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Section 7

Support Vector Machines and Kernels
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Structure on canonical hyperplanes

Theorem (Vapnik, 1982)
Let R be the radius of the smallest ball containing the points x1, . . . , xn:
BR(a) = {x ∈ Rd : ‖x − a‖ < R, a ∈ Rd}. The set of canonical
hyperplane decision functions f (w ,w0) = sign{w tx + w0} satisfying
‖w‖ ≤ A has VC dimension h bounded by

h ≤ R2A2 + 1.

Intuitive interpretation: margin = 1/‖w‖
 minimizing capacity(H) corresponds to maximizing the margin.

R[fn] ≤ Remp[fn] +
√

a
n

(
capacity(H) + ln b

δ

)

 Large margin classifiers.
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SVMs

When the training examples are linearly separable we can maximize
the margin by minimizing the regularization term

‖w‖2/2 =
d∑

i=1
w2

i /2

subject to the classification constraints
yi [xt

i w ]− 1 ≥ 0, i = 1, . . . , n.
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The solution is defined only on the basis of a subset of examples or
support vectors.
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SVMs: nonseparable case

Modify optimization problem slightly by adding a
penalty for violating the classification constraints:

minimize ‖w‖2/2 + C
n∑

i=1
ξi

subject to relaxed constraints
yi [xt

i w ]− 1 + ξi ≥ 0, i = 1, . . . , n.
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The ξi ≥ 0 are called slack variables.
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SVMs: nonseparable case

We can also write the SVM optimization problem more compactly as

C
n∑

i=1

ξi︷ ︸︸ ︷
(1− yi [xt

i w ])+ + ‖w‖2/2,

where (z)+ = z if z ≥ 0 and zero otherwise.
This is equivalent to regularized empirical loss minimization

1
n

n∑
i=1

(1− yi [xt
i w ])+

︸ ︷︷ ︸
Remp

+ λ‖w‖2,

where λ = 1/(2nC) is the regularization parameter.
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SVMs and LOGREG

When viewed from the point of view of regularized empirical loss
minimization, SVM and logistic regression appear quite similar:

SVM: 1
n

n∑
i=1

(1− yi [xt
i w ])+ + λ‖w‖2

LOGREG: 1
n

n∑
i=1
− log

P(yi |x i ,w)︷ ︸︸ ︷
σ(yi [xt

i w ]) + λ‖w‖2,

where σ(z) = (1 + e−z)−1 is the logistic function.
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SVMs and LOGREG

The difference comes from how we penalize errors:

Both: 1
n

n∑
i=1

Loss(
z︷ ︸︸ ︷

yi [xt
i w ]) + λ‖w‖2,

SVM: Loss(z) = (1− z)+

LOGREG:
Loss(z) = log(1 + exp(−z))
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SVMs: solution, Lagrange multipliers
Back to the separable case: how do we solve

minimizew ‖w‖2/2 s.t. yi [xt
i w ]− 1 ≥ 0 , i = 1, . . . , n.

Represent the constraints as individual loss terms:

sup
αi≥0

αi (1− yi [xt
i w ]) =

{
0, if yi [xt

i w ]− 1 ≥ 0 ,
∞, otherwise.

Rewrite the minimization problem:

minimizew ‖w‖2/2 +
n∑

i=1
sup
αi≥0

αi (1− yi [xt
i w ])

= minimizew sup
αi≥0

(
‖w‖2/2 +

n∑
i=1

αi (1− yi [xt
i w ])

)

Volker Roth (University of Basel) Machine Learning 9 / 63



SVMs: solution, Lagrange multipliers

Swap maximization and minimization (technically this requires that
the problem is convex and feasible  Slater’s condition):

minimizew

[
sup
αi≥0

(
‖w‖2/2 +

n∑
i=1

αi (1− yi [xt
i w ])

)]

= maximizeαi≥0

[
min

w

(
‖w‖2/2 +

n∑
i=1

αi (1− yi [xt
i w ])︸ ︷︷ ︸

J(w ;α)

)]

We have to minimize J(w ; α) over parameters w for fixed
Lagrange multipliers αi ≥ 0.
Simple, because J(w) is convex  set derivative to zero
 only one stationary point  global minimum.
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SVMs: solution, Lagrange multipliers

Find optimal w by setting the derivatives to zero:

∂

∂w J(w ; α) = w −
∑

i
αiyix i = 0 ⇒ ŵ =

∑
i
αiyix i .

