Machine Learning

Volker Roth

Department of Mathematics & Computer Science University of Basel

Э

Section 7

Support Vector Machines and Kernels

Э

イロト イヨト イヨト

Structure on canonical hyperplanes

Theorem (Vapnik, 1982)

Let *R* be the radius of the smallest ball containing the points $\mathbf{x}_1, \ldots, \mathbf{x}_n$: $B_R(\mathbf{a}) = \{\mathbf{x} \in \mathbb{R}^d : \|\mathbf{x} - \mathbf{a}\| < R, \ \mathbf{a} \in \mathbb{R}^d\}$. The set of canonical hyperplane decision functions $f(\mathbf{w}, w_0) = sign\{\mathbf{w}^t \mathbf{x} + w_0\}$ satisfying $\|\mathbf{w}\| \le A$ has VC dimension h bounded by

 $h \le R^2 A^2 + 1.$

Intuitive interpretation: margin = 1/||w|| \rightarrow minimizing capacity(\mathcal{H}) corresponds to maximizing the margin.

$$R[f_n] \leq R_{\mathsf{emp}}[f_n] + \sqrt{rac{\mathsf{a}}{n}} \left(\mathsf{capacity}(\mathcal{H}) + \ln rac{b}{\delta}
ight)$$

→ Large margin classifiers.

イロト イポト イヨト イヨト 三日

SVMs

• When the training examples are **linearly separable** we can maximize the margin by minimizing the regularization term

$$\|\mathbf{w}\|^2/2 = \sum_{i=1}^d w_i^2/2$$

subject to the classification constraints

$$y_i[x_i^t w] - 1 \ge 0, \ i = 1, \dots, n.$$

• The solution is defined only on the basis of a subset of examples or **support vectors.**

SVMs: nonseparable case

 Modify optimization problem slightly by adding a penalty for violating the classification constraints:

n

minimize
$$\|\boldsymbol{w}\|^2/2 + C\sum_{i=1}^n \xi_i$$

subject to relaxed constraints

$$y_i[x_i^t w] - 1 + \xi_i \ge 0, \ i = 1, \dots, n.$$

• The
$$\xi_i \ge 0$$
 are called **slack variables**.

SVMs: nonseparable case

We can also write the SVM optimization problem more compactly as

$$C\sum_{i=1}^{n} \overbrace{(1-y_i[\boldsymbol{x}_i^t \boldsymbol{w}])^+}^{\xi_i} + \|\boldsymbol{w}\|^2/2,$$

where $(z)^+ = z$ if $z \ge 0$ and zero otherwise.

• This is equivalent to regularized empirical loss minimization

$$\underbrace{\frac{1}{n}\sum_{i=1}^{n}(1-y_{i}[\boldsymbol{x}_{i}^{t}\boldsymbol{w}])^{+}}_{R_{emp}}+\lambda \|\boldsymbol{w}\|^{2},$$

where $\lambda = 1/(2nC)$ is the regularization parameter.

イロト 不得 トイヨト イヨト 三日

SVMs and LOGREG

• When viewed from the point of view of regularized empirical loss minimization, SVM and logistic regression appear quite similar:

SVM:
$$\frac{1}{n} \sum_{i=1}^{n} (1 - y_i [\boldsymbol{x}_i^t \boldsymbol{w}])^+ + \lambda \|\boldsymbol{w}\|^2$$

LOGREG:
$$\frac{1}{n} \sum_{i=1}^{n} -\log \overbrace{\sigma(y_i [\boldsymbol{x}_i^t \boldsymbol{w}])}^{P(y_i | \boldsymbol{x}_i, \boldsymbol{w})} + \lambda \|\boldsymbol{w}\|^2,$$

where $\sigma(z) = (1 + e^{-z})^{-1}$ is the logistic function.

イロト イポト イヨト イヨト 三日

SVMs and LOGREG

• The difference comes from how we penalize errors:

Both:
$$\frac{1}{n} \sum_{i=1}^{n} \operatorname{Loss}(y_i[\boldsymbol{x}_i^t \boldsymbol{w}]) + \lambda \|\boldsymbol{w}\|^2$$
,

• SVM: Loss
$$(z) = (1 - z)^+$$

• LOGREG: Loss $(z) = \log(1 + \exp(-z))$

< ロ > < 同 > < 回 > < 回 > < 回 > <

SVMs: solution, Lagrange multipliers

• Back to the separable case: how do we solve

minimize_{**w**} $\|\mathbf{w}\|^2/2$ s.t. $y_i[\mathbf{x}_i^t\mathbf{w}] - 1 \ge 0, i = 1, \dots, n.$

• Represent the constraints as individual loss terms:

$$\sup_{\alpha_i \geq 0} \alpha_i (1 - y_i[\boldsymbol{x}_i^t \boldsymbol{w}]) = \begin{cases} 0, & \text{if } y_i[\boldsymbol{x}_i^t \boldsymbol{w}] - 1 \geq 0, \\ \infty, & \text{otherwise.} \end{cases}$$

• Rewrite the minimization problem:

$$\begin{array}{l} \text{minimize}_{\boldsymbol{w}} & \|\boldsymbol{w}\|^2/2 + \sum_{i=1}^n \sup_{\alpha_i \ge 0} \alpha_i (1 - y_i[\boldsymbol{x}_i^t \boldsymbol{w}]) \\ = \text{minimize}_{\boldsymbol{w}} & \sup_{\alpha_i \ge 0} \left(\|\boldsymbol{w}\|^2/2 + \sum_{i=1}^n \alpha_i (1 - y_i[\boldsymbol{x}_i^t \boldsymbol{w}]) \right) \end{array}$$

