
Machine Learning

Volker Roth

Department of Mathematics & Computer Science
University of Basel

Volker Roth (University of Basel) Machine Learning 1 / 63

Section 7

Support Vector Machines and Kernels

Volker Roth (University of Basel) Machine Learning 2 / 63

Structure on canonical hyperplanes

Theorem (Vapnik, 1982)
Let R be the radius of the smallest ball containing the points x1, . . . , xn:
BR(a) = {x ∈ Rd : ‖x − a‖ < R, a ∈ Rd}. The set of canonical
hyperplane decision functions f (w ,w0) = sign{w tx + w0} satisfying
‖w‖ ≤ A has VC dimension h bounded by

h ≤ R2A2 + 1.

Intuitive interpretation: margin = 1/‖w‖
 minimizing capacity(H) corresponds to maximizing the margin.

R[fn] ≤ Remp[fn] +
√

a
n

(
capacity(H) + ln b

δ

)

 Large margin classifiers.

Volker Roth (University of Basel) Machine Learning 3 / 63

SVMs

When the training examples are linearly separable we can maximize
the margin by minimizing the regularization term

‖w‖2/2 =
d∑

i=1
w2

i /2

subject to the classification constraints
yi [xt

i w]− 1 ≥ 0, i = 1, . . . , n.

x

x

x

x

x
x

x

o

o

o

o
o

o
ox

W

The solution is defined only on the basis of a subset of examples or
support vectors.

Volker Roth (University of Basel) Machine Learning 4 / 63

SVMs: nonseparable case

Modify optimization problem slightly by adding a
penalty for violating the classification constraints:

minimize ‖w‖2/2 + C
n∑

i=1
ξi

subject to relaxed constraints
yi [xt

i w]− 1 + ξi ≥ 0, i = 1, . . . , n.

x

x

x

x

x
x

x

o

o

o

o
o

o
ox

W x

x

o

The ξi ≥ 0 are called slack variables.

Volker Roth (University of Basel) Machine Learning 5 / 63

SVMs: nonseparable case

We can also write the SVM optimization problem more compactly as

C
n∑

i=1

ξi︷ ︸︸ ︷
(1− yi [xt

i w])+ + ‖w‖2/2,

where (z)+ = z if z ≥ 0 and zero otherwise.
This is equivalent to regularized empirical loss minimization

1
n

n∑
i=1

(1− yi [xt
i w])+

︸ ︷︷ ︸
Remp

+ λ‖w‖2,

where λ = 1/(2nC) is the regularization parameter.

Volker Roth (University of Basel) Machine Learning 6 / 63

SVMs and LOGREG

When viewed from the point of view of regularized empirical loss
minimization, SVM and logistic regression appear quite similar:

SVM: 1
n

n∑
i=1

(1− yi [xt
i w])+ + λ‖w‖2

LOGREG: 1
n

n∑
i=1
− log

P(yi |x i ,w)︷ ︸︸ ︷
σ(yi [xt

i w]) + λ‖w‖2,

where σ(z) = (1 + e−z)−1 is the logistic function.

Volker Roth (University of Basel) Machine Learning 7 / 63

SVMs and LOGREG

The difference comes from how we penalize errors:

Both: 1
n

n∑
i=1

Loss(
z︷ ︸︸ ︷

yi [xt
i w]) + λ‖w‖2,

SVM: Loss(z) = (1− z)+

LOGREG:
Loss(z) = log(1 + exp(−z))

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Volker Roth (University of Basel) Machine Learning 8 / 63

SVMs: solution, Lagrange multipliers
Back to the separable case: how do we solve

minimizew ‖w‖2/2 s.t. yi [xt
i w]− 1 ≥ 0 , i = 1, . . . , n.

Represent the constraints as individual loss terms:

sup
αi≥0

αi (1− yi [xt
i w]) =

{
0, if yi [xt

i w]− 1 ≥ 0 ,
∞, otherwise.

Rewrite the minimization problem:

minimizew ‖w‖2/2 +
n∑

i=1
sup
αi≥0

αi (1− yi [xt
i w])

= minimizew sup
αi≥0

(
‖w‖2/2 +

n∑
i=1

αi (1− yi [xt
i w])

)

Volker Roth (University of Basel) Machine Learning 9 / 63

SVMs: solution, Lagrange multipliers

Swap maximization and minimization (technically this requires that
the problem is convex and feasible Slater’s condition):

minimizew

[
sup
αi≥0

(
‖w‖2/2 +

n∑
i=1

αi (1− yi [xt
i w])

)]

= maximizeαi≥0

[
min

w

(
‖w‖2/2 +

n∑
i=1

αi (1− yi [xt
i w])︸ ︷︷ ︸

J(w ;α)

)]

We have to minimize J(w ; α) over parameters w for fixed
Lagrange multipliers αi ≥ 0.
Simple, because J(w) is convex set derivative to zero
 only one stationary point global minimum.

