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Section 9

Mixture Models
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Structure and mixtures

@ Assume that input examples come in different potentially
unobserved types (groups, clusters, etc.).

@ Assume that
@ there are m underlying types z=1,..., m;
@ each type z occurs with probability P(z);
© examples of type z distributed according to p(x|z).
@ According to this model, each observed x comes from a
mixture distribution:

Z P(z p(x|z = j,6))
R/—/
7
@ In many practical data analysis problems (such as probabilistic
clustering), we want to estimate such parametric models from
samples {x1,...,x,}. In paticular, we are often interested in finding
the types that have generated the examples.
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Mixture of Gaussians

A mixture of Gaussians model has the form
p(x|0) = ZWJ X|P’j7zj)7

where @ =71, ..., Ty 1y s Uy 21, - - -, 2 CONtains all the
parameters. {7;} are the mixing proportions.
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Mixture densities

o Data generation process:

P(2) R T

pidz=D)  plz=2) 7 gt
o °, 84

p(x|0) = ZWJPXIMJ, j)

j=1
@ Any data point x could have been generated in two ways.
~> the responsible component needs to be inferred.
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Mixtures as Latent Variable Models

@ In the model p(x|z = j, @) the class indicator variable z is latent.
This is an example of a large class of latent variable models (LVM).

@ Bayesian network (DAG) = graphical representation of the joint
distribution of RVs (nodes) as P(xi,...,x,) = [1/=1 P(xi|parents(x;))
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Mixture densities

o Consider a two component mixture of Gaussians model.

p(x|0) = m1p(x|py, T1) + m2p(x| 1, T2)
o If we knew the generating component z; = {1,2} for each example
x;, then the estimation would be easy.

P(z) SN .';:..:-."-'

plz=1) p(ade=2) 2 [agire
o o..g_,

@ In particular, we can estimate each Gaussian independently.
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Mixture density estimation

o Let §(j|i) be an indicator function of whether example i is labeled ;.
Then for each j =1,2

N n
Ao % where #; = 3 6(j|i)
i=1

. 1y
By 5 20Ul
M=
s 1 U o t
Y > 0N = py)(xi — 1)
Ji=1
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Mixture density estimation

o We don't have such labels... but we can guess what the labels might
be based on our current distribution.

@ One possible choice: evaluate posterior probability that an observed x
was generated from first component
P(z=1)p(xlz = 1)
Zj:1,2 P(z =J) - p(x|z =)
m1p(x|py, T1)
dj=1.2 WJP(X’NJ’ %))

P(z=1|x,0) =

~> Information about the component responsible for generating x.
o Soft labels or posterior probabilities
pUli) = P(zi = j|xi, ),
where 37,1, p(jli) =1, Vi=1,...,n
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The EM algorithm: iteration k

o E-step: softly assign examples to mixture components
pGli) < P(zi = j|x;,0%),Vj=1,2and i=1,...,n.
Note: superscript is time index.

o M-step: estimate new mixture parameters 87! based on the soft
assignments (can be done separately for the two Gaussians)

N
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A nj o Ny
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Ji=1
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The EM-algorithm: Convergence

The EM-algorithm monotonically increases the log-likelihood of the

training data (we will show this later). In other words,

1(6%) < I1(8Y) < 1(6%) < ...
1(6") =>"" logp(x;|6").

until convergence

log likelihood

J

0
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Mixture density estimation: example

Heration 1

.
Tee
‘e b *
4
Pe,
1
0
g
Horation 3

Volker Roth (University of Basel)

Machine Learning

12/56



Mixture density estimation: example
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Fig. 11.11 in K. Murphy
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EM example: Iris data
@ The famous (Fisher's or Anderson’s) iris data set gives the
measurements in centimeters of the variables sepal length and
width and petal length and width, respectively, for 50 flowers from
each of 3 species of iris.
@ The species are Iris setosa, versicolor, and virginica.
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Bayesian model selection for mixture models

As a simple strategy for selecting the appropriate number of mixture

components, we can find m that minimizes the overall description length
(cf. BIC):

DL ~ — log p(data|f,,) + dTm log(n)

@ n is the number of training points,

o 0, are the maximum likelihood parameters for the m-component
mixture, and

@ d,, is the number of parameters in the m-component mixture.
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Model selection example: Iris data, m = 2

Sepal.Length

Sepal.Width

Petal.Length

Petal. Width
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Model selection example: Iris data, m = 3

o
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Model selection example: Iris data, m = 4
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Model selection example: Iris data, m =5
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Model selection example: Iris data, BIC
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The EM-algorithm: Convergence