イロト イポト イヨト イヨト 三日

SVMs: solution, Lagrange multipliers

 Swap maximization and minimization (technically this requires that the problem is convex and feasible ~>> Slater's condition):

$$\mininimize_{\boldsymbol{w}} \left[\sup_{\alpha_i \ge 0} \left(\|\boldsymbol{w}\|^2 / 2 + \sum_{i=1}^n \alpha_i (1 - y_i[\boldsymbol{x}_i^t \boldsymbol{w}]) \right) \right]$$
$$= \maxinize_{\alpha_i \ge 0} \left[\min_{\boldsymbol{w}} \left(\underbrace{\|\boldsymbol{w}\|^2 / 2 + \sum_{i=1}^n \alpha_i (1 - y_i[\boldsymbol{x}_i^t \boldsymbol{w}])}_{J(\boldsymbol{w};\alpha)} \right) \right]$$

 We have to minimize J(w; α) over parameters w for fixed Lagrange multipliers α_i ≥ 0.
 Simple, because J(w) is convex ↔ set derivative to zero
 → only one stationary point → global minimum.

SVMs: solution, Lagrange multipliers

• Find optimal **w** by setting the derivatives to zero:

$$\frac{\partial}{\partial \boldsymbol{w}} J(\boldsymbol{w}; \boldsymbol{\alpha}) = \boldsymbol{w} - \sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i} = 0 \implies \hat{\boldsymbol{w}} = \sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i}.$$

• Substitute the solution back into the objective and get (after some re-arrangements of terms):

$$\begin{aligned} \max_{\alpha_i \ge 0} \min_{\boldsymbol{w}} \left(\|\boldsymbol{w}\|^2 / 2 + \sum_{i=1}^n \alpha_i (1 - y_i [\boldsymbol{x}_i^t \boldsymbol{w}]) \right) \\ = \max_{\alpha_i \ge 0} \left(\|\hat{\boldsymbol{w}}\|^2 / 2 + \sum_{i=1}^n \alpha_i (1 - y_i [\boldsymbol{x}_i^t \hat{\boldsymbol{w}}]) \right) \\ = \max_{\alpha_i \ge 0} \left(\sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y_i y_j \alpha_i \alpha_j \boldsymbol{x}_i^t \boldsymbol{x}_j \right) \end{aligned}$$

くロト く得ト くほト くほとう

SVMs: summary

• Find optimal Lagrange multipliers $\hat{\alpha}_i$ by maximizing

$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} \boldsymbol{x}_{i}^{t} \boldsymbol{x}_{j} \quad \text{subject to } \alpha_{i} \geq 0.$$

- Only $\hat{\alpha}_i$'s corresponding to **support vectors** will be non-zero.
- Make **predictions** on any new example **x** according to:

$$\operatorname{sign}(\boldsymbol{x}^t \hat{\boldsymbol{w}}) = \operatorname{sign}(\boldsymbol{x}^t \sum_{i=1}^n \hat{\alpha}_i y_i \boldsymbol{x}_i) = \operatorname{sign}(\sum_{i \in SV} \hat{\alpha}_i y_i \boldsymbol{x}^t \boldsymbol{x}_i).$$

- Observation: dependency on input vectors only via **dot products.**
- Later we will introduce the **kernel trick** for efficiently computing these dot products in implicitly defined feature spaces.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SVMs: formal derivation

• Convex optimization problem: an optimization problem

minimize
$$f(\mathbf{x})$$
(1)subject to $g_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m$ (2)

is convex if the functions $f, g_1 \dots g_m : \mathbb{R}^n \to \mathbb{R}$ are convex.

• The Lagrangian function for the problem is

$$\mathcal{L}(\mathbf{x},\lambda_0,...,\lambda_m) = \lambda_0 f(\mathbf{x}) + \lambda_1 g_1(\mathbf{x}) + ... + \lambda_m g_m(\mathbf{x}).$$

Karush-Kuhn-Tucker (KKT) conditions: For each point x̂ that minimizes f, there exist real numbers λ₀,..., λ_m, called Lagrange multipliers, that simultaneously satisfy:

1
$$\hat{\boldsymbol{x}}$$
 minimizes $\mathcal{L}(\boldsymbol{x}, \lambda_0, \lambda_1, \dots, \lambda_m)$,

- ② $\lambda_0 \ge 0, \lambda_1 \ge 0, \dots, \lambda_m \ge 0$, with at least one $\lambda_k > 0$,
- 3 Complementary slackness: $g_i(\hat{\mathbf{x}}) < 0 \Rightarrow \lambda_i = 0, 1 \le i \le m$.

・ロット (母) ・ ヨ) ・ ヨ) ・ ヨ

SVMs: formal derivation

- Slater's condition: If there exists a strictly feasible point z satisfying g₁(z) < 0, ..., g_m(z) < 0, then one can set λ₀ = 1.
- Assume that Slater's condition holds. Minimizing the supremum $\mathcal{L}^*(\mathbf{x}) = \sup_{\lambda \ge 0} \mathcal{L}(\mathbf{x}, \lambda)$, is the **primal problem P**:

$$\hat{\pmb{x}} = \operatorname*{argmin}_{\pmb{x}} \mathcal{L}^*(\pmb{x}).$$

Note that

$$\mathcal{L}^*(\boldsymbol{x}) = \sup_{\lambda \ge 0} \left(f(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i g_i(\boldsymbol{x}) \right) = \begin{cases} f(\boldsymbol{x}) & \text{, if } g_i(\boldsymbol{x}) \le 0 \,\forall i \\ \infty & \text{, else.} \end{cases}$$

 \rightsquigarrow Minimizing $\mathcal{L}^*(x)$ is equivalent to minimizing f(x).

