Machine Learning

Volker Roth

Department of Mathematics & Computer Science University of Basel

Э

Section 9

Mixture Models

Э

ヘロア 人間 アメヨア 人間 アー

Structure and mixtures

• Assume that input examples come in different potentially **unobserved types (groups, clusters, etc.).**

Assume that

- 1 there are *m* underlying types $z = 1, \ldots, m$;
- 2 each type z occurs with probability P(z);
- (a) examples of type z distributed according to $p(\mathbf{x}|z)$.
- According to this model, each observed x comes from a mixture distribution:

$$p(\mathbf{x}) = \sum_{j=1}^{m} \underbrace{P(z=j)}_{\pi_j} p(\mathbf{x}|z=j, \theta_j)$$

In many practical data analysis problems (such as probabilistic clustering), we want to estimate such parametric models from samples {x₁,..., x_n}. In paticular, we are often interested in finding the types that have generated the examples.

・ロット (雪) (日) (日) (日)

Mixture of Gaussians

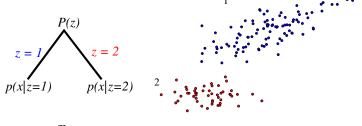
A mixture of Gaussians model has the form

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{j=1}^{m} \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j),$$

where $\theta = \pi_1, \dots, \pi_m, \mu_1, \dots, \mu_m, \Sigma_1, \dots, \Sigma_m$ contains all the parameters. $\{\pi_j\}$ are the **mixing proportions**.

Mixture densities

• Data generation process:



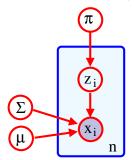
$$p(\mathbf{x}|\boldsymbol{ heta}) = \sum_{j=1}^{m} \pi_j p(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

Any data point x could have been generated in two ways.

 the responsible component needs to be inferred.

Mixtures as Latent Variable Models

- In the model p(x|z = j, θ) the class indicator variable z is latent. This is an example of a large class of latent variable models (LVM).
- Bayesian network (DAG) = graphical representation of the joint distribution of RVs (nodes) as P(x₁,...,x_n) = ∏ⁿ_{i=1} P(x_i|parents(x_i))



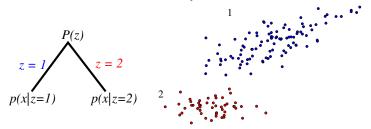
$$egin{aligned} p(\mathbf{x}_i|oldsymbol{ heta}) &= \sum_{z_i} p(oldsymbol{x}_i, z_i|oldsymbol{ heta}) \ &= \sum_{z_i} p(oldsymbol{x}_i|oldsymbol{\mu}, \Sigma, z_i) p(z_i|oldsymbol{\pi}). \end{aligned}$$

Mixture densities

• Consider a two component mixture of Gaussians model.

$$p(\mathbf{x}|\boldsymbol{\theta}) = \pi_1 p(\mathbf{x}|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + \pi_2 p(\mathbf{x}|\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$

• If we knew the generating component $z_i = \{1, 2\}$ for each example x_i , then the estimation would be easy.



• In particular, we can estimate each Gaussian independently.

Mixture density estimation

• Let $\delta(j|i)$ be an indicator function of whether example *i* is labeled *j*. Then for each j = 1, 2

$$\hat{\pi}_{j} \leftarrow \frac{\hat{n}_{j}}{n}, \text{ where } \hat{n}_{j} = \sum_{i=1}^{n} \delta(j|i)$$

$$\hat{\mu}_{j} \leftarrow \frac{1}{\hat{n}_{j}} \sum_{i=1}^{n} \delta(j|i) \mathbf{x}_{i}$$

$$\hat{\Sigma}_{j} \leftarrow \frac{1}{\hat{n}_{j}} \sum_{i=1}^{n} \delta(j|i) (\mathbf{x}_{i} - \mu_{j}) (\mathbf{x}_{i} - \mu_{j})^{t}$$

Mixture density estimation

- We don't have such labels... but we can guess what the labels might be based on our current distribution.
- One possible choice: evaluate posterior probability that an observed x was generated from first component

$$P(z = 1 | \boldsymbol{x}, \boldsymbol{\theta}) = \frac{P(z = 1) \cdot p(\boldsymbol{x} | z = 1)}{\sum_{j=1,2} P(z = j) \cdot p(\boldsymbol{x} | z = j)}$$
$$= \frac{\pi_1 p(\boldsymbol{x} | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)}{\sum_{j=1,2} \pi_j p(\boldsymbol{x} | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

 \rightsquigarrow Information about the component responsible for generating $\pmb{x}.$

• Soft labels or posterior probabilities

$$\hat{p}(j|i) \leftarrow P(z_i = j | \mathbf{x}_i, \boldsymbol{\theta}),$$

where $\sum_{j=1,2} \hat{p}(j|i) = 1, \forall i = 1, \dots, n.$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

The EM algorithm: iteration k

- E-step: softly assign examples to mixture components

 p̂(j|i) ← P(z_i = j|x_i, θ^t), ∀j = 1, 2 and i = 1,..., n.

