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Section 7

Support Vector Machines and Kernels
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Structure on canonical hyperplanes

Theorem (Vapnik, 1982)

Let R be the radius of the smallest ball containing the points x1,...,Xp:
Br(a) = {x € RY: ||x — a|| < R, a € R?}. The set of canonical
hyperplane decision functions f(w, wy) = sign{w’x + wy} satisfying
|lw|| < A has VC dimension h bounded by

h< R?A? +1.

Intuitive interpretation: margin = 1/||w/|
~> minimizing capacity(#) corresponds to maximizing the margin.

R[f3] < Remplfa] + \/z <capacity(’H) +1n g) J

~ Large margin classifiers.
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SVMs

@ When the training examples are linearly separable we can maximize
the margin by minimizing the regularization term

d
lwl?/2="2_wi/2
i=1

subject to the classification constraints
vilxiw] —1>0,i=1,...,n.

@ The solution is defined only on the basis of a subset of examples or
support vectors.
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SVMs: nonseparable case

@ Modify optimization problem slightly by adding a
penalty for violating the classification constraints:

n
minimize ||w|?/2 + CZ&
i=1

subject to relaxed constraints
y,[XfW]—l-f—f, 207 i:]-a"'an'

@ The & > 0 are called slack variables.
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SVMs: nonseparable case

@ We can also write the SVM optimization problem more compactly as
&i

n P
CY_ (1 —ylxiw))® +[lw|?/2,
i=1

where (z)T = z if z > 0 and zero otherwise.

o This is equivalent to regularized empirical loss minimization

1 n
—>_(1—yilxiw))" + w2,
i=1

Remp
where A = 1/(2nC) is the regularization parameter.

Volker Roth (University of Basel) 6/63



SVMs and LOGREG

@ When viewed from the point of view of regularized empirical loss
minimization, SVM and logistic regression appear quite similar:

n

1
SVM: — 3 (1= yilxiw])" + A|w|?

i=1
P(yilxi,w)
1 b t 2
LOGREG: EZ—Ioga(y,-[x,W])—i—)\HwH ,
i=1

where o(z) = (1 + e?)~ ! is the logistic function.
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SVMs and LOGREG

@ The difference comes from how we penalize errors:

z

1 n N
Both: =Y L [xt A wl[?
o n; oss(yi[x;w]) + Allw||%,

@ SVM: Loss(z) = (1 — 2)*
o LOGREG:
Loss(z) = log(1 + exp(—2z))
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SVMs: solution, Lagrange multipliers
@ Back to the separable case: how do we solve
minimize,, ||w|®*/2 st yixiw] -1>0,i=1,...,n.
@ Represent the constraints as individual loss terms:

0, if yj[xiw]—-12>0,

oo, otherwise.

sup a;(1 — yi[x;w]) = {

a,—ZO

@ Rewrite the minimization problem:

minimize,, ||w|| /2+ZSUP ai(1 — yi[xiw])

j=1%Z

= minimize, sup (\WH /2+Za: (1 — yi[x; W]))

;>
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SVMs: solution, Lagrange multipliers

@ Swap maximization and minimization (technically this requires that
the problem is convex and feasible ~» Slater’s condition):

minimize,, [sup0 (HWH2/2 +> ai(l- y,-[xfw]))]
o> i=1

= maximizey,; >0 [mni/n (||W”2/2 + Iz;:ai(l - y,-[xfw]))]

J(w;ax)

@ We have to minimize J(w; ) over parameters w for fixed
Lagrange multipliers «; > 0.
Simple, because J(w) is convex ~+ set derivative to zero
~> only one stationary point ~» global minimum.
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SVMs: solution, Lagrange multipliers

o Find optimal w by setting the derivatives to zero:

0 R
a—wJ(w;a) =w— zi:a,-y/x,- =0 = w= zj:a;y;xi.

@ Substitute the solution back into the objective and get
(after some re-arrangements of terms):

n
. 2 (1 — lat
mag i (IwI°/2 + 3 it~ ilefw)

:21’_%<||W||2/2 + Z ai(l — y,-[XFW])>

i=1

n n
1
t
=maxX E aj — = E YiyjoiogX; X;
@i20\ = 2

ij=1
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SVMs: summary
o Find optimal Lagrange multipliers &; by maximizing

Za; Z viyjaiaxix;  subject to a; > 0.
i= ij=1

(]

Only &;'s corresponding to support vectors will be non-zero.