• The maximizer of the **dual problem D** is

$$\hat{oldsymbol{\lambda}} = rgmax_{oldsymbol{\lambda}} \mathcal{L}_*(oldsymbol{\lambda}), ext{ where } \mathcal{L}_*(oldsymbol{\lambda}) = \inf_{oldsymbol{x}} \mathcal{L}(oldsymbol{x},oldsymbol{\lambda}).$$

イロト 不得 トイヨト イヨト 二日

SVMs: formal derivation

- The non-negative number min(P) max(D) is the **duality gap.**
- Convexity and Slater's condition imply strong duality:
 - The optimal solution (x̂, λ̂) is a saddle point of L(x, λ)
 The duality gap is zero.
- Discussion: For any real function f(a, b) min_a[max_b f(a, b)] ≥ max_b[min_a f(a, b)].
 Equality → saddle value exists.

By Nicoguaro - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=20570051

・ コ ト ・ 雪 ト ・ 雪 ト ・ ヨ ト

Kernel functions

- A **kernel function** is a real-valued function of two arguments, $k(\mathbf{x}, \mathbf{x}') \in \mathbb{R}$, for $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$.
- Typically the function is **symmetric**, and sometimes non-negative.
- In the latter case, it might be interpreted as a measure of similarity.
- Example: isotropic Gaussian kernel:

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right)$$

Here, σ^2 is the bandwidth. This is an example of a radial basis function (RBF) kernel (only a function of $||\mathbf{x} - \mathbf{x}'||^2$).

イロト イポト イヨト イヨト 二日

Mercer kernels

• A symmetric kernel is a Mercer kernel, iff the Gram matrix

$$K = \begin{pmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \dots & k(\mathbf{x}_1, \mathbf{x}_n) \\ \vdots & \vdots \\ k(\mathbf{x}_n, \mathbf{x}_1) & \dots & k(\mathbf{x}_n, \mathbf{x}_n) \end{pmatrix}$$

- is **positive semidefinite** for any set of inputs $\{x_i, \ldots, x_n\}$.
- Mercer's theorem: Eigenvector decomposition

$$K = V \Lambda V^t = (V \Lambda^{1/2}) (V \Lambda^{1/2})^t =: \Phi \Phi^t.$$

Eigenvectors: columns of V. Eigenvalues: entries of diagonal matrix $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$. Note that $\lambda_i \in \mathbb{R}$ and $\lambda_i \ge 0$. Define $\phi(\mathbf{x}_i)^t = i$ -th row of $\Phi = V_{[i\bullet]} \Lambda^{1/2}$ $\rightsquigarrow k(\mathbf{x}_i, \mathbf{x}_{i'}) = \phi(\mathbf{x}_i)^t \phi(\mathbf{x}_{i'})$.

• Entries of *K*: **inner product of some feature vectors**, implicitly defined by eigenvectors *V*.

<ロト <部ト <注ト <注ト = 正

Mercer kernels

• If the kernel is **Mercer**, then there exists $\phi: x \to \mathbb{R}^d$ such that $k(x, x') = \phi(x)^t \phi(x'),$

where ϕ depends on the eigenfunctions of k (d might be infinite).

• Example: Polynomial kernel

$$k(\mathbf{x},\mathbf{x}')=(1+\mathbf{x}^t\mathbf{x}')^m.$$

Corresponding feature vector contains terms up to degree *m*. Example: $m = 2, x \in \mathbb{R}^2$:

 $(1 + \mathbf{x}^{t}\mathbf{x}')^{2} = 1 + 2x_{1}x_{1}' + 2x_{2}x_{2}' + (x_{1}x_{1}')^{2} + (x_{2}x_{2}')^{2} + 2x_{1}x_{1}'x_{2}x_{2}'.$

Thus,

$$\phi(\mathbf{x}) = [1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2]^t.$$

Equivalent to working in a 6-dim feature space.

• Gaussian kernel: feature map lives in an infinite dimensional space.

◆ロト ◆部 ト ◆ ヨト ◆ ヨ ・ つへの

Kernels for documents

- In document classification or retrieval, we want to compare two documents, x_i and x_{i'}.
- Bag of words representation:
 x_{ij} is the number of times word *j* occurs in document *i*.
- One possible choice: **Cosine similarity:**

$$k(\mathbf{x}_i, \mathbf{x}_{i'}) = \frac{\mathbf{x}_i^t \mathbf{x}_{i'}}{\|\mathbf{x}_i\| \|\mathbf{x}_{i'}\|} =: \phi(\mathbf{x}_i)^t \phi(\mathbf{x}_{i'}).$$

Problems:

- Popular words (like "the" or "and") are not discriminative
 ~> remove these stop words.
- Bias: once a word is used in a document, it is very likely to be used again.
- Solution: Replace word counts with "normalized" representation.

▲御▶ ▲漫▶ ▲漫▶

Kernels for documents

• TF-IDF "term frequency inverse document frequency": **Term frequency** is log-transform of the count:

 $\mathsf{tf}(x_{ij}) = \mathsf{log}(1 + x_{ij})$

Inverse document frequency:

$$\operatorname{idf}(j) = \log rac{\#(\operatorname{documents})}{\#(\operatorname{documents containing term } j)} = \log rac{1}{\hat{p}_j}.$$

→→ Shannon information content:

idf is a measure of how much information a word provides

• Combine with tf \rightsquigarrow counts weighted by information content:

 $\mathsf{tf}\mathsf{-idf}(\mathbf{x}_i) = [\mathsf{tf}(\mathbf{x}_{ij}) \cdot \mathsf{idf}(j)]_{j=1}^V$, where $V = \mathsf{size}$ of vocabulary.