Substitute the solution back into the objective and get
(after some re-arrangements of terms):

max
αi≥0

min
w

(
‖w‖2/2 +

n∑
i=1

αi (1− yi [xt
i w ])

)

=max
αi≥0

(
‖ŵ‖2/2 +

n∑
i=1

αi (1− yi [xt
i ŵ ])

)

=max
αi≥0

( n∑
i=1

αi −
1
2

n∑
i ,j=1

yiyjαiαjxt
i x j

)
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SVMs: summary

Find optimal Lagrange multipliers α̂i by maximizing
n∑

i=1
αi −

1
2

n∑
i ,j=1

yiyjαiαjxt
i x j subject to αi ≥ 0.

Only α̂i ’s corresponding to support vectors will be non-zero.
Make predictions on any new example x according to:

sign(xtŵ) = sign(xt
n∑

i=1
α̂iyix i ) = sign(

∑
i∈SV

α̂iyi xtx i ).

Observation: dependency on input vectors only via dot products.
Later we will introduce the kernel trick for efficiently computing
these dot products in implicitly defined feature spaces.
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SVMs: formal derivation

Convex optimization problem: an optimization problem

minimize f (x) (1)
subject to gi (x) ≤ 0, i = 1, . . . ,m (2)

is convex if the functions f , g1 . . . gm : Rn → R are convex.
The Lagrangian function for the problem is

L(x, λ0, ..., λm) = λ0f (x) + λ1g1(x) + ...+ λmgm(x).

Karush-Kuhn-Tucker (KKT) conditions: For each point x̂ that
minimizes f , there exist real numbers λ0, . . . , λm,
called Lagrange multipliers, that simultaneously satisfy:

1 x̂ minimizes L(x, λ0, λ1, . . . , λm),
2 λ0 ≥ 0, λ1 ≥ 0, . . . , λm ≥ 0, with at least one λk > 0,
3 Complementary slackness: gi (x̂) < 0⇒ λi = 0 , 1 ≤ i ≤ m.
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SVMs: formal derivation
Slater’s condition: If there exists a strictly feasible point z
satisfying g1(z) < 0, . . . , gm(z) < 0, then one can set λ0 = 1.
Assume that Slater’s condition holds. Minimizing the supremum
L∗(x) = supλ≥0 L(x,λ), is the primal problem P:

x̂ = argmin
x
L∗(x).

Note that

L∗(x) = sup
λ≥0

(
f (x) +

m∑
i=1

λigi (x)
)

=
{

f (x) , if gi (x) ≤ 0 ∀i
∞ , else.

 Minimizing L∗(x) is equivalent to minimizing f (x).
The maximizer of the dual problem D is

λ̂ = argmax
λ
L∗(λ), where L∗(λ) = inf

x
L(x,λ).
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SVMs: formal derivation
The non-negative number min(P) – max(D) is the duality gap.
Convexity and Slater’s condition imply strong duality:

1 The optimal solution (x̂, λ̂) is a saddle point of L(x,λ)
2 The duality gap is zero.

Discussion: For any real function f (a, b)
mina[maxb f (a, b)] ≥ maxb[mina f (a, b)] .
Equality  saddle value exists.

By Nicoguaro - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=20570051
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Kernel functions

A kernel function is a real-valued function of two arguments,
k(x, x ′) ∈ R, for x, x ′ ∈ X .
Typically the function is symmetric , and sometimes non-negative.
In the latter case, it might be interpreted as a measure of similarity.
Example: isotropic Gaussian kernel:

k(x, x ′) = exp
(
−‖x − x ′‖2

2σ2

)
Here, σ2 is the bandwidth. This is an example of a
radial basis function (RBF) kernel (only a function of ‖x − x ′‖2).
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Mercer kernels

A symmetric kernel is a Mercer kernel , iff the Gram matrix

K =

 k(x1, x1) . . . k(x1, xn)
...

k(xn, x1) . . . k(xn, xn)


is positive semidefinite for any set of inputs {x i , . . . , xn}.
Mercer’s theorem: Eigenvector decomposition

K = V ΛV t = (V Λ1/2)(V Λ1/2)t =: ΦΦt .