 Note: superscript is time index.
- M-step: estimate new mixture parameters θ^{t+1} based on the soft assignments (can be done separately for the two Gaussians)

$$\hat{\pi}_{j} \leftarrow \frac{\hat{n}_{j}}{n}, \text{ where } \hat{n}_{j} = \sum_{i=1}^{n} \hat{p}(j|i)$$

$$\hat{\mu}_{j} \leftarrow \frac{1}{\hat{n}_{j}} \sum_{i=1}^{n} \hat{p}(j|i) \mathbf{x}_{i}$$

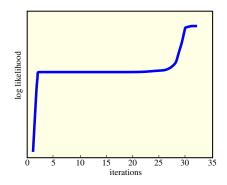
$$\hat{\Sigma}_{j} \leftarrow \frac{1}{\hat{n}_{j}} \sum_{i=1}^{n} \hat{p}(j|i) (\mathbf{x}_{i} - \mu_{j}) (\mathbf{x}_{i} - \mu_{j})^{t}$$

The EM-algorithm: Convergence

The EM-algorithm **monotonically increases the log-likelihood** of the training data (we will show this later). In other words,

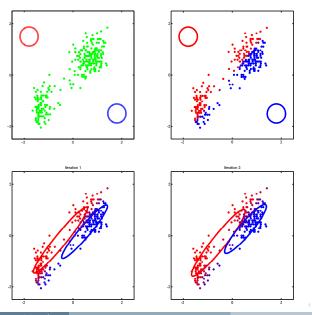
 $l(heta^0) < l(heta^1) < l(heta^2) < \dots$ until convergence

$$l(\boldsymbol{\theta}^t) = \sum_{i=1}^n \log p(\boldsymbol{x}_i | \boldsymbol{\theta}^t).$$



< ロ > < 同 > < 三 > < 三 >

Mixture density estimation: example



Volker Roth (University of Basel)

Mixture density estimation: example

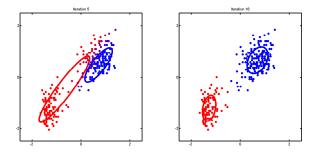
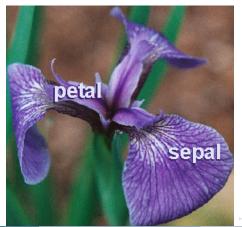


Fig. 11.11 in K. Murphy

EM example: Iris data

- The famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables **sepal length and** width and petal length and width, respectively, for 50 flowers from each of **3 species of iris**.
- The species are Iris setosa, versicolor, and virginica.



Volker Roth (University of Basel)

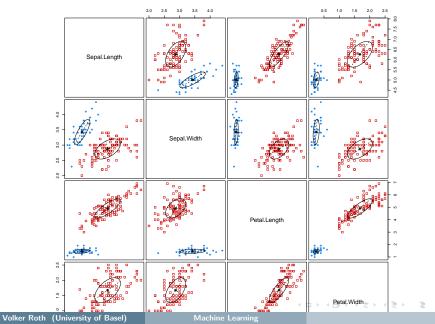
Bayesian model selection for mixture models

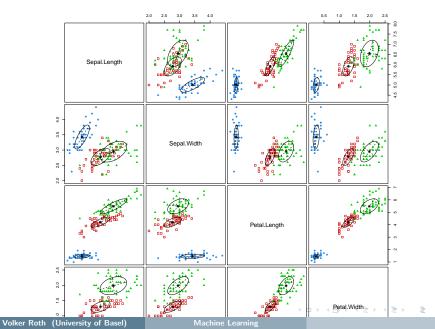
As a simple strategy for selecting the appropriate number of mixture components, we can find m that minimizes the overall description length (cf. BIC):

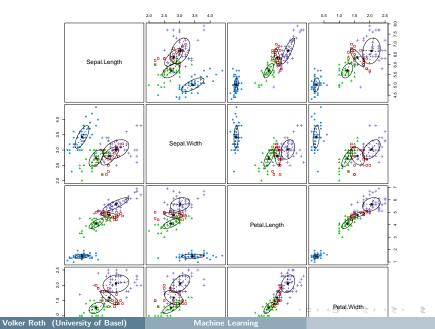
$$DL pprox - \log p(\mathsf{data}|\hat{oldsymbol{ heta}}_m) + rac{d_m}{n}\log(n)$$

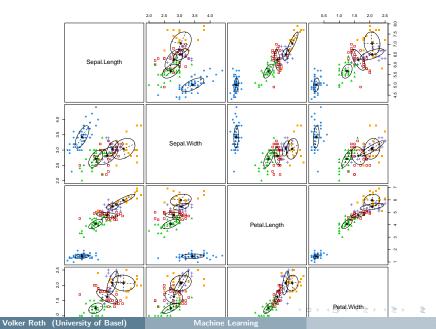
- *n* is the number of training points,
- $\hat{\boldsymbol{\theta}}_m$ are the maximum likelihood parameters for the m-component mixture, and
- *d_m* is the number of parameters in the *m*-component mixture.