• We then use this inside the cosine similarity measure. With $\phi(\mathbf{x}) = \text{tf-idf}(\mathbf{x})$:

$$k(\mathbf{x}_i, \mathbf{x}_{i'}) = \frac{\phi(\mathbf{x}_i)^t \phi(\mathbf{x}_{i'})}{\|\phi(\mathbf{x}_i)\| \|\phi(\mathbf{x}_{i'})\|}.$$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

String kernels

- Real power of kernels arises for structured input objects.
- Consider two strings x, and x' of lengths d, d', over alphabet A.
 Idea: define similarity as the number of common substrings.
- If s is a substring of $x \rightsquigarrow \phi_s(x) =$ number of times s appears in x.
- String kernel

$$k(x,x') = \sum_{s \in \mathcal{A}^*} w_s \phi_s(x) \phi_s(x'),$$

where $w_s \ge 0$ and $\mathcal{A}^* =$ set of all strings (any length) from \mathcal{A} .

- One can show: Mercer kernel, can be computed in O(|x| + |x'|) time using suffix trees (Shawe-Taylor and Cristianini, 2004).
- Special case: $w_s = 0$ for |s| > 1: **bag-of-characters kernel:** $\phi(x)$ is the number of times each character in \mathcal{A} occurs in x.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つくつ

The kernel trick

- Idea: modify algorithm so that it **replaces all inner products** $x^t x'$ with a call to the **kernel function** k(x, x').
- Kernelized ridge regression: $\hat{w} = (X^t X + \lambda I)^{-1} X^t y$. Matrix inversion lemma:

$$(I + UV)^{-1}U = U(I + VU)^{-1}$$

Define new variables α_i :

$$\hat{\boldsymbol{w}} = (X^t X + \lambda I)^{-1} X^t \boldsymbol{y}$$

= $X^t \underbrace{(XX^t + \lambda I)^{-1} \boldsymbol{y}}_{\hat{\alpha}} = \sum_{i=1}^n \hat{\alpha}_i \boldsymbol{x}_i.$

 \rightarrow solution is linear sum of the *n* training vectors.

The kernel trick

• Use this and the kernel trick to make predictions for x:

$$\hat{f}(\mathbf{x}) = \hat{\mathbf{w}}^t \mathbf{x} = \sum_{i=1}^n \hat{\alpha}_i \mathbf{x}_i^t \mathbf{x} = \sum_{i=1}^n \hat{\alpha}_i k(\mathbf{x}_i, \mathbf{x}).$$

Same for SVMs:

$$\hat{\boldsymbol{w}}^t \boldsymbol{x} = \sum_{i \in SV} \hat{\alpha}_i y_i \boldsymbol{x}_i^t \boldsymbol{x} = \sum_{i \in SV} \hat{\alpha}'_i k(\boldsymbol{x}_i, \boldsymbol{x})$$

• ...and for most other classical algorithms in ML!

A B + A B +

Some applications in bioinformatics

• Bioinformatics: often non-vectorial data-types:

interaction graphs

HEMOGI OBIN

- phylogenetic trees
- strings GSAQVKGHGKKVADALTNAVAHV
- Data fusion: convert data of each type into kernel matrix
 - \Rightarrow fuse kernel matrices
 - \Rightarrow "common language" for heterogeneous data.

RBF kernels from expression data

- **Measurements** (for each gene): vector of expression values under different experimental conditions
- "classical" RBF kernel $k(x_1, x_2) = \exp(-\sigma ||x_1 x_2||^2)$

Diffusion kernels from interaction-graphs

- A: Adjacency matrix, D: node degrees, L = D A.
- $K := \frac{1}{Z(\beta)} \exp(-\beta L)$ with transition probabilities β .
- Physical interpretation (*random walk*): randomly choose next node among neighbors.
- Self-transition occurs with prob. $1 d_i \beta$

• K_{ij} : prob. for walk from *i* to *j*.

(Kondor and Lafferty, 2002)

・ロト ・聞 ト ・ ヨト ・ ヨト

Alignment kernels from sequences

Alignment with Pair HMMs \rightsquigarrow Mercer kernel (Watkins, 2000). Image source: Durbin, Eddy, Krogh, Mitchison. Biological Seguence Alignment. Cambridge.

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL ++ ++++H+ KV + +A ++ +L+ L+++H+ K LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

Combination of heterogeneous data

Adding kernels \Rightarrow new kernel:

$$egin{aligned} &k_1(x,y) = \phi_1(x) \cdot \phi_1(y), \ &k_2(x,y) = \phi_2(x) \cdot \phi_2(y) \end{aligned} \Rightarrow &k' = k_1 + k_2 = (\phi_1(x)) \cdot (\phi_1(y)) \phi_2(y) \end{aligned}$$

Fusion & relevance determination: kernel-combinations

Section 8

Gaussian Processes: probabilistic kernel models

Э

Overview

- The use of the Gaussian distribution in ML
 - Properties of the multivariate Gaussian distribution
 - \blacktriangleright Random variables \rightarrow random vectors \rightarrow stochastic processes
 - Gaussian processes for regression
 - Model Selection
 - Gaussian processes for classification
- Relation to kernel models (e.g. SVMs)
- Relation to neural networks.