Make predictions on any new example x according to:

sign(xW) = sign(x Za,y,x, = sign Z aiyixtx;)
iesSv

Observation: dependency on input vectors only via dot products.

o Later we will introduce the kernel trick for efficiently computing
these dot products in implicitly defined feature spaces.
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SVMs: formal derivation
o Convex optimization problem: an optimization problem

minimize f(x) (1)

subject to gi(x) <0, i=1,...,m (2)

is convex if the functions f,g1...gn : R” — R are convex.

@ The Lagrangian function for the problem is
L(%, X0, s Am) = Aof (X) + A181(X) + ... + Amgm(X).

o Karush-Kuhn-Tucker (KKT) conditions: For each point X that
minimizes f, there exist real numbers Ag, ..., A\m,
called Lagrange multipliers, that simultaneously satisfy:
@ X minimizes L(x, Ao, A1, .., Am),
Q N>0,0>0,...,\, >0, with at least one Ay > 0,
© Complementary slackness: g;(x) <0=X;=0,1<i<m.
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SVMs: formal derivation

o Slater’s condition: If there exists a strictly feasible point z
satisfying g1(z) < 0,...,8m(z) <0, then one can set Ao = 1.

@ Assume that Slater’s condition holds. Minimizing the supremum
L*(x) = supy>o L£(x, A), is the primal problem P:

X = argmin L*(x).
X

Note that

L*(x) = sup (f(x) + Z )\,'g,-(x)> = {
i=1

A>0

f(x) ,ifgi(x)<0Vi

00 , else.

~» Minimizing £*(x) is equivalent to minimizing f(x).

@ The maximizer of the dual problem D is

A= argmax L.(X), where L,(A) = inf L(x,N).
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SVMs: formal derivation

@ The non-negative number min(P) — max(D) is the duality gap.
o Convexity and Slater’s condition imply strong duality:

© The optimal solution (%, X) is a saddle point of £(x, \)
© The duality gap is zero.

e Discussion: For any real function f(a, b)
ming[maxy f(a, b)] > maxp[min, f(a, b)] .
Equality ~~ saddle value exists.
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By Nicoguaro - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=20570051
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Kernel functions

@ A kernel function is a real-valued function of two arguments,
k(x,x") € R, for x,x" € X.
@ Typically the function is symmetric, and sometimes non-negative.
@ In the latter case, it might be interpreted as a measure of similarity.
e Example: isotropic Gaussian kernel:
/12
k(x,x") = exp <_”X2_U’2‘H>

Here, 02 is the bandwidth. This is an example of a
radial basis function (RBF) kernel (only a function of |[x — x'||2).
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Mercer kernels

@ A symmetric kernel is a Mercer kernel, iff the Gram matrix

k(x1,x1) ... k(x1,xn)
K= :
k(xn,x1) ... k(xn,xn)
is positive semidefinite for any set of inputs {x;,...,xn}.

o Mercer’s theorem: Eigenvector decomposition
K = VAVE = (VAY2)(VAY2)t =: oot
Eigenvectors: columns of V. Eigenvalues: entries of diagonal matrix
A = diag(A1,...,A,). Note that A; € R and \; > 0.
Define ¢(x;)t = i-th row of ® = Vj;qAl/2
= k(xi, 1) = B(x) plxi).
o Entries of K: inner product of some feature vectors,
implicitly defined by eigenvectors V.
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Mercer kernels

o If the kernel is Mercer, then there exists ¢ : x — R such that
k(x,x') = ¢(x)"d(x'),
where ¢ depends on the eigenfunctions of k (d might be infinite).
o Example: Polynomial kernel
k(x,x") = (14 x'x")™.
Corresponding feature vector contains terms up to degree m.
Example: m =2, x € R%:
(14 x"x)? = 1+ 2x1x] + 2xax5 + (x1x)? + (x2x5)? + 2x1.] x25.
Thus,
d(x) = [1,V2x1, V2x0, X2, x2,V/2x1 0] .
Equivalent to working in a 6-dim feature space.

o Gaussian kernel: feature map lives in an infinite dimensional space.
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Kernels for documents

@ In document classification or retrieval, we want to compare two
documents, x; and x;.