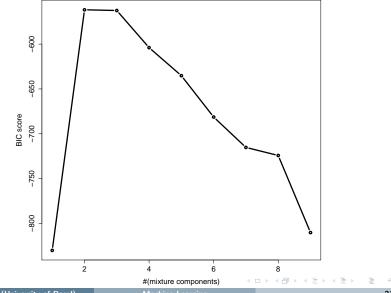
・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ











Volker Roth (University of Basel)

Machine Learning

The EM-algorithm: Convergence

Step 0: specify the initial setting of the parameters $\theta = \theta^0$. **E-step:** complete the incomplete data (missing z) with the posterior probabilities ("soft labels")

$$P(z=j|\mathbf{x}_i, \boldsymbol{\theta}^t), \ j=1,\ldots,m, \ i=1,\ldots,n.$$

M-step: find the new setting of the parameters θ^{t+1} by maximizing the log-likelihood of the inferred (or "expected complete") data

$$\boldsymbol{\theta}^{t+1} = \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \sum_{j=1}^{m} P(z=j|\boldsymbol{x}_i, \boldsymbol{\theta}^t) \log[p_j p(\boldsymbol{x}_i | \boldsymbol{\theta}_j)]$$
inferred (= expected complete) log-likelihood $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^t)$

The expected complete log-likelihood $Q(\theta, \theta^t)$ is called **auxiliary objective.**

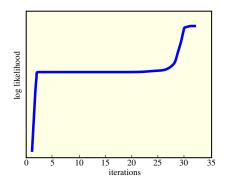
イロト 不得 トイヨト イヨト 二日

The EM-algorithm: Convergence

The EM-algorithm **monotonically increases the log-likelihood** of the training data. In other words,

 $l(heta^0) < l(heta^1) < l(heta^2) < \dots$ until convergence

$$l(\boldsymbol{\theta}^t) = \sum_{i=1}^n \log p(\boldsymbol{x}_i | \boldsymbol{\theta}^t).$$



イロト イポト イヨト イヨト

Jensen's inequality

- Convex function: secant line above graph of the function ~> Jensen's inequality for two points.
- Secant line consists of weighted means of the convex function. For $a \in [0, 1]$:

 $af(x_1) + (1-a)f(x_2).$

Graph: convex function of the weighted means:

 $f(ax_1+(1-a)x_2).$

• Thus, Jensen's inequality is

$$f(ax_1 + (1 - a)x_2) \leq af(x_1) + (1 - a)f(x_2).$$

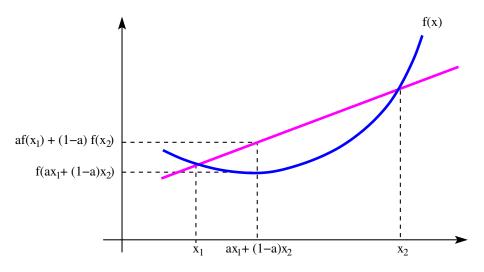
• Probability theory: if X is a RV and φ a convex function, then $\varphi(\mathsf{E}[X]) \leq \mathsf{E}[\varphi(X)].$

•
$$\varphi$$
 convex $\rightsquigarrow \psi := -\varphi$ concave:

 $\psi(\mathsf{E}[X]) \ge \mathsf{E}[\psi(X)]$. Example: $\log(\mathsf{E}[X]) \ge \mathsf{E}[\log(X)]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つくつ

Jensen's inequality



イロト イヨト イヨト

Non-negativity of KL divergence

$$-\mathbb{KL}(p(x)||q(x)) = \int p(x) \log\left(\frac{q(x)}{p(x)}\right) dx$$

(Jensen's inequality) $\leq \log\left(\int p(x)\frac{q(x)}{p(x)} dx\right)$
$$= \log\left(\int q(x) dx\right)$$
$$= \log(1) = 0$$