Kernel Ridge Regression

- Kernelized ridge regression: $\hat{w} = (X^t X + \lambda I)^{-1} X^t y$.
- Matrix inversion lemma: $(I + UV)^{-1}U = U(I + VU)^{-1}$
- Define new variables α_i :

$$\hat{\boldsymbol{w}} = (X^t X + \lambda I)^{-1} X^t \boldsymbol{y}$$

= $X^t \underbrace{(XX^t + \lambda I)^{-1} \boldsymbol{y}}_{\hat{\alpha}} = \sum_{i=1}^n \hat{\alpha}_i \boldsymbol{x}_i.$

• Predictions for new x_{*}:

$$\hat{f}(\boldsymbol{x}_*) = \hat{\boldsymbol{w}}^t \boldsymbol{x}_* = \sum_{i=1}^n \hat{\alpha}_i \boldsymbol{x}_i^t \boldsymbol{x}_* = \sum_{i=1}^n \hat{\alpha}_i k(\boldsymbol{x}_i, \boldsymbol{x}_*).$$

Kernel Ridge Regression

Kernel function: $k(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{1}{2l^2} \|\mathbf{x}_i - \mathbf{x}_j\|^2)$

< ∃ →

How can we make use of the Gaussian distribution?

- Is it possible to fit a nonlinear regression line with the "boring" Gaussian distribution?
- Yes, but we need to introduce the concept of Gaussian Processes!

The 2D Gaussian distribution

2D Gaussian:
$$P(\mathbf{y}; \boldsymbol{\mu} = \mathbf{0}, \boldsymbol{\Sigma} = \boldsymbol{K}) = \frac{1}{\sqrt{2\pi|K|}} \exp(-\frac{1}{2}\mathbf{y}^t \boldsymbol{K}^{-1} \mathbf{y})$$

Covariance

(also written "*co*-variance") is a measure of how much **two** random variables vary together:

- +1: perfect linear coherence,
- -1: perfect negative linear coherence,
- 0: no linear coherence.

Properties of the Multivariate Gaussian distribution

$$\mathbf{y} \sim \mathcal{N}(\mathbf{\mu}, \mathbf{K})$$
. Let $\mathbf{y} = \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix}$ and $\mathbf{K} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix}$.
Then $\mathbf{y}_1 \sim \mathcal{N}(\mathbf{\mu}_1, K_{11})$ and $\mathbf{y}_2 \sim \mathcal{N}(\mathbf{\mu}_2, K_{22})$.

Marginals of Gaussians are again Gaussian!

Properties of the Multivariate Gaussian distribution (2)

$$\mathbf{y} \sim \mathcal{N}(\mathbf{\mu}, \mathbf{K})$$
. Let $\mathbf{y} = \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix}$ and $\mathbf{K} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix}$.
Then $\mathbf{y}_2 | \mathbf{y}_1 \sim \mathcal{N}(\mathbf{\mu}_2 + K_{21}K_{11}^{-1}(\mathbf{y}_1 - \mathbf{\mu}_1), K_{22} - K_{21}K_{11}^{-1}K_{12})$.

Conditionals of Gaussians are again Gaussian!

2D Gaussians: a new visualization

- top left: mean and \pm std.dev. of $p(y_2|y_1 = 1)$.
- **bottom left:** $p(y_2|y_1 = 1)$ and samples drawn from it.
- top right: x-axis: indices (1, 2) of dimensions, y-axis: density in each component. Shown are $y_1 = 1$ and the conditional mean $\bar{p}(y_2|y_1 = 1)$ and std.dev.
- bottom right: samples drawn from above model.

Visualizing high-dimensional Gaussians

- top left: 6 samples drawn from 5-dimensional Gaussian with zero mean (indicated by blue line).
 σ = 1 (magenta line).
- **bottom left:** Conditional mean and std.dev of $p(y_4, y_5|y_1 = -1, y_2 = 0, y_3 = 0.5)$
- top right: contour lines of $p(y_4, y_5|y_1 = -1, y_2 = 0, y_3 = 0.5)$
- bottom right: samples drawn from above model.

From covariance matrices to Gaussian processes

- **top left:** 8 samples, 6 dim. *x*-axis: dimension-indices.
- bottom left: 8 samples, viewed as values y = f(x).
 Construction: choose 6 input points x_i at random
 ⇒ build covariance matrix K with covariance function k(x, x') = exp(-1/2l² ||x-x'||²)
 ⇒ draw f ~ N(0, K)
 ⇒ plot as function of inputs.
- top right: same for 12 inputs
- bottom right: 100 inputs

This looks similar to Kernel Regression...

Volker Roth (University of Basel)

40 / 63

Gaussian Processes

- Gaussian Random Variable (RV): $f \sim \mathcal{N}(\mu, \sigma^2)$.
- Gaussian Random Vector: Collection of *n* RVs, characterized by mean vector and covariance matrix: *f* ~ N(μ, Σ)
- Gaussian Process: infinite Gaussian random vector, every finite subset of which is jointly Gaussian distributed
 Continuous index, e.g. time t → function f(t).
 Fully specified by mean function m(t) = E[f(t)] and covariance function k(t, t') = E[(f(t) m(t))(f(t') m(t'))].
- In ML, we will focus on more general index sets $x \in \mathbb{R}^d$ with mean function m(x) and covariance function k(x, x'):

 $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')).$

イロト イポト イヨト イヨト 三日

Visualizing Gaussian Processes: Sampling

- **Problem:** working with infinite vectors and covariance matrices is not very intuitive...
- Solution: evaluate the GP at set of n discrete times (or input vectors x ∈ ℝ^d):
 - ► Choose *n* input points *x_i* at random → matrix *X*
 - build covariance matrix K(X, X) with covariance function $k(x_i, x_j)$
 - ► sample realizations of the Gaussian random vector f ~ N(0, K(X, X))
 - plot f as function of inputs.

イロト イポト イヨト イヨト 三日

This is exactly what we have done here...