Step 0: specify the initial setting of the parameters 8 = 6°,
E-step: complete the incomplete data (missing z) with the posterior
probabilities (“soft labels")

P(Z:j‘xhet)?j:la“wm? i:]-’"'?n'

M-step: find the new setting of the parameters 81 by maximizing the
log-likelihood of the inferred (or “expected complete”) data

0t —argmax >3 P(z = jlxi, 07) loglpsp(xi[60))]
i=1 j=1

inferred (= expected complete) log-likelihood Q(6,6%)

The expected complete log-likelihood Q(8, 8%) is called
auxiliary objective.
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The EM-algorithm: Convergence

The EM-algorithm monotonically increases the log-likelihood of the

training data. In other words,
16°) < 1(6") < 1(6%) < ...
1(6") =>"" logp(x;|6").

until convergence

log likelihood

J

0
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Jensen’s inequality

Convex function: secant line above graph of the function
~» Jensen's inequality for two points.

Secant line consists of weighted means of the convex function.

For a € [0, 1]:
af(x1) + (1 — a)f(x2).

Graph: convex function of the weighted means:
flaxi+(1—a)x).

Thus, Jensen's inequality is
f(ax1+ (1 —a)x) < af(x1) + (1 — a)f(x2).

Probability theory: if X is a RV and ¢ a convex function, then
¢ (EIX]) < E[p(X)].

© convex ~» 1 := —( concave:

¥ (E[X]) > E[6(X)]. Example: log (E[X]) > E[log(X)] .
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Jensen’s inequality

A f(x)

af(xp)+(1-a)f(xy) f--oooooooooooo
flaxi+ (1-a)xy) |F----=

Y
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Non-negativity of KL divergence

~KL(p() () = [ p(x) Iog( ) o

(Jensen's inequality) < log ( p(x )

~ log ( / 4(x) dx>

=log(l) =0

This is also called Gibbs’ inequality.
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The EM-algorithm: Theoretical basis

Consider distribution g(z;) over latent assignment variables.
Log-likelihood:

= Zlog p(xi|0)
= ZlogZp xi,26)

p(xi,z|6)

‘Zng‘”' ON
_ZI p(x,,z,\@)

q(z)
(Jensen's inequality) > Z Z q(zi) log M
i—1 z q(zi)
=: Q(6, q).
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@ Lower bound
b p(xi, zi|0)
10) > Q(0,9) ==Y q(z)log =~
i=1 z q(z)
valid for any positive distribution g. Which one should we choose?
@ Intuition: pick the g that yields the tightest lower bound.
This will be the E-step.
o At time t, assume we have chosen g! based on current parameters 8°.
In the next M-step we maximize the

expected complete log-likelihood:
n
o't = 6,0") = Bl el
argmax Q(6,6") = arg meaxgl ot log p(x, 2i[6)
@ Last equation follows from

Q(60.9) = Eq logplxiz16) +3[ ~ Y ala)loga(z) |

i=1

Expected complete log-I

h(g;), independent of 6
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The E-step

Re-write lower bound as

0 q) = Z L(ea qi)7

with
p(xi, zi|0
L(eaql Zq Zj |Og ( )’ )
- Y og POt
q(z)

:Z«mm(ﬂgm+zmmmmwm

= —KL(q(z)| p(zi|xi, 0)) + log p(xi|6)
always >0, and =0, if g=p independent of g;

Volker Roth (University of Basel) 29 /56



The E step

For qf(z;) = p(zi|x;,0"), the KL divergence is zero, and L(6%, g;) is
maximized over all possible distributions g;:

4!(21) = p(ai|xi, %) = argmax L(6", ;) (~~ E-step)
L(6*, qf) = log p(xi|6")
Q(6%,8%) = _ log p(x;|6%) = 1(6")
~> lower bound “touches” the log-likelihood

~> after the E-step, the auxiliary objective equals the log-likelihood
~> lower bound is tight after the E-step.
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The E step

—Q(6.6)
----Q(00,,,)
=10 SO,

ete

t+1 et+2

Fig 11.16 in K. Murphy
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EM-algorithm: max-max and monotonicity

We can now rewrite the EM-algorithm in terms of two maximization steps
involving the auxiliary objective:

E-step: q' = argmaxq Q(0°, q)

M-step: 87! = arg maxy Q(0, 6?).

The monotonic increase of the log-likelihood now follows from

/(0t+1) > Q(0t+1,0t) > Q(0t70t) — /(et)

Q(0*1,e) is lower bound on /(0T1)

Second inequality: Q(8%*1,0%) = maxg Q(6,0%) > Q(6°, 8%).
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Conditional mixtures

Some regression or classification problems can be decomposed into
easier sub-problems.
o Examples:

» style in handwritten character recognition
» dialect/accent in speech recognition, etc.

