— oo

Assume

sup(R[f] = Remplf]) —— 0
fer =€

One-sided uniform convergence over all functions in H
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Conditions for consistency

>0 >0

0 <RTFul — RIF 1+ Remplf] — Remplfl — 0

= RIF] 4+ Remp[f*] ——— 0

R[fn] - Remp[fn] ﬁ 0
suprey (RIf] — Remplf]) ﬁ) 0 = consistency of ERM. }
Thus, it is a sufficient condition for consistency.
Rf.]
Remplfn]
R[] 1 < —
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The key theorem of learning theory

Theorem (Vapnik & Chervonenkis '98)
Let H be a set of functions with bounded loss for the distribution F(x,y),

A < R[f] £ B, Vf € H.
For the ERM principle to be consistent, it is necessary and sufficient that

lim P(sup(R[f] — Remplf]) > €) =0, Ye > 0.
n=o0 fey

Note: here, we looked only at the sufficient condition for consistency.
For the necessary condition see (Vapnik & Chervonenkis '98).

Volker Roth (University of Basel) Machine Learning 19/41




The key theorem of learning theory

@ The key theorem asserts that any analysis of the convergence of ERM
must be a worst case analysis.

o We will show:
Consistency depends on the capacity of the hypothesis space.
But there are some open questions:
@ How can we check the condition for the theorem (uniform one-sided
convergence) in practice?

@ Are there “simple” hypothesis classes with guaranteed consistency?

@ Analysis is still asymptotic.
What can we say about finite sample sizes?
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Finite hypothesis spaces

Assume the set A contains only 2 functions:

H = {h, L}.

Let

Cli={(xa,)s -, (xn, yn) R[] = Remplf] > €}

be the set of samples for which the risks of f; differ by more than e.
Hoeffding’s inequality:

P(C!) < exp(—2n¢é?)
Union bound:

P(sup(RIf] = Remplf] > €)) = P(CIUC) = P(C})+ P(C2) — P(CIN C)
< P(C}) + P(C?) < 2exp(—2n€?).
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Finite hypothesis spaces

Assume H contains a finite number of functions: H = {f1,..., fy}.

C={Ga, ), (xn,yn)|RIf] — Remplfi] > €}

Hoeffding’s inequality: P(C/) < exp(—2ne?)
Union bound: P(UN,C)) < N, P(C) < Nexp(—2ne?)

P(?leJ’EL(R[f] — Remp[f] > €)) < Nexp(—2ne?) = exp(In N — 2ne?)

@ For any finite hypothesis space, the ERM is consistent.

@ The convergence is exponentially fast.
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Some consequences

P(?gz R[f] — Remplf] > ¢€) < exp(In N — 2ne?) J

@ Bound holds uniformly for all functions in H
~= can use it for the functions that minimize Remp.
~> We can bound the test error:

P(R[f,] — Remplfa] > €) < exp(In N — 2né?).
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Some consequences

o Can derive a confidence interval: equate r.h.s. to ¢ and solve for e:
P(R[fn] — Remplfa] > €) < d(€)
P(RI[fa] = Remplfal <€) =1 —0d(e)

e With probability at least (1 — ¢) it holds that
R[fa] < Remplfa] + €(0)

STiRey

), with a=1/2,b=1.
—
Capacity(H)

@ Bound depends only on H and n.

RIfa] < Remplfi] + J %( N +In

@ However: “Simple” spaces (like the space of linear functions) contain
infinitely many functions.
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Infinite to finite (7)

Observation: R.mp[f] effectively refers only to a finite function class: for

n sample points xi, ..., X,, the functions in f € H can take at most 2”
different values yi, ..., yp.

But this does not yet solve our problem: Confidence term In(2")/n = 1In2

does not converge to 0 as n — co. But let's formalize this idea first...
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Infinite case: Shattering Coefficient

Let a sample: Z, := {(x1,y1),---,(xn,¥n)} be given.

Denote by N (H, Z,) the cardinality of H when restricted to
{x1,...,%n}, H|Zp, i.e. the number of functions from H that can be
distinguished on the given sample.

Consider now the maximum (over all possible n-samples):

Definition (Shattering Coefficient)

The Shattering Coefficient is the maximum number of ways into which n
points can be classified by the function class:

N(H,n) = mZaxN(H,Z,,).

Since f(x) € {—1,1}, N(H, n) is finite.
N(H,Z,) < N(H,n) <2"
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Example

Linear functions
H = {sign({w,x) + b)|w € R? b € R}
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o N(H,2)=4=2?