Volker Roth (University of Basel) Machine Learning 10 / 63

SVMs: solution, Lagrange multipliers

Find optimal w by setting the derivatives to zero:

∂

∂w J(w ; α) = w −
∑

i
αiyix i = 0 ⇒ ŵ =

∑
i
αiyix i .

Substitute the solution back into the objective and get
(after some re-arrangements of terms):

max
αi≥0

min
w

(
‖w‖2/2 +

n∑
i=1

αi (1− yi [xt
i w])

)

=max
αi≥0

(
‖ŵ‖2/2 +

n∑
i=1

αi (1− yi [xt
i ŵ])

)

=max
αi≥0

(n∑
i=1

αi −
1
2

n∑
i ,j=1

yiyjαiαjxt
i x j

)

Volker Roth (University of Basel) Machine Learning 11 / 63

SVMs: summary

Find optimal Lagrange multipliers α̂i by maximizing
n∑

i=1
αi −

1
2

n∑
i ,j=1

yiyjαiαjxt
i x j subject to αi ≥ 0.

Only α̂i ’s corresponding to support vectors will be non-zero.
Make predictions on any new example x according to:

sign(xtŵ) = sign(xt
n∑

i=1
α̂iyix i) = sign(

∑
i∈SV

α̂iyi xtx i).

Observation: dependency on input vectors only via dot products.
Later we will introduce the kernel trick for efficiently computing
these dot products in implicitly defined feature spaces.

Volker Roth (University of Basel) Machine Learning 12 / 63

SVMs: formal derivation

Convex optimization problem: an optimization problem

minimize f (x) (1)
subject to gi (x) ≤ 0, i = 1, . . . ,m (2)

is convex if the functions f , g1 . . . gm : Rn → R are convex.
The Lagrangian function for the problem is

L(x, λ0, ..., λm) = λ0f (x) + λ1g1(x) + ...+ λmgm(x).

Karush-Kuhn-Tucker (KKT) conditions: For each point x̂ that
minimizes f , there exist real numbers λ0, . . . , λm,
called Lagrange multipliers, that simultaneously satisfy:

1 x̂ minimizes L(x, λ0, λ1, . . . , λm),
2 λ0 ≥ 0, λ1 ≥ 0, . . . , λm ≥ 0, with at least one λk > 0,
3 Complementary slackness: gi (x̂) < 0⇒ λi = 0 , 1 ≤ i ≤ m.

Volker Roth (University of Basel) Machine Learning 13 / 63

SVMs: formal derivation
Slater’s condition: If there exists a strictly feasible point z
satisfying g1(z) < 0, . . . , gm(z) < 0, then one can set λ0 = 1.
Assume that Slater’s condition holds. Minimizing the supremum
L∗(x) = supλ≥0 L(x,λ), is the primal problem P:

x̂ = argmin
x
L∗(x).

Note that

L∗(x) = sup
λ≥0

(
f (x) +

m∑
i=1

λigi (x)
)

=
{

f (x) , if gi (x) ≤ 0 ∀i
∞ , else.

 Minimizing L∗(x) is equivalent to minimizing f (x).
The maximizer of the dual problem D is

λ̂ = argmax
λ
L∗(λ), where L∗(λ) = inf

x
L(x,λ).

Volker Roth (University of Basel) Machine Learning 14 / 63

SVMs: formal derivation
The non-negative number min(P) – max(D) is the duality gap.
Convexity and Slater’s condition imply strong duality:

1 The optimal solution (x̂, λ̂) is a saddle point of L(x,λ)
2 The duality gap is zero.

Discussion: For any real function f (a, b)
mina[maxb f (a, b)] ≥ maxb[mina f (a, b)] .
Equality saddle value exists.

By Nicoguaro - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=20570051

Volker Roth (University of Basel) Machine Learning 15 / 63

Kernel functions

A kernel function is a real-valued function of two arguments,
k(x, x ′) ∈ R, for x, x ′ ∈ X .
Typically the function is symmetric , and sometimes non-negative.
In the latter case, it might be interpreted as a measure of similarity.
Example: isotropic Gaussian kernel:

k(x, x ′) = exp
(
−‖x − x ′‖2

2σ2

)
Here, σ2 is the bandwidth. This is an example of a
radial basis function (RBF) kernel (only a function of ‖x − x ′‖2).

Volker Roth (University of Basel) Machine Learning 16 / 63

Mercer kernels

A symmetric kernel is a Mercer kernel , iff the Gram matrix

K =

 k(x1, x1) . . . k(x1, xn)
...

k(xn, x1) . . . k(xn, xn)

is positive semidefinite for any set of inputs {x i , . . . , xn}.
Mercer’s theorem: Eigenvector decomposition

K = V ΛV t = (V Λ1/2)(V Λ1/2)t =: ΦΦt .