Each sub-problem could be solved by a specific “expert”.

The selection of which expert to rely on now depends on the position
x in the input space. Mixtures of experts models.
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Experts (regression)

@ Suppose we have several regression “experts”
generating conditional Gaussian outputs

p(y|X,Z:J,0):N(y‘IBjX,O’J2) °
o §; ={B;,07}: Parameters of j-th expert. L

/
@ Need to find a way of allocating tasks to these 6
m

experts. >
@ Parameter vector 8 contains the means and e

variances of the m experts and the additional

parameters 1) of this allocation mechanism:
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Joint distribution

From the DAG we conclude:

p(y,z:j\x) = p(y‘(s,Z:j,X)P(Z:j”r],X)
= p(y|d;, x)P(z = jn, x)
= N(y|Bix,07)P(z = jn, x)

Thus, the overall prediction is

ply|x,0) = > ply,z=jlx,n,0)
F

@)

n = ZP(ZZJ'|X,TI)P()/|X76J)

J
= Z P(z = j|x, n)p(y|X7,3j7UJ?)-
J
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Mixtures of experts

Estimated experts and clusters Mixing probabilities

~ o S + 7
~ o4
~ e ++ @
A U
° 7 ! L TR 8
o AN e Lo |
AR Iﬁ* Ty g°
> L +£§§§fﬁ g
b gy Hﬁtﬁﬁa g3
+ A Z
P
T 4 B % + BN
j: +
T T T T T g A T T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -05 0.0 05 1.0
Here we need to switch from one linear regression model to another:

p(y|x,z=j,6)

N(y|Bjx,0?). The switch can be probabilistic

~~ probabilistic gating function P(z|x,n) (right).
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Gating network

@ A gating network specifies a distribution over m experts, conditionally
on the input x.

o Example: when there are just two experts the gating network can be
a logistic regression model

P(z =1|x,n) = o(n'x),
where o(z) = (1 + e=%)~1 is the logistic function.

o For m > 2, the gating network can be a softmax model

: exp(n;x)
P(z =jlx,n) = ’ ,
> j7—1 exp(n} x)
where n = {ny,...,n,,} are the parameters of the gating network.

@ Overall prediction
plylx,0) =3 p(y,z = jlx,n,8) = 3_; P(z = j|x,n)p(y|x, 6;).
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Estimated experts and clusters Estimated mean and experts
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A mixture of experts model: estimation

“Soft labels": Conditional probability that (x;,y;) came from expert j:

P(jli)

= P(z=j|xi,yi,0)

P(z = j|xi,n")plyilxi, (B}, 02))

>0y P(z = 'Ixi, n)p(yilxi, (B, 02))
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EM for mixtures of experts

E-step: compute soft labels P(j|/)

M-step: separately re-estimate the experts and the gating network based
on these soft assignments:

@ For each expert j: find (AJ-,&J-Z) that maximize
n
> P(li)log p(yilxi, (B, 07))
i=1
~> linear regression with weighted training set.
@ For the gating network: find 7) that maximize
n m
> P(li)log P(j|xi, m;)
i=1j=1
~ logistic regression with weighted training set.
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Real World Example

Global annual temperature anomalies (degrees C) computed using data
from land meteorological stations, 1880-2015. Anomalies are relative to

the 1951-1980 base period means.

Estimated experts and clusters

Estimated mean and experts
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Section 10

Linear latent variable models

o = = = ae
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Factor analysis
20

@ One problem with mixture models: only a
single latent variable. Each observation can

Ko
only come from one of K prototypes. HO\ Hzi
o Alternative: z; € R¥. Gaussian prior: TO\E I

p(27) = N (zil 120, To) vO—

X
N

o For observations x; € RP , we may use a Gaussian likelihood.
@ As in linear regression, we assume the mean is a linear function:
p(xilzi,0) = N(Wz; 4 p, V),
W: factor loading matrix, and W: covariance matrix.

o We take W to be diagonal, since the whole point of the model is to
“force” z; to explain the correlation.
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Factor analysis: generative process

Generative process (k = 1, p = 2, diagonal V):

p(z) p(x)

Figure 12.1 in K. Murphy

We take an isotropic Gaussian “spray can” and slide it along the 1d line
defined by wz; 4+ p. This induces a correlated Gaussian in 2d.
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Inference of the latent factors

@ We hope that the latent factors z will reveal something interesting
about the data ~~» compute posterior over the latent variables:

p(zi|x;,0) = N(zjm;,X)
Y = (It wivtw)tt
m; = T (W (x; — p) + 5" o)
@ The posterior means m; are called the
latent scores, or latent factors.
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Example

o Example from (Shalizi 2009). p = 11 variables and n = 387 cases
describing aspects of cars: engine size, #(cylinders), miles per gallon
(MPG), price, etc.

o Fit a p =2 dim model. Plot m; scores as points in R?.