Bag of words representation:
xjj is the number of times word j occurs in document /.

One possible choice: Cosine similarity:

- $(xi) D(xr).

t
k(X,’,X,’/) = 7X,-X,/ =
il x|l
@ Problems:
» Popular words (like “the” or “and") are not discriminative
~> remove these stop words.
» Bias: once a word is used in a document,
it is very likely to be used again.

@ Solution: Replace word counts with “normalized” representation.
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Kernels for documents

o TF-IDF “term frequency inverse document frequency”:
Term frequency is log-transform of the count:

tf(X,'j) = |0g(1 + X,:,')
Inverse document frequency:

d t 1
idf(j) = log #{ ocumen S) — = log —.
#(documents containing term j) b

~» Shannon information content:
idf is a measure of how much information a word provides

@ Combine with tf ~» counts weighted by information content:
tf-idf(x;) = [tf(x;) - idf(j)]}/zl, where V' = size of vocabulary.
@ We then use this inside the cosine similarity measure.
With ¢(x) = tf-idf(x):
N b xi
k(xi, xir) = Plxi) Plxr) :
lo(xi)lllp(xi)l]
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String kernels

Real power of kernels arises for structured input objects.

Consider two strings x, and x’ of lengths d, d’, over alphabet A.
Idea: define similarity as the number of common substrings.

(]

If s is a substring of x ~» ¢s(x) = number of times s appears in x.

(]

String kernel

k(Xaxl) = Z Ws¢s(X)¢s(X/)a
seA*
where ws > 0 and A* = set of all strings (any length) from A.
One can show: Mercer kernel, can be computed in O(|x| + |x']) time
using suffix trees (Shawe-Taylor and Cristianini, 2004).

@ Special case: ws = 0 for |s| > 1: bag-of-characters kernel:
¢(x) is the number of times each character in A occurs in x.
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The kernel trick

@ Idea: modify algorithm so that it replaces all inner products x‘x’
with a call to the kernel function k(x, x’).
o Kernelized ridge regression: w = (XX + \/)~1Xty.
Matrix inversion lemma:
(I+uv)ytu=u(+wvu)!
Define new variables «;:
w= (XX +A)"tXty

= XH(XXT+ ANty = Za,x,
—,_/
&

~ solution is linear sum of the n training vectors.
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The kernel trick

@ Use this and the kernel trick to make predictions for x:

?( —Wx—Za,xx—Za, Xi, X
@ Same for SVMs:
wix = Z Qiyixix = Z &tk(x;, x)

iesv iesv
@ ...and for most other classical algorithms in ML!
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Some applications in bioinformatics

@ Bioinformatics: often non-vectorial data-types:

Human

tonkey Cow
juman

> interaction graphs

Soybean

» phylogenetic trees T
> strings GSAQVKGHGKKVADALTNAVAHV

o Data fusion: convert data of each type into kernel matrix
= fuse kernel matrices
= “common language” for heterogeneous data.
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RBF kernels from expression data

o Measurements (for each gene): vector of expression values under
different experimental conditions

o ‘“classical” RBF kernel k(xi,x2) = exp(—c||x1 — x2||?)

LR
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Diffusion kernels from interaction-graphs

(]

A: Adjacency matrix, D: node degrees, L = D — A.
o K:= ﬁ exp(—/L) with transition probabilities /.

Physical interpretation (random walk):
randomly choose next node among neighbors.

@ Self-transition occurs with prob. 1 — d;3

Kjj: prob. for walk from i to j.