Volker Roth (University of Basel) Machine Learning 27 /41



Example

o N(H,3)=8=23
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Example
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o N(H,4) =14 < 2*

Volker Roth (University of Basel) Machine Learning 29 /41



Capacity concepts

@ Recall: we search for other capacity measures of H replacing In V.
o We know N(H,Z,) <N(H,n)< 2"
———— ~~
depends on sample too loose

@ Dependency on sample can be removed by averaging over all samples:
E[N(H, Z,)]. It turns out that this is a valid capacity measure:

Theorem (Vapnik and Chervonenkis)

Let Zop = ((x1,¥1), - - -, (x2n, Yon) be a sample of size 2n. For any € > 0 it
holds that

P(sup R[f] — Remp[f] > €) < 4exp(In E[N(H, Z25)] — n_e2)
feH 8

o If In E[N(H, Z25)] grows sublinearly, we get a nontrivial bound.
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Some consequences

P(sup R[f] — Remplf] > €) < 4exp(In E[N(H, Z25)] — ni2)
feH 8

@ Bound holds uniformly for all functions in ‘H
~+ can use it for the functions that minimize Remp.

~ We can bound the test error:
2

P(R[f] — Remplf] > €) < 4E[N(H, Zon)] exp(—n%).

o Can derive a confidence interval: equate r.h.s. to § and solve for ¢:
With probability at least (1 — ) it holds that

R[fa] < Remplfs] + €(9)

R[fn] S Remp[fn] + \/’87 <|n E[N(H, ZZn)] + In g)

e Bound depends on , n and the unknown probability P(Z).
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VC Dimension and other capacity concepts

o Growth function: upper bound expectation by maximum:
Gu(n) = In[max N (H, Z,)] =In N(H,n)
Z, ——
Shattering coeff.

e VC-Dimension: recall that N (#,n) < 2". Vapnik & Chervonenkis
showed that either N(#, n) = 2" for all n, or there exists some
maximal n for which this is the case.

Definition
The VC dimension h of a class H is the largest n such that
N(H, n) = 2", or, equivalently Gy (n) = nin(2).

Interpretation: The VC-Dimension is the maximal number of
samples that can be classified in all 2" possible ways.
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VC Dimension
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VC Dimension
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4 Points in 2D cannot be labeled in all possible ways by linear functions.
The VC-Dimension is 3! J
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A remarkable property of the growth function

Theorem (Vapnik & Chervonenkis)

Let H be a class of functions with finite VC-dimension h. Then for n < h,
Gy (n) grows linearly with the sample size, and for all n > h

Gu(n) < h(ln%—i—l).
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Capacity concepts

Relation of capacity concepts:

(sometimes) easy to compute
’_/%

n EIN(H, Zon)] < Gu(n) < (m - 1)
—_—

distribution dependent

distribution independent

Structure of bounds:

R £ B i = \/; (capacity(?—[) +In g)

If the VC Dimension is finite, we get non-trivial bounds!
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VC-Dimension for linear functions

Theorem
The VC dimension of linear functions in d-dimensional space is d + 1. J

Question: Does the number of parameters coincide with the
VC-Dimension? No!! Counter example:

e
=

sin(50 - x)
0.0

-1.0

0.0 0.2 0.4 0.6 0.8 1.0
x

FIGURE 7.5 in (Hastie et al.: The Elements of Statistical Learning). Solid curve: sin(50x) for x € [0, 1]. Blue and green points

illustrate how sign(sin(cux)) can separate an arbitrarily large number of points by choosing a high frequency a.
The VC-Dimension of {sign(sin(ax))|a € R} is infinite. |
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Linear functions: Role of the margin

@ Recall: the VC dimension of linear functions on R¥ is d + 1.
@ We need finite VC dimension for “simple” nontrivial bounds.

@ Question: is learning impossible in infinite dimensional spaces
(e.g. Gaussian RBF kernels)?

@ Not necessarily! The capacity of the subset of hyperplanes with
large classification margin can be much smaller than the general
VC dimension of all hyperplanes.
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Recall: Decision hyperplanes

o f(x; w) defines distance r from x to the hyperplane: x = x, + r
° f(xp) =0 = f(x)=rllw| < r=7fx)/|wl].

wo
l[wil®
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Canonical hyperplanes

@ Definition of hyperplane is not unique: weight vector w can be
multiplied by any nonzero constant.

@ The definition of a canonical hyperplane overcomes this ambiguity by
additionally requiring

“min|w'x; + wo| = 1.
beesh

=

@ Distance between canonical hyperplane and the closest point:
margin r = 1/||w||.
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Structure on canonical hyperplanes

Theorem (Vapnik, 1982)

Let R be the radius of the smallest ball containing the points x1,...,Xp:
Br(a) = {x e RY: ||x — a|| < R, a € R?}. The set of canonical
hyperplane decision functions f(w, wy) = sign{w’x + wy} satisfying
|lw|| < A has VC dimension h bounded by

h< R?A? +1.

Intuitive interpretation: margin = 1/||w/|
~> minimizing capacity(#) corresponds to maximizing the margin.

Structure of bounds:

R[fs] < Remplfa] + \/’27 (capacity(?—[) +In g)

~» Large margin classifiers.
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