Eigenvectors: columns of V . Eigenvalues: entries of diagonal matrix
Λ = diag(λ1, . . . , λn). Note that λi ∈ R and λi ≥ 0.
Define φ(x i )t = i-th row of Φ = V[i•]Λ1/2

 k(x i , x i ′) = φ(x i )tφ(x i ′).
Entries of K : inner product of some feature vectors ,
implicitly defined by eigenvectors V .

Volker Roth (University of Basel) Machine Learning 17 / 63



Mercer kernels

If the kernel is Mercer , then there exists φ : x → Rd such that
k(x, x ′) = φ(x)tφ(x ′),

where φ depends on the eigenfunctions of k (d might be infinite).
Example: Polynomial kernel

k(x, x ′) = (1 + xtx ′)m.

Corresponding feature vector contains terms up to degree m.
Example: m = 2, x ∈ R2:

(1 + xtx ′)2 = 1 + 2x1x ′1 + 2x2x ′2 + (x1x ′1)2 + (x2x ′2)2 + 2x1x ′1x2x ′2.
Thus,

φ(x) = [1,
√

2x1,
√

2x2, x2
1 , x2

2 ,
√

2x1x2]t .
Equivalent to working in a 6-dim feature space.
Gaussian kernel: feature map lives in an infinite dimensional space.
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Kernels for documents

In document classification or retrieval, we want to compare two
documents, x i and x i ′ .
Bag of words representation:
x ij is the number of times word j occurs in document i .
One possible choice: Cosine similarity:

k(x i , x i ′) = xt
i x i ′

‖x i‖‖x i ′‖
=: φ(x i )tφ(x i ′).

Problems:
I Popular words (like “the” or “and”) are not discriminative
 remove these stop words.

I Bias: once a word is used in a document,
it is very likely to be used again.

Solution: Replace word counts with “normalized” representation.
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Kernels for documents
TF-IDF “term frequency inverse document frequency”:
Term frequency is log-transform of the count:

tf(xij) = log(1 + xij)
Inverse document frequency:

idf(j) = log #(documents)
#(documents containing term j) = log 1

p̂j
.

 Shannon information content:
idf is a measure of how much information a word provides
Combine with tf  counts weighted by information content:

tf-idf(x i ) = [tf(x ij) · idf(j)]Vj=1, where V = size of vocabulary.
We then use this inside the cosine similarity measure.
With φ(x) = tf-idf(x):

k(x i , x i ′) = φ(x i )tφ(x i ′)
‖φ(x i )‖‖φ(x i ′)‖

.
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String kernels

Real power of kernels arises for structured input objects.
Consider two strings x , and x ′ of lengths d , d ′, over alphabet A.
Idea: define similarity as the number of common substrings.
If s is a substring of x  φs(x) = number of times s appears in x .
String kernel

k(x , x ′) =
∑

s∈A∗
wsφs(x)φs(x ′),

where ws ≥ 0 and A∗ = set of all strings (any length) from A.
One can show: Mercer kernel, can be computed in O(|x |+ |x ′|) time
using suffix trees (Shawe-Taylor and Cristianini, 2004).
Special case: ws = 0 for |s| > 1: bag-of-characters kernel:
φ(x) is the number of times each character in A occurs in x .
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The kernel trick

Idea: modify algorithm so that it replaces all inner products xtx ′

with a call to the kernel function k(x, x ′).
Kernelized ridge regression: ŵ = (X tX + λI)−1X ty .
Matrix inversion lemma:

(I + UV )−1U = U(I + VU)−1

Define new variables αi :
ŵ = (X tX + λI)−1X ty

= X t(XX t + λI)−1y︸ ︷︷ ︸
α̂

=
n∑

i=1
α̂ix i .

 solution is linear sum of the n training vectors.
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The kernel trick

Use this and the kernel trick to make predictions for x:

f̂ (x) = ŵ tx =
n∑

i=1
α̂ixt

i x =
n∑

i=1
α̂ik(x i , x).

Same for SVMs:
ŵ tx =

∑
i∈SV

α̂iyixt
i x =

∑
i∈SV

α̂′ik(x i , x)

...and for most other classical algorithms in ML!
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Some applications in bioinformatics

Bioinformatics: often non-vectorial data-types:

I interaction graphs

I phylogenetic trees
I strings GSAQVKGHGKKVADALTNAVAHV

Data fusion: convert data of each type into kernel matrix
⇒ fuse kernel matrices
⇒ “common language” for heterogeneous data.