Eigenvectors: columns of V . Eigenvalues: entries of diagonal matrix
Λ = diag(λ1, . . . , λn). Note that λi ∈ R and λi ≥ 0.
Define φ(x i)t = i-th row of Φ = V[i•]Λ1/2

 k(x i , x i ′) = φ(x i)tφ(x i ′).
Entries of K : inner product of some feature vectors ,
implicitly defined by eigenvectors V .

Volker Roth (University of Basel) Machine Learning 17 / 63

Mercer kernels

If the kernel is Mercer , then there exists φ : x → Rd such that
k(x, x ′) = φ(x)tφ(x ′),

where φ depends on the eigenfunctions of k (d might be infinite).
Example: Polynomial kernel

k(x, x ′) = (1 + xtx ′)m.

Corresponding feature vector contains terms up to degree m.
Example: m = 2, x ∈ R2:

(1 + xtx ′)2 = 1 + 2x1x ′1 + 2x2x ′2 + (x1x ′1)2 + (x2x ′2)2 + 2x1x ′1x2x ′2.
Thus,

φ(x) = [1,
√

2x1,
√

2x2, x2
1 , x2

2 ,
√

2x1x2]t .
Equivalent to working in a 6-dim feature space.
Gaussian kernel: feature map lives in an infinite dimensional space.

Volker Roth (University of Basel) Machine Learning 18 / 63

Kernels for documents

In document classification or retrieval, we want to compare two
documents, x i and x i ′ .
Bag of words representation:
x ij is the number of times word j occurs in document i .
One possible choice: Cosine similarity:

k(x i , x i ′) = xt
i x i ′

‖x i‖‖x i ′‖
=: φ(x i)tφ(x i ′).

Problems:
I Popular words (like “the” or “and”) are not discriminative
 remove these stop words.

I Bias: once a word is used in a document,
it is very likely to be used again.

Solution: Replace word counts with “normalized” representation.

Volker Roth (University of Basel) Machine Learning 19 / 63

Kernels for documents
TF-IDF “term frequency inverse document frequency”:
Term frequency is log-transform of the count:

tf(xij) = log(1 + xij)
Inverse document frequency:

idf(j) = log #(documents)
#(documents containing term j) = log 1

p̂j
.

 Shannon information content:
idf is a measure of how much information a word provides
Combine with tf counts weighted by information content:

tf-idf(x i) = [tf(x ij) · idf(j)]Vj=1, where V = size of vocabulary.
We then use this inside the cosine similarity measure.
With φ(x) = tf-idf(x):

k(x i , x i ′) = φ(x i)tφ(x i ′)
‖φ(x i)‖‖φ(x i ′)‖

.

Volker Roth (University of Basel) Machine Learning 20 / 63

String kernels

Real power of kernels arises for structured input objects.
Consider two strings x , and x ′ of lengths d , d ′, over alphabet A.
Idea: define similarity as the number of common substrings.
If s is a substring of x φs(x) = number of times s appears in x .
String kernel

k(x , x ′) =
∑

s∈A∗
wsφs(x)φs(x ′),

where ws ≥ 0 and A∗ = set of all strings (any length) from A.
One can show: Mercer kernel, can be computed in O(|x |+ |x ′|) time
using suffix trees (Shawe-Taylor and Cristianini, 2004).
Special case: ws = 0 for |s| > 1: bag-of-characters kernel:
φ(x) is the number of times each character in A occurs in x .

Volker Roth (University of Basel) Machine Learning 21 / 63

The kernel trick

Idea: modify algorithm so that it replaces all inner products xtx ′

with a call to the kernel function k(x, x ′).
Kernelized ridge regression: ŵ = (X tX + λI)−1X ty .
Matrix inversion lemma:

(I + UV)−1U = U(I + VU)−1

Define new variables αi :
ŵ = (X tX + λI)−1X ty

= X t(XX t + λI)−1y︸ ︷︷ ︸
α̂

=
n∑

i=1
α̂ix i .

 solution is linear sum of the n training vectors.

Volker Roth (University of Basel) Machine Learning 22 / 63

The kernel trick

Use this and the kernel trick to make predictions for x:

f̂ (x) = ŵ tx =
n∑

i=1
α̂ixt

i x =
n∑

i=1
α̂ik(x i , x).

Same for SVMs:
ŵ tx =

∑
i∈SV

α̂iyixt
i x =

∑
i∈SV

α̂′ik(x i , x)

...and for most other classical algorithms in ML!

Volker Roth (University of Basel) Machine Learning 23 / 63

Some applications in bioinformatics

Bioinformatics: often non-vectorial data-types:

I interaction graphs

I phylogenetic trees
I strings GSAQVKGHGKKVADALTNAVAHV

Data fusion: convert data of each type into kernel matrix
⇒ fuse kernel matrices
⇒ “common language” for heterogeneous data.