@ To get a better understanding of the “meaning” of the latent factors,
project unit vectors e; = (1,0,...,0),e2 = (0,1,0,...,0), etc. into
the low dimensional space (blue lines)

@ Horizontal axis represents price, corresponding to the features labeled
“dealer” and “retail”, with expensive cars on the right. Vertical axis
represents fuel efficiency (measured in terms of MPG) versus size:
heavy vehicles are less efficient and are higher up, whereas light
vehicles are more efficient and are lower down.

o Verify by finding the closest exemplars in the training set.
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Example
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Figure 12.2 in K. Murphy
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Special Cases: PCA and CCA

o Covariance matrix W = o2/ ~ (probabilistic) PCA.

@ Two-view version involving x and y ~~ CCA.

Wx Wy

B, \

From figure 12.19 in K. Murphy
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PCA and dimensionality reduction

Given n data points in p dimensions:

X = _ € R"™P

— xn —

Want to reduce dimensionality from p to k. Choose k directions
w1, ..., Wy, arrange them as columns in matrix W':

W:[wl wy ... wk}eRpXk

For each wj, compute similarity z; = wix, j=1... k.
Project x down to z = (z1,...,2zx)" = W'x. How to choose W?
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Encoding—decoding model

The projection matrix W serves two functions:
o Encode: z = W'x, zeRX, z =wjx.
» The vectors w; form a basis of the projected space.
» We will require that this basis is orthonormal, i.e. WtW = /.
15 — _ Nk %
o Decode: X = Wz =3 i, zw;, xcRP.
» If k = p, the above orthonormality condition implies Wt = W1,
and encoding can be undone without loss of information.
> If k < p, we use the pseudo-inverse
~> the reconstruction error will be nonzero.
@ Above we assumed that the origin of the coordinate system is in the
sample mean, i.e. }°; x; = 0.
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Principal Component Analysis (PCA)

In the general case, we want the reconstruction error || x — X|| to be small.
Objective: minimize minycpoxk. wew—; >oreq | xi — WWtx;||?
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Finding the principal components

Projection vectors are orthogonal ~~ can treat them separately:

min 27—1 |x; — wwix;|?

w: ||w|=1
n
Z, [ x; — wwix;||> = Z[xfx; —2xiww'x; + xiww'ww'x;]
! i=1 -1

= Zi[xfx,- — xiww'x;]

n
= E xixp—w! E XiXjw
]
i=1

= E xixi— wiX Xw.
I

N———
const.
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Finding the principal components

e Want to maximize w*X*Xw under the constraint ||w| =1

- . L wiXtX
e Can also maximize the ratio J(w) = #2271
o Optimal projection u is the eigenvector of Xt X with largest

eigenvalue (compare handout on spectral matrix norm).
@ Note that we assumed that > ; x; = 0. Thus, the columns of X are
assumed to sum to zero.
~> compute SVD of “centered” matrix X
~ column vectors in W are eigenvectors of XtX
~> they are the principal components.
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Eigen-faces [Turk and Pentland, 1991]

@ p = number of pixels
o Each x; € RP is a face image
@ xji = intensity of the j-th pixel in image i
(Xt)pxn ~ Wk (Zt)kxn
| |
~ -— . ™ z1 ... Z

Idea: z; more 'meaningful’ representation of i-th face than x;
Can use z; for nearest-neighbor classification
Much faster when p > k.

Volker Roth (University of Basel) Machine Learning 54 /56



Probabilistic PCA

HZOO\ Zi
¥Y=0671 O\
N

o Assuming WV = 02/ and centered data in the FA model
~ likelihood

p(xi|zi, 0) = N(Wz;,o?]).
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Probabilistic PCA

o (Tipping & Bishop 1999): Maxima of the likelihood are given by
W = V(A - 620)2R,
where R is an arbitrary orthogonal matrix,

columns of V: first k eigenvectors of S = %XtX,

A: diagonal matrix of eigenvalues.
o As 02 — 0, we have W — V, as in classical PCA (for R = /\_%).
@ Projections z;: Posterior over the latent factors:

p(zi|xi,0) = N(zi|i;,o?F1)
Fo— oI+ W
m; = F-1 V\A/tx,-

For 02 — 0, z; — m; and m; — Vtx; ~ orthogonal projection of the
data onto the column space of V, as in classical PCA.
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