Volker Roth (University of Basel)

From the Prior to the Posterior

GP defines distribution over functions $\rightsquigarrow \mathbf{f}$ evaluated at training points X and \mathbf{f}_* evaluated at test points X_* are jointly Gaussian:

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} K(X,X) & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix}\right)$$

Posterior $p(f_*|X_*, X, f(X))$: conditional of a Gaussian distribution.

Let
$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K})$$
. Let $\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}$ and $\boldsymbol{K} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix}$.
Then $\mathbf{x}_2 | \mathbf{x}_1 \sim \mathcal{N}(\boldsymbol{\mu}_2 + K_{21}K_{11}^{-1}(\mathbf{f}_1 - \boldsymbol{\mu}_1), K_{22} - K_{21}K_{11}^{-1}K_{12})$.

$$\begin{aligned} \boldsymbol{f}_* | \boldsymbol{X}_*, \boldsymbol{X}, \boldsymbol{f} &\sim \mathcal{N}(\qquad \mathcal{K}(\boldsymbol{X}_*, \boldsymbol{X}) (\mathcal{K}(\boldsymbol{X}, \boldsymbol{X}))^{-1} \boldsymbol{f}, \\ &\qquad \mathcal{K}(\boldsymbol{X}_*, \boldsymbol{X}_*) - \mathcal{K}(\boldsymbol{X}_*, \boldsymbol{X}) (\mathcal{K}(\boldsymbol{X}, \boldsymbol{X}))^{-1} \mathcal{K}(\boldsymbol{X}, \boldsymbol{X}_*)) \end{aligned}$$

For only one test case:

$$f_* | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{f} \sim \mathcal{N}(\boldsymbol{k}_*^t \boldsymbol{K}^{-1} \boldsymbol{f}, k_{**} - \boldsymbol{k}_*^t \boldsymbol{K}^{-1} \boldsymbol{k}_*)$$

A simple extension: noisy observations

- Assume we have access only to noisy versions of function values: $y = f(\mathbf{x}) + \eta$, $\eta \sim \mathcal{N}(0, \sigma^2)$ (cf. initial example of **ridge regression**).
- Noise η does not depend on data!
- Covariance of noisy observations y is sum of covariance of f and variance of noise: $cov(\mathbf{y}) = K(X, X) + \sigma^2 I$.

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathcal{K}(X, X) + \sigma^2 \mathbf{I} & \mathcal{K}(X, X_*) \\ \mathcal{K}(X_*, X) & \mathcal{K}(X_*, X_*) \end{bmatrix} \right)$$

 $\begin{aligned} \boldsymbol{f}_* | \boldsymbol{X}_*, \boldsymbol{X}, \boldsymbol{y} &\sim \mathcal{N} (& \boldsymbol{\mathcal{K}}(\boldsymbol{X}_*, \boldsymbol{X}) (\boldsymbol{\mathcal{K}}(\boldsymbol{X}, \boldsymbol{X}) + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{y}, \\ \boldsymbol{\mathcal{K}}(\boldsymbol{X}_*, \boldsymbol{X}_*) & - \boldsymbol{\mathcal{K}}(\boldsymbol{X}_*, \boldsymbol{X}) (\boldsymbol{\mathcal{K}}(\boldsymbol{X}, \boldsymbol{X}) + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{\mathcal{K}}(\boldsymbol{X}, \boldsymbol{X}_*)) \end{aligned}$

$$f_*|\boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{f} \sim \mathcal{N}(\boldsymbol{k}_*^t(\boldsymbol{K} + \sigma^2 \boldsymbol{I})^{-1}\boldsymbol{y}, \boldsymbol{k}_{**} - \boldsymbol{k}_*^t(\boldsymbol{K} + \sigma^2 \boldsymbol{I})^{-1}\boldsymbol{k}_*)$$

 \Rightarrow Posterior mean is solution of kernel ridge regression!

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Noisy observations: examples

Noisy observations: $y = f(\mathbf{x}) + \eta$, $\eta \sim \mathcal{N}(0, \sigma^2)$ Mean predictions: $\hat{f}_* = K_*(K + \sigma^2 I)^{-1} \mathbf{y}$.

→ ∃ → < ∃ →</p>

Gaussian processes for regression

- Left: 11 training points generated as y = sin(x)/x + ν, ν ~ N(0, 0.01)
 Covariance k(x_p, x_q) = exp(-¹/_{2l²} ||x_p x_q||²) + σ²δ_{p,q}.
 100 test points uniformly chosen from [-10, 10] → matrix X_{*}.
 Mean prediction E[f_{*}|X_{*}, X, y] and ±std.dev.
- Middle: samples drawn from posterior $f_*|X_*, X, y$.
- **Right:** samples drawn from prior $f \sim \mathcal{N}(\mathbf{0}, \mathcal{K}(X, X))$.

イロト イボト イヨト イヨト

Covariance Functions

- A GP specifies a distribution over functions f(x), characterized by mean function m(x) and covariance function k(x_i, x_j).
- Finite subset evaluated at *n* inputs \rightsquigarrow Gaussian distribution:

 $\boldsymbol{f}(\boldsymbol{X}) = (f(\boldsymbol{x}_1), \ldots, f(\boldsymbol{x}_n))^t \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}),$

where K is the covariance matrix with entries $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$.

- Covariance matrices are symmetric positive semi-definite: $K_{ij} = K_{ji}$ and $\mathbf{x}^t K \mathbf{x} \ge 0, \forall \mathbf{x}.$
- We already know that Mercer kernels have this property
 ~> all Mercer kernels define proper covariance functions in GPs.
- Kernels frequently have additional parameters.
- The **noise variance** in the observation model $y = f(\mathbf{x}) + \eta, \eta \sim \mathcal{N}(0, \sigma^2)$ is another parameter.
- \bullet How should we choose these parameters? \rightsquigarrow model selection.