Volker Roth (University of Basel) Machine Learning 24 / 63

RBF kernels from expression data

Measurements (for each gene): vector of expression values under
different experimental conditions
“classical” RBF kernel k(x1, x2) = exp(−σ‖x1 − x2‖2)

Volker Roth (University of Basel) Machine Learning 25 / 63

Diffusion kernels from interaction-graphs

A: Adjacency matrix, D: node degrees, L = D − A.
K := 1

Z(β) exp(−βL) with transition probabilities β.
Physical interpretation (random walk):
randomly choose next node among neighbors.
Self-transition occurs with prob. 1− diβ

Kij : prob. for walk from i to j .
(Kondor and Lafferty, 2002)

Volker Roth (University of Basel) Machine Learning 26 / 63

Alignment kernels from sequences

Alignment with Pair HMMs
 Mercer kernel (Watkins, 2000).
Image source: Durbin, Eddy, Krogh, Mitchison. Biological Se-

quence Alignment. Cambridge.

Volker Roth (University of Basel) Machine Learning 27 / 63

Combination of heterogeneous data
Adding kernels ⇒ new kernel:
k1(x , y) = φ1(x) · φ1(y),
k2(x , y) = φ2(x) · φ2(y) ⇒ k ′ = k1 + k2 =

(φ1(x)
φ2(x)

)
·
(φ1(y)
φ2(y)

)
Fusion & relevance determination: kernel-combinations

= 1 ++ 2 3 + 4K K K K K1 2 3 4ccc c

Volker Roth (University of Basel) Machine Learning 28 / 63

Section 8

Gaussian Processes: probabilistic kernel models

Volker Roth (University of Basel) Machine Learning 29 / 63

Overview

The use of the Gaussian distribution in ML
I Properties of the multivariate Gaussian distribution
I Random variables → random vectors → stochastic processes
I Gaussian processes for regression
I Model Selection
I Gaussian processes for classification

Relation to kernel models (e.g. SVMs)
Relation to neural networks.

Volker Roth (University of Basel) Machine Learning 30 / 63

Kernel Ridge Regression

Kernelized ridge regression: ŵ = (X tX + λI)−1X ty .
Matrix inversion lemma: (I + UV)−1U = U(I + VU)−1

Define new variables αi :
ŵ = (X tX + λI)−1X ty

= X t(XX t + λI)−1y︸ ︷︷ ︸
α̂

=
n∑

i=1
α̂ix i .

Predictions for new x∗:

f̂ (x∗) = ŵ tx∗ =
n∑

i=1
α̂ixt

i x∗ =
n∑

i=1
α̂ik(x i , x∗).

Volker Roth (University of Basel) Machine Learning 31 / 63

Kernel Ridge Regression

−10 −5 0 5 10

−
0.

5
0.

0
0.

5
1.

0

f(x)

f(x) =sin(x)/x

Kernel function: k(x i , x j) = exp(− 1
2l2 ‖x i − x j‖2)

Volker Roth (University of Basel) Machine Learning 32 / 63

How can we make use of the Gaussian distribution?

y_1

y_
2

−2 −1 0 1 2

−
2

−
1

0
1

2

●

X

−2
−1

0
1

2

Y

−2

−1

0

1

2

Z

0.0

0.1

0.2

0.3

Is it possible to fit a nonlinear regression line with the “boring”
Gaussian distribution?
Yes, but we need to introduce the concept of Gaussian Processes!

Volker Roth (University of Basel) Machine Learning 33 / 63

The 2D Gaussian distribution

2D Gaussian: P(y ; µ = 0,Σ = K) = 1√
2π|K |

exp(−1
2y tK−1y)

Covariance
(also written “co-variance”)
is a measure of how much two
random variables vary to-
gether:

+1: perfect linear
coherence,
-1: perfect negative
linear coherence,
0: no linear coherence.

y_1

y_
2

−2 −1 0 1 2

−
2

−
1

0
1

2

K ==

1 0

0 1

y_1

y_
2

−2 −1 0 1 2

−
2

−
1

0
1

2

K ==

1.0 0.5

0.5 1.0

y_1

y_
2

−2 −1 0 1 2

−
2

−
1

0
1

2

K ==

1.00 0.95

0.95 1.00

y_1

y_
2

−2 −1 0 1 2

−
2

−
1

0
1

2

K ==

1.00 −0.8

−0.8 1.00

Volker Roth (University of Basel) Machine Learning 34 / 63

Properties of the Multivariate Gaussian distribution

y ∼ N (µ,K). Let y =
(

y1
y2

)
and K =

(
K11 K12
K21 K22

)
.