(Kondor and Lafferty, 2002)
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Alignment kernels from sequences

Alignment with Pair HMMs
~» Mercer kernel (Watkins, 2000).

Image source: Durbin, Eddy, Krogh, Mitchison. Biological Se-

quence Alignment. Cambridge.

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL
++ ++++H+ KV + +A  ++ +L+ L+++H+ K
LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

Volker Roth (University of Basel)
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Combination of heterogeneous data

Adding kernels = new kernel:

ki(x,y) = ¢1(x) - d1(y).

ka(x,y) = ¢2(x) - d2(y) é2(x)

Fusion & relevance determination: kernel-combinations

S K =k ke = (200) - (20
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Section 8

Gaussian Processes: probabilistic kernel models

o = = = ae
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Overview

@ The use of the Gaussian distribution in ML

Properties of the multivariate Gaussian distribution
Random variables — random vectors — stochastic processes
Gaussian processes for regression

Model Selection

Gaussian processes for classification

v

v vy VvYy

o Relation to kernel models (e.g. SVMs)

@ Relation to neural networks.
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Kernel Ridge Regression

Kernelized ridge regression: w = (XtX + \/)~1Xty.
Matrix inversion lemma: (/ + UV)~tU = U(I + VU)!

Define new variables «;:
W= (XTX 4+ A)"Xty

= XY (XXt + AI)~ ly = Za,x,
—_—

Predictions for new x.:

7?( = = Zoz,x X, = Zdz,-k(x,-,x*).
i=1
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Kernel Ridge Regression

-0.5
I

f(x) =sin(x)/.

T T T T
-10 -5 0 5

Kernel function: k(x;, x;) = exp(—5p|1xi — x;[|?)
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How can we make use of the Gaussian distribution?

-2

v . A . Nl
@ Is it possible to fit a nonlinear regression line with the “boring
Gaussian distribution?

@ Yes, but we need to introduce the concept of Gaussian Processes!
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The 2D Gaussian distribution

2D Gaussian: P(y;u =0, = K) = 1 exp(—%ytK_ly)

Covariance
(also written “co-variance”)
is a measure of how much two B

random variables vary to-
gether: . - -

o +1: perfect linear -1
coherence, -

_0.00050 _D3.00-08

o -1: perfect negative 7
. =Hb.95 1.00H] “=Bos 1008
linear coherence, = L

@ 0: no linear coherence.
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Properties of the Multivariate Gaussian distribution

Kii K2
~ N, K). Lety = Y1 ) and K = .
y ~N(w, K). Lety <y2 n Koy Kop
Then y; ~ N(pq, K11) and y, ~ N (o, K22).

(L O75-021
“Hozo02s

Marginals of Gaussians are again Gaussian!

Volker Roth (University of Basel) Machine Learning
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Properties of the Multivariate Gaussian distribution (2)

K K
~N(p, K). Lety = | 1 dk=| "1 f2 )
Y (1, K). Let y <}’2 an Ko Kxo

Then y,ly: ~ N(pp + Ko Kt (y1 — 1), Koo — Ko Kii Kia).

Conditionals of Gaussians are again Gaussian!
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2D Gaussians: a new visualization

@ top left: mean and
tstd.dev. of p(ya|yr = 1).

1

@ bottom left: p(yz|y; = 1)
and samples drawn from it.

@ top right: x-axis: indices
(1,2) of dimensions,
y-axis: density in each
component. Shown are : [l
y1 = 1 and the conditional :

mean p(yz2|y1 = 1) and
std.dev.

@ bottom right: samples e
drawn from above model.
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Visualizing high-dimensional Gaussians

@ top left: 6 samples drawn
from 5-dimensional
Gaussian with zero mean
(indicated by blue line).

o =1 (magenta line).

@ bottom left: Conditional
mean and std.dev of

p(ya, ysly1 = =1,y = 0,y3 = 0.5). -
@ top right: contour lines of ’ N : /\
p(ya, ysly1 = —1,y» = 0,3 = 0.5). .