Model Selection

- top left: sample function from prior $f \sim \mathcal{N}(\mathbf{0}, K(X, X))$ with covariance function $k(\mathbf{x}, \mathbf{x}') = \exp(-\frac{1}{2l^2} ||\mathbf{x} - \mathbf{x}'||^2)$. Length scale $l = 10^{-0.5}$ small \rightsquigarrow highly varying function.
- bottom left: same for *l* = 10⁰
 → smoother function
- **top right:** same for *I* = 10^{0.5} → even smoother...
- **bottom right:** almost linear function for $l = 10^1$.

length scale: 10*0, sample no. 1

length scale: 10^1, sample no. 1

イロト イヨト イヨト

Model Selection (2)

- How to select the parameters?
- One possibility: maximize marginal likelihood:

$$p(\mathbf{y}|X) = \int p(\mathbf{y}|\mathbf{f}, X) p(\mathbf{f}|X) d\mathbf{f}.$$

• We do not need to integrate: we know that

$$oldsymbol{f}|X\sim\mathcal{N}(oldsymbol{0},\mathcal{K}) \ \ ext{and} \ \ oldsymbol{y}=oldsymbol{f}+\eta, \ \eta\sim\mathcal{N}(oldsymbol{0},\sigma^2).$$

Since η does not depend on X, the variances simply add:

$$\mathbf{y}|X \sim \mathcal{N}(\mathbf{0}, \mathbf{K} + \sigma^2 \mathbf{I}).$$

• Possible strategy:

Select parameters on a grid and choose maximum.

• Or: Compute derivatives of marginal likelihood and use gradient descent.

Model Selection (3)

- Example problem: $y = \sin(x)/x + \eta$, $\eta \sim \mathcal{N}(0, 0.01)$.
- Log marg. likeli. = $\log \mathcal{N}(\mathbf{0}, K + \sigma^2 I) =$

$$\underbrace{-\frac{1}{2}\mathbf{y}^{t}(\mathbf{K}+\sigma^{2}\mathbf{I})^{-1}\mathbf{y}}_{\text{data fit}} - \underbrace{\frac{1}{2}\log|\mathbf{K}+\sigma^{2}\mathbf{I}|}_{\text{complexity penalty}} - \underbrace{\frac{n}{2}\log(2\pi)}_{\text{norm. constant}}.$$

• 2d-Example with Gaussian RBF:

$$(K + \sigma^2 I) = \begin{pmatrix} 1 + \sigma^2 & a \\ a & 1 + \sigma^2 \end{pmatrix} \Rightarrow |K + \sigma^2 I| = (1 + \sigma^2)^2 - a^2 > 0$$

Note that $a \to 0$ if length scale $I \to 0$
 \rightsquigarrow complexity penalty has high values for small length scales.

Matrix inverse includes a dominating factor $|K + \sigma^2 I|^{-1}$

 \rightsquigarrow data fit term also high for small *I*.

 $\sim \rightarrow$

くロト (得) (ヨト (ヨト) ヨ

Model Selection (4)

Fixing $\sigma^2 = 0.01$ and varying length scale *l*:

Model Selection (5)

Fixing length scale l = 0.5 and varying the noise level σ^2 :

< ロ > < 同 > < 回 > < 回 >

Model Selection (6) Varying both σ^2 and *I*:

54 / 63

Classification: Basket Ball Example

Э

▶ < ⊒ >

Classical Logistic Regression

- Targets y ∈ {0,1}
 → Bernoulli RV with "success probability" π(x) = P(1|x).
- Likelihood: $P(y|X, f) = \prod_{i=1}^{n} (\pi_f(x_i))^{y_i} (1 \pi_f(x_i))^{1-y_i}$
- Linear logistic regression: unbounded $f(\mathbf{x}) = \mathbf{w}^t \mathbf{x}$ ("activation") Bounded estimates: pass $f(\mathbf{x})$ through logistic transfer function $\sigma(f(\mathbf{x})) = \frac{e^{f(\mathbf{x})}}{1+e^{f(\mathbf{x})}} = \frac{1}{1+e^{-f(\mathbf{x})}}$ and set $\pi_f(\mathbf{x}) = \sigma(f(\mathbf{x}))$.
- Newton method for maximizing the log posterior $J(\boldsymbol{w}) := \log p(\boldsymbol{y}|X, \boldsymbol{w}) + \log p(\boldsymbol{w}):$ $\boldsymbol{w}^{(r+1)} = \boldsymbol{w}^{(r)} - \{E[H]\}^{-1} \frac{\partial}{\partial \boldsymbol{w}} J(\boldsymbol{w})$
- Kernel trick: expand $w = X^t \alpha$, substitute dot products by kernel function $k(x, x') \rightsquigarrow$ kernel logistic regression.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つくつ

GP Classification

- Place GP prior over "latent" function $f(\mathbf{x}) \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$.
- "Squash" it through logistic function \rightsquigarrow prior on $\pi(\mathbf{x}) = \sigma(f(\mathbf{x}))$.

- **Problem:** Bernoulli likelihood \rightsquigarrow predictive distribution $p(y_* = 1 | X, y, x_*)$ cannot be calculated analytically.
- Possible solution: use Laplace approximation.
- Observation: MAP classification boundary is identical with boundary obtained from kernel logistic regression.