Then y1 ∼ N (µ1,K11) and y2 ∼ N (µ2,K22).

−2 −1 0 1 2

−
2

−
1

0
1

2
K =

0.75 −0.2

−0.2 0.25

y_1

y_
2

Marginals of Gaussians are again Gaussian!

Volker Roth (University of Basel) Machine Learning 35 / 63

Properties of the Multivariate Gaussian distribution (2)

y ∼ N (µ,K). Let y =
(

y1
y2

)
and K =

(
K11 K12
K21 K22

)
.

Then y2|y1 ∼ N (µ2 + K21K−1
11 (y1 − µ1),K22 − K21K−1

11 K12).

X

−2

−1

0

1

2

Y

−2

−1

0

1

2

Z

0.00

0.05

0.10

0.15

Conditionals of Gaussians are again Gaussian!

Volker Roth (University of Basel) Machine Learning 36 / 63

2D Gaussians: a new visualization

top left: mean and
±std.dev. of p(y2|y1 = 1).

bottom left: p(y2|y1 = 1)
and samples drawn from it.

top right: x -axis: indices
(1, 2) of dimensions,
y -axis: density in each
component. Shown are
y1 = 1 and the conditional
mean p̄(y2|y1 = 1) and
std.dev.

bottom right: samples
drawn from above model.

y_1

y_
2

 0.1

 0.2

 0.3

−2 −1 0 1 2

−
2

−
1

0
1

2

●

●

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

y_2

p(
y_

2|
y_

1)

●

● ●● ●● ●● ●● ● ●●● ●● ●●●● ●● ● ●●●

−
2

−
1

0
1

2

1 2

●
●

−
2

−
1

0
1

2

1 2

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Volker Roth (University of Basel) Machine Learning 37 / 63

Visualizing high-dimensional Gaussians

top left: 6 samples drawn
from 5-dimensional
Gaussian with zero mean
(indicated by blue line).
σ = 1 (magenta line).

bottom left: Conditional
mean and std.dev of
p(y4, y5|y1 = −1, y2 = 0, y3 = 0.5).

top right: contour lines of
p(y4, y5|y1 = −1, y2 = 0, y3 = 0.5).

bottom right: samples
drawn from above model.

1 2 3 4 5

−
2

−
1

0
1

2

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

−
2

−
1

0
1

2

●

●

●

●

●

y_4

y_
5

 0
.5

 1

 1
.5

 2

 2.5

−2 −1 0 1 2

−
2

−
1

0
1

2

1 2 3 4 5

−
2

−
1

0
1

2

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

Volker Roth (University of Basel) Machine Learning 38 / 63

From covariance matrices to Gaussian processes

top left: 8 samples, 6 dim.
x -axis: dimension-indices.

bottom left: 8 samples,
viewed as values y = f (x).
Construction: choose 6
input points x i at random
 build covariance matrix K
with covariance function
k(x, x ′) = exp(− 1

2l2 ‖x−x ′‖2)
 draw f ∼ N (0,K)
 plot as function of inputs.

top right: same for 12 inputs

bottom right: 100 inputs

0 1 2 3 4 5 6 7

−
2

−
1

0
1

0 1 2 3 4 5 6 7

−
1

0
1

2

0 1 2 3 4 5 6 7

−
2

−
1

0
1

2

0 1 2 3 4 5 6 7

−
3

−
2

−
1

0
1

Volker Roth (University of Basel) Machine Learning 39 / 63

This looks similar to Kernel Regression...

−10 −5 0 5 10

−
0.

5
0.

0
0.

5
1.

0

f(x)

f(x) =sin(x)/x

Volker Roth (University of Basel) Machine Learning 40 / 63

Gaussian Processes

Gaussian Random Variable (RV): f ∼ N (µ, σ2).
Gaussian Random Vector: Collection of n RVs, characterized by
mean vector and covariance matrix: f ∼ N (µ,Σ)
Gaussian Process: infinite Gaussian random vector, every finite
subset of which is jointly Gaussian distributed
Continuous index, e.g. time t function f (t).
Fully specified by mean function m(t) = E[f (t)]
and covariance function k(t, t ′) = E[(f (t)−m(t))(f (t ′)−m(t ′))].
In ML, we will focus on more general index sets x ∈ Rd with mean
function m(x) and covariance function k(x, x ′):

f (x) ∼ GP(m(x), k(x, x ′)).

Volker Roth (University of Basel) Machine Learning 41 / 63

Visualizing Gaussian Processes: Sampling

Problem: working with infinite vectors and covariance matrices is not
very intuitive...
Solution: evaluate the GP at set of n discrete times
(or input vectors x ∈ Rd):

I Choose n input points x i at random matrix X
I build covariance matrix K (X ,X) with covariance function k(x i , x j)
I sample realizations of the Gaussian random vector

f ∼ N (0,K (X ,X))
I plot f as function of inputs.