Volker Roth (University of Basel) Machine Learning 24 / 63



RBF kernels from expression data

Measurements (for each gene): vector of expression values under
different experimental conditions
“classical” RBF kernel k(x1, x2) = exp(−σ‖x1 − x2‖2)
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Diffusion kernels from interaction-graphs

A: Adjacency matrix, D: node degrees, L = D − A.
K := 1

Z(β) exp(−βL) with transition probabilities β.
Physical interpretation (random walk):
randomly choose next node among neighbors.
Self-transition occurs with prob. 1− diβ

Kij : prob. for walk from i to j .
(Kondor and Lafferty, 2002)
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Alignment kernels from sequences

Alignment with Pair HMMs
 Mercer kernel (Watkins, 2000).
Image source: Durbin, Eddy, Krogh, Mitchison. Biological Se-

quence Alignment. Cambridge.
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Combination of heterogeneous data
Adding kernels ⇒ new kernel:
k1(x , y) = φ1(x) · φ1(y),
k2(x , y) = φ2(x) · φ2(y) ⇒ k ′ = k1 + k2 =

(φ1(x)
φ2(x)

)
·
(φ1(y)
φ2(y)

)
Fusion & relevance determination: kernel-combinations

= 1 ++ 2 3 + 4K K K K K1 2 3 4ccc c
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Section 8

Gaussian Processes: probabilistic kernel models
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Overview

The use of the Gaussian distribution in ML
I Properties of the multivariate Gaussian distribution
I Random variables → random vectors → stochastic processes
I Gaussian processes for regression
I Model Selection
I Gaussian processes for classification

Relation to kernel models (e.g. SVMs)
Relation to neural networks.
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Kernel Ridge Regression

Kernelized ridge regression: ŵ = (X tX + λI)−1X ty .
Matrix inversion lemma: (I + UV )−1U = U(I + VU)−1

Define new variables αi :
ŵ = (X tX + λI)−1X ty

= X t(XX t + λI)−1y︸ ︷︷ ︸
α̂

=
n∑

i=1
α̂ix i .

Predictions for new x∗:

f̂ (x∗) = ŵ tx∗ =
n∑

i=1
α̂ixt

i x∗ =
n∑

i=1
α̂ik(x i , x∗).
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Kernel Ridge Regression
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Kernel function: k(x i , x j) = exp(− 1
2l2 ‖x i − x j‖2)
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How can we make use of the Gaussian distribution?

y_1

y_
2

−2 −1 0 1 2

−
2

−
1

0
1

2

●

X

−2
−1

0
1

2

Y

−2

−1

0

1

2

Z

0.0

0.1

0.2

0.3

Is it possible to fit a nonlinear regression line with the “boring”
Gaussian distribution?
Yes, but we need to introduce the concept of Gaussian Processes!
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The 2D Gaussian distribution

2D Gaussian: P(y ; µ = 0,Σ = K ) = 1√
2π|K |

exp(−1
2y tK−1y)

Covariance
(also written “co-variance”)
is a measure of how much two
random variables vary to-
gether:

+1: perfect linear
coherence,
-1: perfect negative
linear coherence,
0: no linear coherence.
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Properties of the Multivariate Gaussian distribution

y ∼ N (µ,K ). Let y =
(

y1
y2

)
and K =

(
K11 K12
K21 K22

)
.

Then y1 ∼ N (µ1,K11) and y2 ∼ N (µ2,K22).
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Marginals of Gaussians are again Gaussian!
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Properties of the Multivariate Gaussian distribution (2)

y ∼ N (µ,K ). Let y =
(

y1
y2

)
and K =

(
K11 K12
K21 K22

)
.

Then y2|y1 ∼ N (µ2 + K21K−1
11 (y1 − µ1),K22 − K21K−1

11 K12).
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Conditionals of Gaussians are again Gaussian!
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2D Gaussians: a new visualization

top left: mean and
±std.dev. of p(y2|y1 = 1).

bottom left: p(y2|y1 = 1)
and samples drawn from it.

top right: x -axis: indices
(1, 2) of dimensions,
y -axis: density in each
component. Shown are
y1 = 1 and the conditional
mean p̄(y2|y1 = 1) and
std.dev.

bottom right: samples
drawn from above model.
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Visualizing high-dimensional Gaussians

top left: 6 samples drawn
from 5-dimensional
Gaussian with zero mean
(indicated by blue line).
σ = 1 (magenta line).

bottom left: Conditional
mean and std.dev of
p(y4, y5|y1 = −1, y2 = 0, y3 = 0.5).

top right: contour lines of
p(y4, y5|y1 = −1, y2 = 0, y3 = 0.5).

bottom right: samples
drawn from above model.