This is also called **Gibbs' inequality.**

The EM-algorithm: Theoretical basis

Consider distribution $q(z_i)$ over latent assignment variables. Log-likelihood:

$$\begin{split} l(\boldsymbol{\theta}) &= \sum_{i=1}^{n} \log p(\boldsymbol{x}_{i} | \boldsymbol{\theta}) \\ &= \sum_{i=1}^{n} \log \sum_{z_{i}} p(\boldsymbol{x}_{i}, z_{i} | \boldsymbol{\theta}) \\ &= \sum_{i=1}^{n} \log \sum_{z_{i}} q(z_{i}) \frac{p(\boldsymbol{x}_{i}, z_{i} | \boldsymbol{\theta})}{q(z_{i})} \\ &= \sum_{i=1}^{n} \log \mathbb{E}_{q_{i}} \frac{p(\boldsymbol{x}_{i}, z_{i} | \boldsymbol{\theta})}{q(z_{i})} \\ (\text{Jensen's inequality}) &\geq \sum_{i=1}^{n} \sum_{z_{i}} q(z_{i}) \log \frac{p(\boldsymbol{x}_{i}, z_{i} | \boldsymbol{\theta})}{q(z_{i})} \\ &=: Q(\boldsymbol{\theta}, q). \end{split}$$

Э

イロト イボト イヨト イヨト

Lower bound

$$I(\boldsymbol{ heta}) \geq Q(\boldsymbol{ heta},q) := \sum_{i=1}^n \sum_{z_i} q(z_i) \log rac{p(\boldsymbol{x}_i,z_i|\boldsymbol{ heta})}{q(z_i)}$$

valid for any positive distribution q. Which one should we choose?

- Intuition: pick the *q* that yields the tightest lower bound. This will be the E-step.
- At time t, assume we have chosen q^t based on current parameters θ^t.
 In the next M-step we maximize the expected complete log-likelihood:

$$oldsymbol{ heta}^{t+1} = rg\max_{oldsymbol{ heta}} Q(oldsymbol{ heta}, oldsymbol{ heta}^t) = rg\max_{oldsymbol{ heta}} \sum_{i=1}^n \mathbb{E}_{oldsymbol{q}_i^t} \log p(oldsymbol{x}_i, z_i | oldsymbol{ heta})$$

Last equation follows from

$$Q(\theta, q) = \underbrace{\sum_{i=1}^{n} \mathbb{E}_{q_i} \log p(\mathbf{x}_i, z_i | \theta)}_{\text{Expected complete log-l}} + \underbrace{\sum_{i=1}^{n} [\underbrace{-\sum_{z_i} q(z_i) \log q(z_i)}_{h(q_i), \text{ independent of } \theta}].$$

< ロ > < 同 > < 回 > < 回 >

The E-step

Re-write lower bound as

$$Q(\boldsymbol{ heta},q) = \sum_i L(\boldsymbol{ heta},q_i),$$

with

$$\begin{split} L(\theta, q_i) &= \sum_{z_i} q(z_i) \log \frac{p(\mathbf{x}_i, z_i | \theta)}{q(z_i)} \\ &= \sum_{z_i} q(z_i) \log \frac{p(z_i | \mathbf{x}_i, \theta) p(\mathbf{x}_i | \theta)}{q(z_i)} \\ &= \sum_{z_i} q(z_i) \log \frac{p(z_i | \mathbf{x}_i, \theta)}{q(z_i)} + \sum_{z_i} q(z_i) \log p(\mathbf{x}_i | \theta) \\ &= -\underbrace{\mathbb{KL}(q(z_i) || p(z_i | \mathbf{x}_i, \theta))}_{\text{always } \geq 0, \text{ and } = 0, \text{ if } q = p} + \underbrace{\log p(\mathbf{x}_i | \theta)}_{\text{independent of } q_i}. \end{split}$$

æ

ヘロア 人間 アメヨア 人間 アー

The E step

For $q_i^t(z_i) = p(z_i | \mathbf{x}_i, \boldsymbol{\theta}^t)$, the KL divergence is zero, and $L(\boldsymbol{\theta}^t, q_i)$ is maximized over all possible distributions q_i :

$$q_i^t(z_i) = p(z_i | \mathbf{x}_i, \theta^t) = \arg \max_{q_i} L(\theta^t, q_i) \quad (\rightsquigarrow \text{ E-step})$$
$$L(\theta^t, q_i^t) = \log p(\mathbf{x}_i | \theta^t)$$
$$Q(\theta^t, \theta^t) = \sum_i \log p(\mathbf{x}_i | \theta^t) = l(\theta^t)$$

 \rightsquigarrow lower bound "touches" the log-likelihood

 \rightsquigarrow after the E-step, the auxiliary objective equals the log-likelihood \rightsquigarrow lower bound is tight after the E-step.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The E step

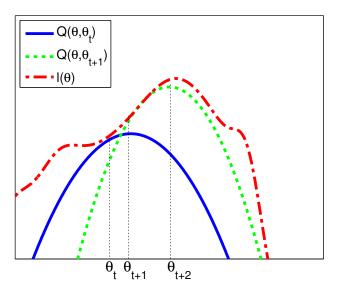


Fig 11.16 in K. Murphy

EM-algorithm: max-max and monotonicity

We can now rewrite the EM-algorithm in terms of two maximization steps involving the auxiliary objective:

E-step:
$$q^t = \arg \max_{q} Q(\theta^t, q)$$

M-step: $\theta^{t+1} = \arg \max_{\theta} Q(\theta, \theta^t)$.