Volker Roth (University of Basel) Machine Learning 42 / 63

This is exactly what we have done here...

0 1 2 3 4 5 6 7

−
2

−
1

0
1

0 1 2 3 4 5 6 7

−
1

0
1

2

0 1 2 3 4 5 6 7

−
2

−
1

0
1

2

0 1 2 3 4 5 6 7

−
3

−
2

−
1

0
1

Volker Roth (University of Basel) Machine Learning 43 / 63

From the Prior to the Posterior
GP defines distribution over functions f evaluated at training points X
and f ∗ evaluated at test points X∗ are jointly Gaussian:[

f
f ∗

]
∼ N

(
0,
[

K (X ,X) K (X ,X∗)
K (X∗,X) K (X∗,X∗)

])
Posterior p(f ∗|X∗,X , f (X)): conditional of a Gaussian distribution.

Let x ∼ N (µ,K). Let x =
(

x1
x2

)
and K =

(
K11 K12
K21 K22

)
.

Then x2|x1 ∼ N (µ2 + K21K−1
11 (f 1 − µ1),K22 − K21K−1

11 K12).

f ∗|X∗,X , f ∼ N (K (X∗,X)(K (X ,X))−1f ,
K (X∗,X∗)− K (X∗,X)(K (X ,X))−1K (X ,X∗))

For only one test case:

f∗|x∗,X , f ∼ N (kt
∗K−1f , k∗∗ − kt

∗K−1k∗)
Volker Roth (University of Basel) Machine Learning 44 / 63

A simple extension: noisy observations

Assume we have access only to noisy versions of function values:
y = f (x) + η, η ∼ N (0, σ2) (cf. initial example of ridge regression).
Noise η does not depend on data!
Covariance of noisy observations y is sum of covariance of f and
variance of noise: cov(y) = K (X ,X) + σ2I.[

y
f ∗

]
∼ N

(
0,
[

K (X ,X) + σ2I K (X ,X∗)
K (X∗,X) K (X∗,X∗)

])

f ∗|X∗,X , y ∼ N (K (X∗,X)(K (X ,X) + σ2I)−1y ,
K (X∗,X∗) −K (X∗,X)(K (X ,X) + σ2I)−1K (X ,X∗))

f∗|x∗,X , f ∼ N (kt
∗(K + σ2I)−1y , k∗∗ − kt

∗(K + σ2I)−1k∗)

⇒ Posterior mean is solution of kernel ridge regression!

Volker Roth (University of Basel) Machine Learning 45 / 63

Noisy observations: examples

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

x

y

σ~N(0,)2

f(x)

f(x)=0.5 x

−10 −5 0 5 10

−
0.

5
0.

0
0.

5
1.

0

f(x)

f(x) =sin(x)/x

Noisy observations: y = f (x) + η, η ∼ N (0, σ2)
Mean predictions: f̂ ∗ = K∗(K + σ2I)−1y .

Volker Roth (University of Basel) Machine Learning 46 / 63

Gaussian processes for regression

−10 −5 0 5 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

now with some noise...

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●
●

−10 −5 0 5 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Posterior sample

●

●

●

●

●

●

●●

●

●
●

0 1 2 3 4 5 6 7

−
2

−
1

0
1

2

Prior samples

Left: 11 training points generated as y = sin(x)/x + ν, ν ∼ N (0, 0.01)
Covariance k(xp, xq) = exp(− 1

2l2 ‖xp − xq‖2) + σ2δp,q.
100 test points uniformly chosen from [−10, 10] matrix X∗.
Mean prediction E [f ∗|X∗,X , y] and ±std.dev.

Middle: samples drawn from posterior f ∗|X∗,X , y .

Right: samples drawn from prior f ∼ N (0,K (X ,X)).

Volker Roth (University of Basel) Machine Learning 47 / 63

Covariance Functions

A GP specifies a distribution over functions f (x), characterized by
mean function m(x) and covariance function k(x i , x j).
Finite subset evaluated at n inputs Gaussian distribution:

f (X) = (f (x1), . . . , f (xn))t ∼ N (µ,K),
where K is the covariance matrix with entries Kij = k(x i , x j).
Covariance matrices are symmetric positive semi-definite:

Kij = Kji and xtKx ≥ 0, ∀x.
We already know that Mercer kernels have this property
 all Mercer kernels define proper covariance functions in GPs.
Kernels frequently have additional parameters.
The noise variance in the observation model
y = f (x) + η, η ∼ N (0, σ2) is another parameter.
How should we choose these parameters? model selection.