1 2 3 4 5

−
2

−
1

0
1

2

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

−
2

−
1

0
1

2

●

●

●

●

●

y_4

y_
5

 0
.5

 

 1
 

 1
.5

 

 2
 

 2.5 

−2 −1 0 1 2

−
2

−
1

0
1

2

1 2 3 4 5

−
2

−
1

0
1

2

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

Volker Roth (University of Basel) Machine Learning 38 / 63



From covariance matrices to Gaussian processes

top left: 8 samples, 6 dim.
x -axis: dimension-indices.

bottom left: 8 samples,
viewed as values y = f (x).
Construction: choose 6
input points x i at random
 build covariance matrix K
with covariance function
k(x, x ′) = exp(− 1

2l2 ‖x−x ′‖2)
 draw f ∼ N (0,K )
 plot as function of inputs.

top right: same for 12 inputs

bottom right: 100 inputs
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This looks similar to Kernel Regression...
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Gaussian Processes

Gaussian Random Variable (RV): f ∼ N (µ, σ2).
Gaussian Random Vector: Collection of n RVs, characterized by
mean vector and covariance matrix: f ∼ N (µ,Σ)
Gaussian Process: infinite Gaussian random vector, every finite
subset of which is jointly Gaussian distributed
Continuous index, e.g. time t  function f (t).
Fully specified by mean function m(t) = E[f (t)]
and covariance function k(t, t ′) = E[(f (t)−m(t))(f (t ′)−m(t ′))].
In ML, we will focus on more general index sets x ∈ Rd with mean
function m(x) and covariance function k(x, x ′):

f (x) ∼ GP(m(x), k(x, x ′)).
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Visualizing Gaussian Processes: Sampling

Problem: working with infinite vectors and covariance matrices is not
very intuitive...
Solution: evaluate the GP at set of n discrete times
(or input vectors x ∈ Rd ):

I Choose n input points x i at random  matrix X
I build covariance matrix K (X ,X ) with covariance function k(x i , x j)
I sample realizations of the Gaussian random vector

f ∼ N (0,K (X ,X ))
I plot f as function of inputs.
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This is exactly what we have done here...
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From the Prior to the Posterior
GP defines distribution over functions  f evaluated at training points X
and f ∗ evaluated at test points X∗ are jointly Gaussian:[

f
f ∗

]
∼ N

(
0,
[

K (X ,X ) K (X ,X∗)
K (X∗,X ) K (X∗,X∗)

])
Posterior p(f ∗|X∗,X , f (X )): conditional of a Gaussian distribution.

Let x ∼ N (µ,K ). Let x =
(

x1
x2

)
and K =

(
K11 K12
K21 K22

)
.

Then x2|x1 ∼ N (µ2 + K21K−1
11 (f 1 − µ1),K22 − K21K−1

11 K12).

f ∗|X∗,X , f ∼ N ( K (X∗,X )(K (X ,X ))−1f ,
K (X∗,X∗)− K (X∗,X )(K (X ,X ))−1K (X ,X∗))

For only one test case:

f∗|x∗,X , f ∼ N (kt
∗K−1f , k∗∗ − kt

∗K−1k∗)
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A simple extension: noisy observations

Assume we have access only to noisy versions of function values:
y = f (x) + η, η ∼ N (0, σ2) (cf. initial example of ridge regression).
Noise η does not depend on data!
Covariance of noisy observations y is sum of covariance of f and
variance of noise: cov(y) = K (X ,X ) + σ2I.[

y
f ∗

]
∼ N

(
0,
[

K (X ,X ) + σ2I K (X ,X∗)
K (X∗,X ) K (X∗,X∗)

])

f ∗|X∗,X , y ∼ N ( K (X∗,X )(K (X ,X ) + σ2I)−1y ,
K (X∗,X∗) −K (X∗,X )(K (X ,X ) + σ2I)−1K (X ,X∗))

f∗|x∗,X , f ∼ N (kt
∗(K + σ2I)−1y , k∗∗ − kt

∗(K + σ2I)−1k∗)

⇒ Posterior mean is solution of kernel ridge regression!
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Noisy observations: examples
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Noisy observations: y = f (x) + η, η ∼ N (0, σ2)
Mean predictions: f̂ ∗ = K∗(K + σ2I)−1y .