The monotonic increase of the log-likelihood now follows from

$$\underbrace{l(\boldsymbol{\theta}^{t+1}) \geq Q(\boldsymbol{\theta}^{t+1}, \boldsymbol{\theta}^t)}_{Q(\boldsymbol{\theta}^{t+1}, \boldsymbol{\theta}) \text{ is lower bound on } l(\boldsymbol{\theta}^{t+1})} \geq Q(\boldsymbol{\theta}^t, \boldsymbol{\theta}^t) = l(\boldsymbol{\theta}^t).$$

Second inequality: $Q(\theta^{t+1}, \theta^t) = \max_{\theta} Q(\theta, \theta^t) \ge Q(\theta^t, \theta^t).$

イロト イポト イヨト イヨト 三日

Conditional mixtures

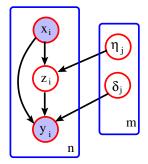
- Some regression or classification problems can be decomposed into easier sub-problems.
- Examples:
 - style in handwritten character recognition
 - dialect/accent in speech recognition, etc.
- Each sub-problem could be solved by a specific "expert".
- The selection of which expert to rely on now depends on the position *x* in the input space. Mixtures of experts models.

Experts (regression)

 Suppose we have several regression "experts" generating conditional Gaussian outputs

$$p(y|\mathbf{x}, z = j, \boldsymbol{\theta}) = \mathcal{N}(y|\beta_j^t \mathbf{x}, \sigma_j^2)$$

- Need to find a way of allocating tasks to these experts.
- Parameter vector θ contains the means and variances of the *m* experts and the additional parameters η of this allocation mechanism: $\theta = \{\delta_j, \eta_j\}_{j=1}^m$.



Joint distribution

From the DAG we conclude:

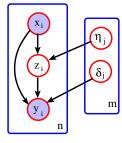
$$p(y, z = j | \mathbf{x}) = p(y | \boldsymbol{\delta}, z = j, \mathbf{x}) P(z = j | \boldsymbol{\eta}, \mathbf{x})$$
$$= p(y | \boldsymbol{\delta}_j, \mathbf{x}) P(z = j | \boldsymbol{\eta}, \mathbf{x})$$
$$= \mathcal{N}(y | \boldsymbol{\beta}_j^{\dagger} \mathbf{x}, \sigma_j^2) P(z = j | \boldsymbol{\eta}, \mathbf{x})$$

Thus, the overall prediction is

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \sum_{j} p(y, z = j | \mathbf{x}, \boldsymbol{\eta}, \boldsymbol{\delta})$$

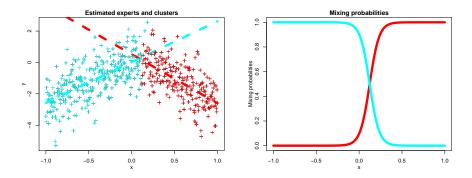
=
$$\sum_{j} P(z = j | \mathbf{x}, \boldsymbol{\eta}) p(y|\mathbf{x}, \boldsymbol{\delta}_{j})$$

=
$$\sum_{j} P(z = j | \mathbf{x}, \boldsymbol{\eta}) p(y|\mathbf{x}, \boldsymbol{\beta}_{j}, \sigma_{j}^{2}).$$



→ < ∃→

Mixtures of experts



Here we need to switch from one linear regression model to another: $p(y|\mathbf{x}, z = j, \theta) = \mathcal{N}(y|\beta_j^t \mathbf{x}, \sigma_j^2)$. The switch can be probabilistic \rightarrow probabilistic gating function $P(z|\mathbf{x}, \eta)$ (right).

< ロ > < 同 > < 三 > < 三 >

Gating network

- A gating network specifies a distribution over *m* experts, conditionally on the input *x*.
- Example: when there are just two experts the gating network can be a logistic regression model

$$P(z=1|\boldsymbol{x},\boldsymbol{\eta})=\sigma(\boldsymbol{\eta}^{t}\boldsymbol{x}),$$

where $\sigma(z) = (1 + e^{-z})^{-1}$ is the logistic function.

• For m > 2, the gating network can be a softmax model

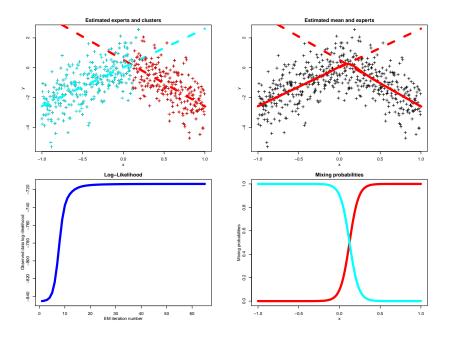
$$P(z=j|\mathbf{x},\boldsymbol{\eta}) = \frac{\exp(\boldsymbol{\eta}_j^t \mathbf{x})}{\sum_{j'=1}^m \exp(\boldsymbol{\eta}_j^t \mathbf{x})},$$

where $oldsymbol{\eta} = \{oldsymbol{\eta}_1, \dots, oldsymbol{\eta}_m\}$ are the parameters of the gating network.