@ bottom right: samples
drawn from above model.
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From covariance matrices to Gaussian processes

@ top left: 8 samples, 6 dim. - . o
x-axis: dimension-indices. LSS e T

@ bottom left: 8 samples,
viewed as values y = f(x).
Construction: choose 6
input points x; at random
~> build covariance matrix K
with covariance function
k(x,x') = exp(— 3 [ x—x'|]2
~ draw f ~ N(0, K) N
~> plot as function of inputs.  ° = ‘ z

o top right: same for 12 inputs | s

@ bottom right: 100 inputs
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This looks similar to Kernel Regression...

-0.5
I
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Gaussian Processes

o Gaussian Random Variable (RV): f ~ N (u, 0?).

@ Gaussian Random Vector: Collection of n RVs, characterized by
mean vector and covariance matrix: f ~ N (u,¥)

@ Gaussian Process: infinite Gaussian random vector, every finite
subset of which is jointly Gaussian distributed
Continuous index, e.g. time t ~» function f(t).
Fully specified by mean function m(t) = E[f(t)]
and covariance function k(t,t') = E[(f(t) — m(t))(f(t') — m(t'))].
o In ML, we will focus on more general index sets x € RY with mean
function m(x) and covariance function k(x, x’):

f(x) ~ GP(m(x), k(x, x')).
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Visualizing Gaussian Processes: Sampling

o Problem: working with infinite vectors and covariance matrices is not
very intuitive...

@ Solution: evaluate the GP at set of n discrete times
(or input vectors x € RY):
» Choose n input points x; at random ~» matrix X
> build covariance matrix K (X, X) with covariance function k(x;, x;)
» sample realizations of the Gaussian random vector
f ~ N(0,K(X, X))
» plot f as function of inputs.
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This is exactly what we have done here...

A <

X7
Y

LN
LN

&J;;DLI%QJ‘
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From the Prior to the Posterior

GP defines distribution over functions ~» f evaluated at training points X
and f, evaluated at test points X, are jointly Gaussian:

Fl oo | KX:X) KX X)

f. KX, X)) K(Xs, Xi)
Posterior p(f.| X, X, f(X)): conditional of a Gaussian distribution.
Let x ~ N (p, K). Let x = ( X1 ) and K = < Kin Kio )

X2 Ko Ko
Then X2|X1 ~ N(uz + Kleﬂl(fl — [1,1), Kooy — KglKﬂlKlz).

fo X, X, F~ N( K(Xe, X)(K(X, X)),
K(X., X.) — K(X., X)(K(X, X)) 1K (X, X,))

For only one test case:
ful X, X, F ~ N(KEKTLF, ko — kKEK k)
44/63



A simple extension: noisy observations

@ Assume we have access only to noisy versions of function values:
y = f(x)+n, n~N(0,02) (cf. initial example of ridge regression).
@ Noise 1 does not depend on data!

@ Covariance of noisy observations y is sum of covariance of f and
variance of noise: cov(y) = K(X, X) + o2I.

K(X, X))+ 0%l K(X,X.)
7o el k)

fdXe, X,y ~ N KX, X)(K(X, X) +0?1) 7Ly,
K(X., X)) =KX, X)(K(X,X) 4+ o2)71K(X, X.))

f;<|X*,X, f NN(ki(K +O-2/)_1ya k** - ki(K +O’2/)_1k*)

= Posterior mean is solution of kernel ridge regression!
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Noisy observations: examples

f(x) =sin(x)’

-05

T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 -10 -5 0 5 10
X

Noisy observations: y = f(x) + 7, 7 ~ N(0,0?)
Mean predictions: f, = K.(K + c2/)y.
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Gaussian processes for regression

now with some noise... Posterior sample Prior samples

@ Left: 11 training points generated as y = sin(x)/x + v, v ~ N(0,0.01)
Covariance k(x,,xq) = exp(— 55 [|Xp — X4[[2) + 020.4.
100 test points uniformly chosen from [—10, 10] ~~» matrix Xi,.
Mean prediction E[f.|X., X, y] and +std.dev.