Volker Roth (University of Basel) Machine Learning 46 / 63



Gaussian processes for regression
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Left: 11 training points generated as y = sin(x)/x + ν, ν ∼ N (0, 0.01)
Covariance k(xp, xq) = exp(− 1

2l2 ‖xp − xq‖2) + σ2δp,q.
100 test points uniformly chosen from [−10, 10]  matrix X∗.
Mean prediction E [f ∗|X∗,X , y ] and ±std.dev.

Middle: samples drawn from posterior f ∗|X∗,X , y .

Right: samples drawn from prior f ∼ N (0,K (X ,X )).
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Covariance Functions

A GP specifies a distribution over functions f (x), characterized by
mean function m(x) and covariance function k(x i , x j).
Finite subset evaluated at n inputs  Gaussian distribution:

f (X ) = (f (x1), . . . , f (xn))t ∼ N (µ,K ),
where K is the covariance matrix with entries Kij = k(x i , x j).
Covariance matrices are symmetric positive semi-definite:

Kij = Kji and xtKx ≥ 0, ∀x.
We already know that Mercer kernels have this property
 all Mercer kernels define proper covariance functions in GPs.
Kernels frequently have additional parameters.
The noise variance in the observation model
y = f (x) + η, η ∼ N (0, σ2) is another parameter.
How should we choose these parameters?  model selection.
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Model Selection

top left: sample function from
prior f ∼ N (0,K (X ,X )) with
covariance function
k(x, x ′) = exp(− 1

2l2 ‖x − x ′‖2).
Length scale l = 10−0.5 small
 highly varying function.

bottom left: same for l = 100

 smoother function

top right: same for l = 100.5

 even smoother...

bottom right: almost linear
function for l = 101.
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Model Selection (2)

How to select the parameters?
One possibility: maximize marginal likelihood:

p(y |X ) =
∫

p(y |f ,X )p(f |X ) df .

We do not need to integrate: we know that
f |X ∼ N (0,K ) and y = f + η, η ∼ N (0, σ2).

Since η does not depend on X , the variances simply add:
y |X ∼ N (0,K + σ2I).

Possible strategy:
Select parameters on a grid and choose maximum.
Or: Compute derivatives of marginal likelihood and use gradient
descent.
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Model Selection (3)

Example problem: y = sin(x)/x + η, η ∼ N (0, 0.01).
Log marg. likeli. = logN (0,K + σ2I) =

−1
2y t(K + σ2I)−1y︸ ︷︷ ︸

data fit

− 1
2 log |K + σ2I|︸ ︷︷ ︸
complexity penalty

− n
2 log(2π)︸ ︷︷ ︸

norm. constant

.

2d-Example with Gaussian RBF:

(K + σ2I) =
(

1 + σ2 a
a 1 + σ2

)
⇒ |K + σ2I| = (1 + σ2)2 − a2 > 0

Note that a→ 0 if length scale l → 0
 complexity penalty has high values for small length scales.
Matrix inverse includes a dominating factor |K + σ2I|−1

 data fit term also high for small l .
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Model Selection (4)
Fixing σ2 = 0.01 and varying length scale l :
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Model Selection (5)
Fixing length scale l = 0.5 and varying the noise level σ2:
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Model Selection (6)
Varying both σ2 and l :
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Classification: Basket Ball Example
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Adapted from Fig. 7.5.1 in (B. Flury)
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Classical Logistic Regression

Targets y ∈ {0, 1}
 Bernoulli RV with “success probability” π(x) = P(1|x).
Likelihood: P(y |X , f ) =

∏n
i=1 (πf (x i ))yi (1− πf (x i ))1−yi

Linear logistic regression: unbounded f (x) = w tx (“activation”)
Bounded estimates: pass f (x) through logistic transfer function
σ(f (x)) = ef (x)

1+ef (x) = 1
1+e−f (x) and set πf (x) = σ(f (x)).