Overall prediction

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \sum_{j} p(y, z = j | \mathbf{x}, \boldsymbol{\eta}, \boldsymbol{\delta}) = \sum_{j} P(z = j | \mathbf{x}, \boldsymbol{\eta}) p(y|\mathbf{x}, \boldsymbol{\delta}_j).$$

イロト 不得 トイヨト イヨト 二日



Volker Roth (University of Basel)

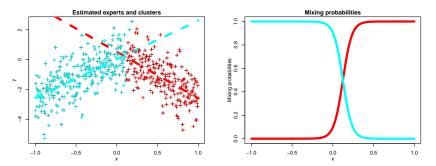
38 / 56

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

A mixture of experts model: estimation

"Soft labels": Conditional probability that (\mathbf{x}_i, y_i) came from expert *j*:

$$\hat{P}(j|i) = P(z = j | \mathbf{x}_i, y_i, \boldsymbol{\theta})
= \frac{P(z = j | \mathbf{x}_i, \boldsymbol{\eta}^t) p(y_i | \mathbf{x}_i, (\boldsymbol{\beta}_j, \sigma_j^2))}{\sum_{j'=1}^m P(z = j' | \mathbf{x}_i, \boldsymbol{\eta}^t) p(y_i | \mathbf{x}_i, (\boldsymbol{\beta}_{j'}, \sigma_{j'}^2))}$$



イロト イポト イヨト イヨト

EM for mixtures of experts

E-step: compute soft labels $\hat{P}(j|i)$

M-step: separately re-estimate the experts and the gating network based on these soft assignments:

• For each expert *j*: find $(\hat{\beta}_j, \hat{\sigma}_j^2)$ that maximize

$$\sum_{i=1}^{n} \hat{P}(j|i) \log p(y_i|\boldsymbol{x}_i, (\boldsymbol{\beta}_j, \sigma_j^2))$$

 \rightsquigarrow linear regression with weighted training set.

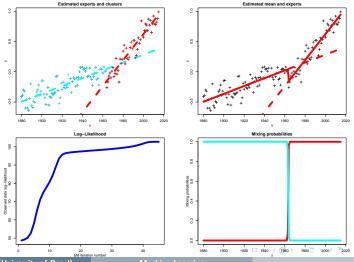
② For the gating network: find $\hat{\eta}$ that maximize

$$\sum_{i=1}^{n}\sum_{j=1}^{m}\hat{P}(j|i)\log P(j|\boldsymbol{x}_{i},\boldsymbol{\eta}_{j})$$

 \rightsquigarrow logistic regression with weighted training set.

Real World Example

Global annual temperature anomalies (degrees C) computed using data from land meteorological stations, 1880-2015. Anomalies are relative to the 1951-1980 base period means.



Volker Roth (University of Basel)

Machine Learning

Section 10

Linear latent variable models

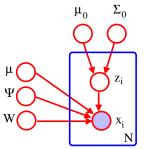
Э

イロト イボト イヨト イヨト

Factor analysis

- One problem with mixture models: **only a single latent variable**. Each observation can only come from one of *K* prototypes.
- Alternative: $z_i \in \mathbb{R}^k$. Gaussian prior:

 $p(\boldsymbol{z}_i) = \mathcal{N}(\boldsymbol{z}_i | \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$



<ロト <部ト <注ト <注ト = 正

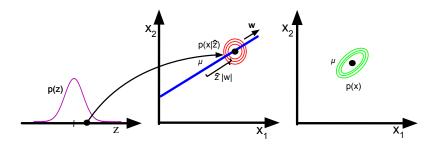
- For observations $x_i \in \mathbb{R}^p$, we may use a **Gaussian likelihood.**
- As in linear regression, we assume the mean is a **linear** function: $p(\mathbf{x}_i | \mathbf{z}_i, \boldsymbol{\theta}) = \mathcal{N}(W \mathbf{z}_i + \boldsymbol{\mu}, \Psi),$

W: factor loading matrix, and Ψ : covariance matrix.

• We take Ψ to be **diagonal**, since the whole point of the model is to "force" z_i to **explain the correlation.**

Factor analysis: generative process

Generative process (k = 1, p = 2, diagonal Ψ):



We take an isotropic Gaussian "spray can" and slide it along the 1d line defined by $wz_i + \mu$. This induces a correlated Gaussian in 2d.