@ Middle: samples drawn from posterior .| X, X, y.
@ Right: samples drawn from prior f ~ N(0, K(X, X)).
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Covariance Functions

o A GP specifies a distribution over functions f(x), characterized by
mean function m(x) and covariance function k(xj, x;).

o Finite subset evaluated at n inputs ~» Gaussian distribution:
FX) = (F(x2), o F(xa)) ~ N (1K),
where K is the covariance matrix with entries Kj; = k(x;, x;).
o Covariance matrices are symmetric positive semi-definite:
Kij = Kji and x'Kx >0, Vx.

o We already know that Mercer kernels have this property
~> all Mercer kernels define proper covariance functions in GPs.

o Kernels frequently have additional parameters.

@ The noise variance in the observation model
y = f(x) +n,1m ~ N(0,02) is another parameter.

@ How should we choose these parameters? ~» model selection.
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Model Selection

@ top left: sample function from
prior f ~ N(0, K(X, X)) with
covariance function
k(x,x') = exp(— 5 1x — x'|P).
Length scale / = 1079 small
~> highly varying function.

length scale: 10°0.5, sample no. 1

@ bottom left: same for / = 10°
~~ smoother function

@ top right: same for / = 10%5
~~ even smoother...

@ bottom right: almost linear
function for / = 10

length scale: 10°0, sample no. 1 length scale: 10°1, sample no. 1
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Model Selection (2)

@ How to select the parameters?

@ One possibility: maximize marginal likelihood:

pyIX) = [ pyIF X)p(FIX) of.
@ We do not need to integrate: we know that
fIX ~N(0,K) and y =f +1n, n~N(0,0%).
Since 1 does not depend on X, the variances simply add:
yIX ~N(0,K +o?1).

@ Possible strategy:
Select parameters on a grid and choose maximum.

@ Or: Compute derivatives of marginal likelihood and use gradient
descent.
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Model Selection (3)

e Example problem: y = sin(x)/x +n, n ~ N(0,0.01).
o Log marg. likeli. = log N'(0, K + o?1) =

1 1
—o¥ (K +0?) Ty~ log|K +I| - glog(27r) .

data fit complexity penalty =~ norm. constant
o 2d-Example with Gaussian RBF:
(K+o2l) = ( 1*;’2 14502 > = |K+all=(1+0%)?-a*>>0
Note that a — 0 if length scale | — 0
~ complexity penalty has high values for small length scales.
Matrix inverse includes a dominating factor |K + o2/|~?
~> data fit term also high for small /.
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Model Selection (4)

Fixing 02 = 0.01 and varying length scale /:

o |
N neg. complexity penalty
o |
N
B marg. likelihood
£
© o -
k4
[=2
o
o
Q
I
data fit
o
S
! T T T T T T T T T T T T T T T T T T T T
-1 -08 -06 -04 -02 0 02 04 06 08 1

log(length scale), log(noise variance) = 0.01
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Model Selection (5)

Fixing length scale / = 0.5 and varying the noise level o2

o |
<
neg. complexity penalty
o |
N
'§ marg. likelihood
< data fit
O O+
4
j=2
o
o
Q
]
o
S
! T T T T T T T T T T T T T T T T T
-3 -26 -22 -18 -14 -1 -06 0 04 08

Volker Roth (University of Basel)

log(noise variance), log(length scale) = 0.5

Machine Learning
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Model Selection (6)
Varying both o2 and /:

log(noise variance)
1

-1.0 -0.5 0.0 0.5 1.0

log(length scale)
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Classification: Basket Ball Example

v
-
linear activation
=
—
g
1%}
9
E
5 © ]
a logistic transfer function
E
=
o
0
S 4
[
T T T T T
0 10 20 30 40
distance

Adapted from Fig. 7.5.1 in (B. Flury)
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Classical Logistic Regression

o Targets y € {0,1}
~~ Bernoulli RV with “success probability” m(x) = P(1]x).

o Likelihood: P(y|X, f) = [Tr; (m(xi))” (1 — me(xi))

e Linear logistic regression: unbounded f(x) = w’x (“activation”)
Bounded estimates: pass f(x) through logistic transfer function
o(F(x)) = 1oy = 1w and set mr(x) = o(f(x)).

o Newton method for maximizing the log posterior
J(w) := log p(y|X, w) + log p(w):

r r — a
w1 — w() — LE[H]} la—WJ(w)

o Kernel trick: expand w = X', substitute dot products by kernel
function k(x, x’) ~~ kernel logistic regression.
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GP Classification

@ Place GP prior over “latent” function f(x) ~ GP(0, k(x, x")).

e “Squash” it through logistic function ~~ prior on w(x) = o(f(x)).