Newton method for maximizing the log posterior
J(w) := log p(y |X ,w) + log p(w):

w (r+1) = w (r) − {E [H]}−1 ∂

∂w J(w)

Kernel trick: expand w = X tα, substitute dot products by kernel
function k(x, x ′)  kernel logistic regression.
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GP Classification

Place GP prior over “latent” function f (x) ∼ GP(0, k(x, x ′)).
“Squash” it through logistic function  prior on π(x) = σ(f (x)).

(Rasmussen & Williams, 2006)

Problem: Bernoulli likelihood  predictive distribution
p(y∗ = 1|X , y , x∗) cannot be calculated analytically.
Possible solution: use Laplace approximation.
Observation: MAP classification boundary is identical with boundary
obtained from kernel logistic regression.
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GP Classification using Laplace’s approximation
Prior f |X ∼ N (0,K ). Bernoulli likelihood:

p(y |X , f ) =
n∏

i=1
(σ(f (x i )))yi (1− σ(f (x i )))1−yi .

Gaussian approximation of posterior:
p(f |X , y) ≈ N (f̂ ,H−1).

Predictions: compute
p(y∗ = 1|y , x∗,X ) =

∫
σ(f∗)p (f∗ | y , x∗, X )︸ ︷︷ ︸

latent function at x∗

df∗ = Ep(f∗|y ,x∗,X)(σ).

...
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GP Classification using Laplace’s approximation

First predict latent function at test case x∗:

p(f∗|y , x∗,X ) =
∫

p(f∗|f , x∗,X )︸ ︷︷ ︸
Gaussian

p(f |X , y)df︸ ︷︷ ︸
approx. Gaussian N (f̂ ,H−1)

≈ N (µ∗, σ∗), with
µ∗ = kt

∗K−1f̂ ,
σ∗ = k∗∗ − kt

∗K̃−1k∗
Then use Monte Carlo approximation

p(y∗|y , x∗,X ) = Ep(f∗|y ,x∗,X)(σ) ≈ 1
S

S∑
s=1

σ(f s
∗ (x∗)),

where f s
∗ are samples from the (approximated) distribution over latent

function values.
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GPs and Neural networks

Consider a neural network for regression (square
loss) with one hidden layer:

p(y |x,θ) = N (f (x; θ), σ2),

f (x) = b +
nH∑
j=1

vjg(x; uj). x

x

Σ

1

2

1
x

2
211

1

1
1

v g

x
u 

 

u 
 b

1g
t

(u x)

Bayesian treatment: i.i.d. prior assumptions over weights:
indep. zero-mean Gaussian priors for b and v , with variance σ2

b and σ2
v ,

and independent (arbitrary) priors for components of the weight vector uj
at the j-th hidden unit.
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GPs and Neural networks

Mean and covariance:

m(x) = Eθ[f (x)] =
=0︷︸︸︷
E[b] +

nH∑
j=1

E[vjg(x; uj)]

(v indep. of u)=
nH∑
j=1

E[vj ]︸ ︷︷ ︸
=0

E[g(x; uj)] = 0.

k(x, x ′) = Eθ[f (x)f (x ′)] = σ2
b +

nH∑
j=1

σ2
vEu[g(x; uj)g(x ′; uj)].

All hidden units are identically distributed
 the sum is over nH i.i.d. RVs. Assume activation g is bounded
 all moments of the distribution will be bounded
 central limit theorem applicable
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GPs and Neural networks

Suppose {X1, . . . ,Xn} is a sequence of i.i.d. RVs with E[Xi ] = µ and
Var[Xi ] = σ2 <∞. Then

√
n (Sn − µ) d−→ N

(
0, σ2) as n→∞.

The covariance between any pair of function values (f (x), f (x ′))
converges to the covariance of two Gaussian RVs
 Joint distribution of n function values is multivariate Gaussian
 we get a GP as nH →∞.
For specific activations, the neural network covariance function
can be computed analytically (Williams 1998).
A three-layer network with and infinitely wide hidden layer can
be interpreted as a GP.
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Summary

GPs: fully probabilistic models
 posterior p(f ∗|X , y , x∗).
Uniquely defined by specifying covariance function.
Mathematically simple:
we only need to calculate conditionals of Gaussians!
Connections:
regression: MAP(GPr ) = kernel ridge reg.
classification: MAP(GPc) = kernel logistic reg.
GPc ≈ probabilistic version of SVM.

A three-layer network with an infinitely wide hidden layer can be
interpreted as a GP with the neural network covariance function.
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