Inference of the latent factors

 We hope that the latent factors z will reveal something interesting about the data → compute posterior over the latent variables:

$$p(\mathbf{z}_i | \mathbf{x}_i, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{z}_i | \mathbf{m}_i, \boldsymbol{\Sigma})$$

$$\boldsymbol{\Sigma} = (\boldsymbol{\Sigma}_0^{-1} + W^t \Psi^{-1} W)^{-1}$$

$$\mathbf{m}_i = \boldsymbol{\Sigma}_i (W^t \Psi^{-1} (\mathbf{x}_i - \boldsymbol{\mu}) + \boldsymbol{\Sigma}_0^{-1} \boldsymbol{\mu}_0)$$

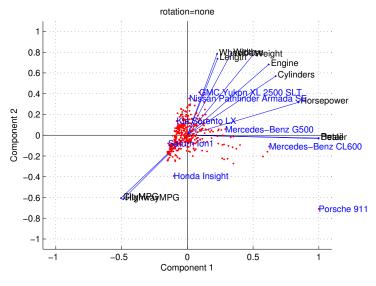
• The posterior means *m_i* are called the latent scores, or latent factors.

Example

- Example from (Shalizi 2009). p = 11 variables and n = 387 cases describing aspects of cars: engine size, #(cylinders), miles per gallon (MPG), price, etc.
- Fit a p = 2 dim model. Plot m_i scores as points in \mathbb{R}^2 .
- To get a better understanding of the "meaning" of the latent factors, project unit vectors $e_1 = (1, 0, ..., 0), e_2 = (0, 1, 0, ..., 0)$, etc. into the low dimensional space (blue lines)
- Horizontal axis represents price, corresponding to the features labeled "dealer" and "retail", with expensive cars on the right. Vertical axis represents fuel efficiency (measured in terms of MPG) versus size: heavy vehicles are less efficient and are higher up, whereas light vehicles are more efficient and are lower down.
- Verify by finding the closest exemplars in the training set.

イロト イポト イヨト イヨト 三日

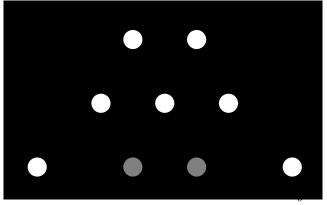
Example



イロト イポト イヨト イヨト

Special Cases: PCA and CCA

- Covariance matrix $\Psi = \sigma^2 I \rightsquigarrow$ (probabilistic) **PCA**.
- Two-view version involving x and $y \rightsquigarrow CCA$.



From figure 12.19 in K. Murphy

PCA and dimensionality reduction

Given n data points in p dimensions:

$$X = \begin{bmatrix} - & \mathbf{x}_1 & - \\ - & \mathbf{x}_2 & - \\ - & \vdots & - \\ - & \mathbf{x}_n & - \end{bmatrix} \in \mathbb{R}^{n \times p}$$

Want to reduce dimensionality from p to k. Choose k directions w_1, \ldots, w_k , arrange them as columns in matrix W:

$$W = \begin{bmatrix} w_1 & w_2 & \dots & w_k \end{bmatrix} \in \mathbb{R}^{p \times k}$$

For each \boldsymbol{w}_j , compute **similarity** $z_j = \boldsymbol{w}_j^t \boldsymbol{x}, \ j = 1 \dots k$. Project \boldsymbol{x} down to $\boldsymbol{z} = (z_1, \dots, z_k)^t = W^t \boldsymbol{x}$. How to choose W?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Encoding-decoding model

The projection matrix W serves two functions:

- Encode: $\boldsymbol{z} = W^t \boldsymbol{x}, \ \boldsymbol{z} \in \mathbb{R}^k, \ \boldsymbol{z}_j = \boldsymbol{w}_j^t \boldsymbol{x}.$
 - The vectors \boldsymbol{w}_j form a basis of the projected space.
 - We will require that this basis is orthonormal, i.e. $W^t W = I$.

• **Decode:**
$$\tilde{\mathbf{x}} = W\mathbf{z} = \sum_{j=1}^{k} z_j \mathbf{w}_j, \ \tilde{\mathbf{x}} \in \mathbb{R}^p.$$

- If k = p, the above orthonormality condition implies W^t = W⁻¹, and encoding can be undone without loss of information.
- Above we assumed that the origin of the coordinate system is in the sample mean, i.e. $\sum_{i} \mathbf{x}_{i} = 0$.