4 1

~

|
~

latent function, f(x)
=
class probability, (x)

!
IS

input, x input, x
(Rasmussen & Williams, 2006)

@ Problem: Bernoulli likelihood ~~ predictive distribution
p(v« = 1|X,y, x,) cannot be calculated analytically.

@ Possible solution: use Laplace approximation.

o Observation: MAP classification boundary is identical with boundary
obtained from kernel logistic regression.
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GP Classification using Laplace’'s approximation
@ Prior f|X ~ N(0, K). Bernoulli likelihood:

n

p(y[X, F) = [T (c(F(xi)))" (1 = o(F(xi))) ™,
i=1
@ Gaussian approximation of posterior:
p(FIX,y) =~ N(F,H™).
@ Predictions: compute

p(ye = 1|y, x., X) =

—

o-(ﬂk)p (f:k | Y, Xx, X) df, = ]Ep(f*|y,x*,X)(0-)

latent function at x.
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GP Classification using Laplace’'s approximation

o First predict latent function at test case x,:

plEly.x..X) = [ plEIF.x.X)  plFIX.y)df
Gaussian  approx. Gaussian N(f, H™1)
~ N (pis, 04), with
[ = kEKTLE,
0y = ke — kEK Lk,

@ Then use Monte Carlo approximation

1 S
Plyly, x:, X) = Ep(tlyx. x)(0) # 2 > o(f(x.)),
s=1

where £ are samples from the (approximated) distribution over latent
function values.
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GPs and Neural networks

Consider a neural network for regression (square
loss) with one hidden layer:

ply|x,0) = N(f(x;8),07),

f(x)=b+ ZH vig(x; uj).

Bayesian treatment: i.i.d. prior assumptions over weights:

indep. zero-mean Gaussian priors for b and v, with variance ag and o2,
and independent (arbitrary) priors for components of the weight vector u;
at the j-th hidden unit.
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GPs and Neural networks

@ Mean and covariance:
=0

m(x) = EolF(x)] = BB+ E[vig(x; )]
j=1
(v inde:p. of u) ;EEL;A E[g(x; uj)] =0.

Ny
k(x,X') = Eg[f(x)f(x)] = o2 + > 02Eulg(x; u))g (X uy)].
j=1
o All hidden units are identically distributed
~> the sum is over ny i.i.d. RVs. Assume activation g is bounded
~ all moments of the distribution will be bounded
~ central limit theorem applicable
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GPs and Neural networks

Suppose {Xi, ..., Xy} is a sequence of i.i.d. RVs with E[X;] = i and
Var[X;] = 02 < co. Then /n(Sy—p) % N (0,0?) as n — 0.

@ The covariance between any pair of function values (f(x), f(x))
converges to the covariance of two Gaussian RVs
~» Joint distribution of n function values is multivariate Gaussian
~ we get a GP as ny — oo.

@ For specific activations, the neural network covariance function
can be computed analytically (Williams 1998).

@ A three-layer network with and infinitely wide hidden layer can
be interpreted as a GP.
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Summary

o GPs: fully probabilistic models
~+ posterior p(f.|X,y, xs).
@ Uniquely defined by specifying covariance function.
o Mathematically simple:
we only need to calculate conditionals of Gaussians!
o Connections:
regression: MAP(GP,) = kernel ridge reg.
classification: MAP(GP.) = kernel logistic reg.
GP. = probabilistic version of SVM.

A three-layer network with an infinitely wide hidden layer can be
interpreted as a GP with the neural network covariance function.
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