Volker Roth (University of Basel) Machine Learning 48 / 63

Model Selection

top left: sample function from
prior f ∼ N (0,K (X ,X)) with
covariance function
k(x, x ′) = exp(− 1

2l2 ‖x − x ′‖2).
Length scale l = 10−0.5 small
 highly varying function.

bottom left: same for l = 100

 smoother function

top right: same for l = 100.5

 even smoother...

bottom right: almost linear
function for l = 101.

x1

−4

−2

0

2

4

x2

−4

−2

0

2

4

−2
−1

0
1

2

length scale: 10^−0.5, sample no. 1

x1

−4

−2

0

2

4

x2

−4

−2

0

2

4

−1

0

1

2

length scale: 10^0, sample no. 1

x1

−4

−2

0

2

4

x2

−4

−2

0

2

4

−1.0
−0.5

0.0

0.5

1.0

length scale: 10^0.5, sample no. 1

x1

−4

−2

0

2

4

x2

−4

−2

0

2

4

−1.5
−1.0

−0.5

0.0

0.5

length scale: 10^1, sample no. 1

Volker Roth (University of Basel) Machine Learning 49 / 63

Model Selection (2)

How to select the parameters?
One possibility: maximize marginal likelihood:

p(y |X) =
∫

p(y |f ,X)p(f |X) df .

We do not need to integrate: we know that
f |X ∼ N (0,K) and y = f + η, η ∼ N (0, σ2).

Since η does not depend on X , the variances simply add:
y |X ∼ N (0,K + σ2I).

Possible strategy:
Select parameters on a grid and choose maximum.
Or: Compute derivatives of marginal likelihood and use gradient
descent.

Volker Roth (University of Basel) Machine Learning 50 / 63

Model Selection (3)

Example problem: y = sin(x)/x + η, η ∼ N (0, 0.01).
Log marg. likeli. = logN (0,K + σ2I) =

−1
2y t(K + σ2I)−1y︸ ︷︷ ︸

data fit

− 1
2 log |K + σ2I|︸ ︷︷ ︸
complexity penalty

− n
2 log(2π)︸ ︷︷ ︸

norm. constant

.

2d-Example with Gaussian RBF:

(K + σ2I) =
(

1 + σ2 a
a 1 + σ2

)
⇒ |K + σ2I| = (1 + σ2)2 − a2 > 0

Note that a→ 0 if length scale l → 0
 complexity penalty has high values for small length scales.
Matrix inverse includes a dominating factor |K + σ2I|−1

 data fit term also high for small l .

Volker Roth (University of Basel) Machine Learning 51 / 63

Model Selection (4)
Fixing σ2 = 0.01 and varying length scale l :

neg. complexity penalty
−

4
0

−
2

0
0

2
0

4
0

log(length scale), log(noise variance) = 0.01

lo
g

 l
ik

e
lih

o
o

d

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

marg. likelihood

data fit

Volker Roth (University of Basel) Machine Learning 52 / 63

Model Selection (5)
Fixing length scale l = 0.5 and varying the noise level σ2:

neg. complexity penalty
−

4
0

−
2

0
0

2
0

4
0

log(noise variance), log(length scale) = 0.5

lo
g

 l
ik

e
lih

o
o

d

−3 −2.6 −2.2 −1.8 −1.4 −1 −0.6 0 0.4 0.8

data fit

marg. likelihood

Volker Roth (University of Basel) Machine Learning 53 / 63

Model Selection (6)
Varying both σ2 and l :

−1.0 −0.5 0.0 0.5 1.0

−
3

−
2

−
1

0
1

log(length scale)

lo
g(

no
is

e
va

ria
nc

e)

Volker Roth (University of Basel) Machine Learning 54 / 63

Classification: Basket Ball Example

0 10 20 30 40

−
0.

5
0.

0
0.

5
1.

0
1.

5

distance

hi
t (

1)
 o

r
m

is
s

(0
)

logistic transfer function

linear activation

Adapted from Fig. 7.5.1 in (B. Flury)

Volker Roth (University of Basel) Machine Learning 55 / 63

Classical Logistic Regression

Targets y ∈ {0, 1}
 Bernoulli RV with “success probability” π(x) = P(1|x).
Likelihood: P(y |X , f) =

∏n
i=1 (πf (x i))yi (1− πf (x i))1−yi

Linear logistic regression: unbounded f (x) = w tx (“activation”)
Bounded estimates: pass f (x) through logistic transfer function
σ(f (x)) = ef (x)

1+ef (x) = 1
1+e−f (x) and set πf (x) = σ(f (x)).

Newton method for maximizing the log posterior
J(w) := log p(y |X ,w) + log p(w):

w (r+1) = w (r) − {E [H]}−1 ∂

∂w J(w)

Kernel trick: expand w = X tα, substitute dot products by kernel
function k(x, x ′) kernel logistic regression.