イロト イポト イヨト イヨト 三日

Principal Component Analysis (PCA)

In the general case, we want the reconstruction error $\|\mathbf{x} - \tilde{\mathbf{x}}\|$ to be small. Objective: minimize $\min_{W \in \mathbb{R}^{p \times k}: W^t W = I} \sum_{i=1}^{n} \|\mathbf{x}_i - WW^t \mathbf{x}_i\|^2$

イロト イヨト イヨト イヨト

Finding the principal components

Projection vectors are orthogonal \rightsquigarrow can treat them separately:

$$\min_{\boldsymbol{w}: \|\boldsymbol{w}\|=1} \sum_{i=1}^{n} \|\boldsymbol{x}_{i} - \boldsymbol{w}\boldsymbol{w}^{t}\boldsymbol{x}_{i}\|^{2}$$

$$\sum_{i} \|\boldsymbol{x}_{i} - \boldsymbol{w}\boldsymbol{w}^{t}\boldsymbol{x}_{i}\|^{2} = \sum_{i=1}^{n} [\boldsymbol{x}_{i}^{t}\boldsymbol{x}_{i} - 2\boldsymbol{x}_{i}^{t}\boldsymbol{w}\boldsymbol{w}^{t}\boldsymbol{x}_{i} + \boldsymbol{x}_{i}^{t}\boldsymbol{w}\underbrace{\boldsymbol{w}^{t}\boldsymbol{w}^{t}\boldsymbol{w}^{t}\boldsymbol{w}^{t}}_{=1}]$$

$$= \sum_{i} [\boldsymbol{x}_{i}^{t}\boldsymbol{x}_{i} - \boldsymbol{x}_{i}^{t}\boldsymbol{w}\boldsymbol{w}^{t}\boldsymbol{x}_{i}]$$

$$= \sum_{i} \boldsymbol{x}_{i}^{t}\boldsymbol{x}_{i} - \boldsymbol{w}^{t}\sum_{i=1}^{n} \boldsymbol{x}_{i}\boldsymbol{x}_{i}^{t}\boldsymbol{w}$$

$$= \sum_{i} \boldsymbol{x}_{i}^{t}\boldsymbol{x}_{i} - \boldsymbol{w}^{t}\boldsymbol{X}^{t}\boldsymbol{X}\boldsymbol{w}.$$
const.

・ 同 ト ・ ヨ ト ・ ヨ ト

Finding the principal components

- Want to maximize $\boldsymbol{w}^t X^t X \boldsymbol{w}$ under the constraint $\|\boldsymbol{w}\| = 1$
- Can also maximize the ratio $J(w) = \frac{w^t X^t X w}{w^t w}$.
- Optimal projection *u* is the eigenvector of *X*^{*t*}*X* with largest eigenvalue (compare handout on spectral matrix norm).
- Note that we assumed that $\sum_{i} x_{i} = 0$. Thus, the columns of X are assumed to sum to zero.
 - \rightsquigarrow compute SVD of "centered" matrix X
 - \rightsquigarrow column vectors in W are eigenvectors of $X^t X$
 - \rightsquigarrow they are the principal components.

イロト イポト イヨト イヨト 三日

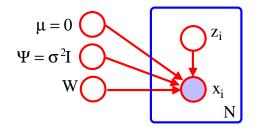
Eigen-faces [Turk and Pentland, 1991]

- *p* = number of pixels
- Each $\boldsymbol{x}_i \in \mathbb{R}^p$ is a face image
- x_{ji} = intensity of the *j*-th pixel in image *i* $(X^t)_{p \times n} \approx W_{p \times k}$

Idea: z_i more 'meaningful' representation of *i*-th face than x_i Can use z_i for nearest-neighbor classification Much faster when $p \gg k$.

 $(Z^{t})_{k \times n}$

Probabilistic PCA



• Assuming $\Psi = \sigma^2 I$ and centered data in the FA model \rightsquigarrow likelihood

$$p(\mathbf{x}_i | \mathbf{z}_i, \boldsymbol{\theta}) = \mathcal{N}(W \mathbf{z}_i, \sigma^2 I).$$

Э

イロト イボト イヨト イヨト

Probabilistic PCA

• (Tipping & Bishop 1999): Maxima of the likelihood are given by $\hat{W} = V(\Lambda - \sigma^2 I)^{\frac{1}{2}}R,$

where *R* is an arbitrary orthogonal matrix, columns of *V*: first *k* eigenvectors of $S = \frac{1}{n}X^{t}X$, Λ : diagonal matrix of eigenvalues.

• As
$$\sigma^2 \to 0$$
, we have $\hat{W} \to V$, as in classical PCA (for $R = \Lambda^{-\frac{1}{2}}$).

• Projections z_i: Posterior over the latent factors:

$$p(\boldsymbol{z}_i | \boldsymbol{x}_i, \hat{\boldsymbol{\theta}}) = \mathcal{N}(\boldsymbol{z}_i | \hat{\boldsymbol{m}}_i, \sigma^2 \hat{F}^{-1})$$
$$\hat{F} = \sigma^2 I + \hat{W}^t \hat{W}$$
$$\boldsymbol{m}_i = \hat{F}^{-1} \hat{W}^t \boldsymbol{x}_i$$

For $\sigma^2 \rightarrow 0$, $z_i \rightarrow m_i$ and $m_i \rightarrow V^t x_i \rightsquigarrow$ orthogonal projection of the data onto the column space of V, as in classical PCA.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト ・ ヨ