GP Classification using Laplace's approximation

• Prior $f|X \sim \mathcal{N}(\mathbf{0}, K)$. Bernoulli likelihood:

$$p(\mathbf{y}|X, \mathbf{f}) = \prod_{i=1}^{n} \left(\sigma(f(\mathbf{x}_i)) \right)^{y_i} \left(1 - \sigma(f(\mathbf{x}_i)) \right)^{1-y_i}.$$

• Gaussian approximation of posterior:

$$p(\boldsymbol{f}|X, \boldsymbol{y}) \approx \mathcal{N}(\hat{\boldsymbol{f}}, H^{-1}).$$

Predictions: compute

$$p(\mathbf{y}_* = 1 | \mathbf{y}, \mathbf{x}_*, X) = \int \sigma(f_*) p\underbrace{(f_* | \mathbf{y}, \mathbf{x}_*, X)}_{|\mathsf{true}| \mathsf{f}_* \mathsf{regiment}} df_* = \mathbb{E}_{p(f_* | \mathbf{y}, \mathbf{x}_*, X)}(\sigma)$$

latent function at x*

GP Classification using Laplace's approximation

• First **predict latent function** at test case **x**_{*}:

$$p(f_*|\mathbf{y}, \mathbf{x}_*, X) = \int \underbrace{p(f_*|\mathbf{f}, \mathbf{x}_*, X)}_{\text{Gaussian}} \underbrace{p(\mathbf{f}|X, \mathbf{y})d\mathbf{f}}_{\text{approx. Gaussian } \mathcal{N}(\hat{\mathbf{f}}, H^{-1})}$$

$$\approx \mathcal{N}(\mu_*, \sigma_*), \text{ with}$$

$$\mu_* = \mathbf{k}_*^t \mathcal{K}^{-1} \hat{\mathbf{f}},$$

$$\sigma_* = k_{**} - \mathbf{k}_*^t \tilde{\mathcal{K}}^{-1} \mathbf{k}_*$$

• Then use Monte Carlo approximation

$$p(y_*|\boldsymbol{y}, \boldsymbol{x}_*, \boldsymbol{X}) = \mathbb{E}_{p(f_*|\boldsymbol{y}, \boldsymbol{x}_*, \boldsymbol{X})}(\sigma) \approx \frac{1}{S} \sum_{s=1}^S \sigma(f_*^s(\boldsymbol{x}_*)),$$

where f_*^s are samples from the (approximated) distribution over latent function values.

GPs and Neural networks

Consider a neural network for regression (square loss) with one hidden layer:

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(f(\mathbf{x}; \boldsymbol{\theta}), \sigma^2),$$

$$f(\mathbf{x}) = b + \sum_{j=1}^{n_H} v_j g(\mathbf{x}; \mathbf{u}_j).$$

(4 同) (4 回) (4 回)

Bayesian treatment: i.i.d. prior assumptions over weights: indep. zero-mean Gaussian priors for *b* and *v*, with variance σ_b^2 and σ_v^2 , and independent (arbitrary) priors for components of the weight vector \boldsymbol{u}_j at the *j*-th hidden unit.

GPs and Neural networks

• Mean and covariance:

$$m(\mathbf{x}) = \mathbb{E}_{\theta}[f(\mathbf{x})] = \overbrace{\mathbb{E}[b]}^{=0} + \sum_{j=1}^{n_{H}} \mathbb{E}[v_{j}g(\mathbf{x}; \mathbf{u}_{j})]$$

$$\stackrel{(v \text{ indep. of } u)}{=} \sum_{j=1}^{n_{H}} \underbrace{\mathbb{E}[v_{j}]}_{=0} \mathbb{E}[g(\mathbf{x}; \mathbf{u}_{j})] = 0.$$

$$f(\mathbf{x}, \mathbf{x}') = \mathbb{E}_{\theta}[f(\mathbf{x})f(\mathbf{x}')] = \sigma_{i}^{2} + \sum_{j=1}^{n_{H}} \sigma_{j}^{2} \mathbb{E}_{\theta}[g(\mathbf{x}; \mathbf{u}_{j})] = 0.$$

$$k(\mathbf{x},\mathbf{x}') = \mathbb{E}_{\theta}[f(\mathbf{x})f(\mathbf{x}')] = \sigma_b^2 + \sum_{j=1}^n \sigma_v^2 \mathbb{E}_{\boldsymbol{u}}[g(\mathbf{x};\boldsymbol{u}_j)g(\mathbf{x}';\boldsymbol{u}_j)].$$

- - → central limit theorem applicable

GPs and Neural networks

Suppose $\{X_1, \ldots, X_n\}$ is a sequence of i.i.d. RVs with $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var}[X_i] = \sigma^2 < \infty$. Then $\sqrt{n} (S_n - \mu) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$ as $n \to \infty$.

- The covariance between any pair of function values $(f(\mathbf{x}), f(\mathbf{x}'))$ converges to the covariance of two Gaussian RVs \rightsquigarrow Joint distribution of *n* function values is multivariate Gaussian \rightsquigarrow we get a GP as $n_H \rightarrow \infty$.
- For specific activations, the **neural network covariance function** can be computed analytically (Williams 1998).
- A three-layer network with and infinitely wide hidden layer can be interpreted as a GP.

Summary

- GPs: fully probabilistic models
 → posterior p(f_{*}|X, y, x_{*}).
- Uniquely defined by specifying covariance function.
- Mathematically simple: we only need to calculate conditionals of Gaussians!

Connections:

regression: $MAP(GP_r) = kernel ridge reg.$ classification: $MAP(GP_c) = kernel logistic reg.$ $GP_c \approx probabilistic version of SVM.$

A three-layer network with an infinitely wide hidden layer can be interpreted as a GP with the neural network covariance function.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