Volker Roth (University of Basel) Machine Learning 56 / 63

GP Classification

Place GP prior over “latent” function f (x) ∼ GP(0, k(x, x ′)).
“Squash” it through logistic function prior on π(x) = σ(f (x)).

(Rasmussen & Williams, 2006)

Problem: Bernoulli likelihood predictive distribution
p(y∗ = 1|X , y , x∗) cannot be calculated analytically.
Possible solution: use Laplace approximation.
Observation: MAP classification boundary is identical with boundary
obtained from kernel logistic regression.

Volker Roth (University of Basel) Machine Learning 57 / 63

GP Classification using Laplace’s approximation
Prior f |X ∼ N (0,K). Bernoulli likelihood:

p(y |X , f) =
n∏

i=1
(σ(f (x i)))yi (1− σ(f (x i)))1−yi .

Gaussian approximation of posterior:
p(f |X , y) ≈ N (f̂ ,H−1).

Predictions: compute
p(y∗ = 1|y , x∗,X) =

∫
σ(f∗)p (f∗ | y , x∗, X)︸ ︷︷ ︸

latent function at x∗

df∗ = Ep(f∗|y ,x∗,X)(σ).

...
*

x

f

y

*

*

n

x

f

n

y

f

y y

x x

1f

1

1 2

2

2

n

Volker Roth (University of Basel) Machine Learning 58 / 63

GP Classification using Laplace’s approximation

First predict latent function at test case x∗:

p(f∗|y , x∗,X) =
∫

p(f∗|f , x∗,X)︸ ︷︷ ︸
Gaussian

p(f |X , y)df︸ ︷︷ ︸
approx. Gaussian N (f̂ ,H−1)

≈ N (µ∗, σ∗), with
µ∗ = kt

∗K−1f̂ ,
σ∗ = k∗∗ − kt

∗K̃−1k∗
Then use Monte Carlo approximation

p(y∗|y , x∗,X) = Ep(f∗|y ,x∗,X)(σ) ≈ 1
S

S∑
s=1

σ(f s
∗ (x∗)),

where f s
∗ are samples from the (approximated) distribution over latent

function values.

Volker Roth (University of Basel) Machine Learning 59 / 63

GPs and Neural networks

Consider a neural network for regression (square
loss) with one hidden layer:

p(y |x,θ) = N (f (x; θ), σ2),

f (x) = b +
nH∑
j=1

vjg(x; uj). x

x

Σ

1

2

1
x

2
211

1

1
1

v g

x
u

u
 b

1g
t

(u x)

Bayesian treatment: i.i.d. prior assumptions over weights:
indep. zero-mean Gaussian priors for b and v , with variance σ2

b and σ2
v ,

and independent (arbitrary) priors for components of the weight vector uj
at the j-th hidden unit.

Volker Roth (University of Basel) Machine Learning 60 / 63

GPs and Neural networks

Mean and covariance:

m(x) = Eθ[f (x)] =
=0︷︸︸︷
E[b] +

nH∑
j=1

E[vjg(x; uj)]

(v indep. of u)=
nH∑
j=1

E[vj]︸ ︷︷ ︸
=0

E[g(x; uj)] = 0.

k(x, x ′) = Eθ[f (x)f (x ′)] = σ2
b +

nH∑
j=1

σ2
vEu[g(x; uj)g(x ′; uj)].

All hidden units are identically distributed
 the sum is over nH i.i.d. RVs. Assume activation g is bounded
 all moments of the distribution will be bounded
 central limit theorem applicable

Volker Roth (University of Basel) Machine Learning 61 / 63

GPs and Neural networks

Suppose {X1, . . . ,Xn} is a sequence of i.i.d. RVs with E[Xi] = µ and
Var[Xi] = σ2 <∞. Then

√
n (Sn − µ) d−→ N

(
0, σ2) as n→∞.

The covariance between any pair of function values (f (x), f (x ′))
converges to the covariance of two Gaussian RVs
 Joint distribution of n function values is multivariate Gaussian
 we get a GP as nH →∞.
For specific activations, the neural network covariance function
can be computed analytically (Williams 1998).
A three-layer network with and infinitely wide hidden layer can
be interpreted as a GP.

Volker Roth (University of Basel) Machine Learning 62 / 63

Summary

GPs: fully probabilistic models
 posterior p(f ∗|X , y , x∗).
Uniquely defined by specifying covariance function.
Mathematically simple:
we only need to calculate conditionals of Gaussians!
Connections:
regression: MAP(GPr) = kernel ridge reg.
classification: MAP(GPc) = kernel logistic reg.
GPc ≈ probabilistic version of SVM.

A three-layer network with an infinitely wide hidden layer can be
interpreted as a GP with the neural network covariance function.

Volker Roth (University of Basel) Machine Learning 63 / 63

	Support Vector Machines and Kernels
	Gaussian Processes: probabilistic kernel models

