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Section 11

Non-linear latent variable models
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Non-linear latent variable models

Latent variable z ~~ Gaussian likelihood with
nonlinearly transformed mean

p=1f(z, ). (z3)
Prior and likelihood:
A
p(z) = N(0.)) (%)
p(xlz, $) = N(F(z,).0I). n
@ Given observed x, we want to understand what possible values of the
hidden variable z were responsible for it:

_ p(x|2)p(2)
p(Z|X) - ,D(X) :

@ No closed form expression available. Cannot evaluate denominator
p(x) and so we can't even compute the numerical value of the
posterior for a given pair z and x.
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Sampling

KO

n

@ ...but it is easy to generate a new sample x* using sampling:
» Draw z* from the prior p(z), pass this through f(z*, ¢)

~» mean of likelihood p(x*|z*),

» then draw x* from this distribution.

@ Prior and likelihood are normal distributions ~~ sampling is easy.
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Evaluating marginal likelihood (evidence)
p(x|#) = [ plx. zi¢)dz
= [ pxiz. @)p(2)dz
= / N(f[z, ¢],a%1) - N(O, 1) dz.

No closed form for this integral ~~ lower bound (Jensen's inequality):
oglp(x|6)] = log | [ plx.z|6)dz]

> [ q(z)og [”(’;(j')"”] dz,

Known as the evidence lower bound ELBO, because p(x|¢) is the evidence
(= marginal likelihood) in the context of Bayes' rule.
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ELBO

In practice, the distribution g(z) will have some parameters 6:
p(x, z|$)
ELBO[6, ¢] /q(z|9)log { 4(210) } dz.

@ To learn the non-linear latent variable model, we'll maximize this

quantity as a function of both ¢ and 6.
o We will see: the maximum is obtained (theoretically) if the variational

distribution is the true posterior, q(z|0) = p(z|x, ¢).
@ In practice, we maximize ELBO over some tractable family of
distributions g(z|x, @) to obtain an approximation of the intractable
posterior.

@ The neural architecture that computes this is the
variational autoencoder.
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Tightness of ELBO

ELBO[H,(;S]:/ q(2|6) log {p(’z’ﬂg‘f)}dz

_/ (z]0) Iog[ p(zlx. ('Z)o)(xkb)] dz

B plzlx. )
— [ atzlo)ioglp(xl¢)] dz + [ a(zio)iog | e | oz
—toglp(x(6)] + [ a(zl6)tog | P71V 2

— loglp(x|)] — Dxt [4(210) p(2x, #)].

ELBO is the log marginal likelihood minus Dy [q(z]0)| p(z|x, ¢)].
Dkr zero when q(z|0) = p(z|x, ¢) ~ ELBO = log[p(x|¢)].
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ELBO as reconstruction loss minus KL to prior

ELBOI6, ¢] = /q(z|9) log {’W} dz

_/ z|0)|og{ x|z( Te))( )} dz

— [ atzio)toglp(xiz. ) dz + [ atzlo)iog | £ oz

. / q(210) log [p(x|z, ¢)] dz — Dyr[q(2]6), p(2)]

o First term measures the average agreement p(x|z, ¢») of the hidden
variable and the data (reconstruction loss)

@ Second one measures the degree to which the auxiliary distribution
q(z,0) matches the prior.
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The variational approximation

e ELBO is tight when we choose q(z|0) = p(z|x, ¢).

@ Intractable ~~ variational approximation: choose simple parametric

form for g(z|@), use it as an approximation to the true posterior.
o Choose a normal distribution with parameters g and ¥ = o2/.

@ Optimization ~~ find normal distribution closest to true posterior
p(z|x). Corresponds to minimizing the KL divergence.

@ True posterior p(z|x) depends on x
~~ variational approximation should also depend on x:

q(216,x) = N(gu[x|6], g,2(x6]),

where g[x, 0] is a neural network with parameters 6.
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The variational autoencoder
Recall
ELBOIB. ¢] = | q(z[x,0)l0g [p(x|z, #)] dz — Dicla(z|x. 6). p(2)]

Involves an intractable integral, but it is an expectation
~~ approximate with samples:

z|x 9)[|Og [p(X|Z ¢ Zbg [P X|Zna¢)]

where z* is the n-th sample from g(z|x, 8). Limit: use a single sample:
ELBO[#, ¢] ~ log[p(x|z", ¢)] — Dkila(z|x,0), p(2)]

The second term is just the KL divergence between two Gaussians and is
available in closed form.
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The reparameterization trick
Recall: Want to sample from

q(z|0,x) = N(gy[x|6], g,2[x|6]),
To let PyTorch / Tensorflow perform automatic differentiation via
backpropagation, we must avoid the sampling step.
Simple solution: draw a sample & ~ N(0, /) and use

=g, + ot/2¢.

Now “the gradient can flow through the network”™ Encoder network:
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VAE

e Finally, minimize negative expectation of ELBO over p(x):
r(g,iﬂn _Ep(x) Eq(z|x,0) [lOg [p(X‘Z, ¢)]] + Ep(x)DKL[q(z|X7 0)7 p(Z)]
@ The first term is approximated as

1 n
Ep(x)Eq(z|x.0)llog [P(x|Z, @)]] = - > log[p(xilz}, )]
=1

We assume p(x;|z}F, ) = N (fs(z}), 0?),
where f is implemented via a neutral net: ~~ Decoder network

loss (least squares)

loss (least squares)
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Further Variations

o For maximizing ELBO, we jointly optimize over the parameters of
encoder and decoder network.

@ When adjusting the decoder, we also change the “true” posterior that
we are going to approximate!

@ So approximation quality should not be our only goal...
need “tuning knob" for steering the model into a desired direction.

@ Solution: introduce parameter $ > 0 that controls the relative
importance of the two loss terms:

m|n ;ZDKL[q ZIX,, ) Z)]— Z'Og[P x,\z,, )]
i=1
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Applications: MNIST example
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Taken from Louis Tiago: A Tutorial on Variational Autoencoders with a Concise Keras Implementation
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Applications: Medical example
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Berchuck, S.I., Mukherjee, S. & Medeiros, F.A. Estimating Rates of Progression and Predicting Future Visual Fields in

Glaucoma Using a Deep Variational Autoencoder. Sci Rep 9, 18113 (2019). https://doi.org/10.1038/s41598-019-54653-6
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Multiple Views: Deep Information Bottleneck

@ Consider paired samples from different views.
@ What is the dependency structure between the views 7

@ Nonlinear model: dependency detected by deep IB.
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Two-view version: The deep information bottleneck

@ So far we argued that since the true posterior p(z|x) depends on x,
the variational approximation should also depend on x.

o Restricted setting: explain posterior only by external variable X:
q= q(Z|0, )N()
ELBOIO, ¢] = /q(z|)”(, 0)log [p(x|z, ¢)] dz — Dki[q(z|%,0), p(2)]

= Eq(zj,6) log [p(x|z, )] — Dkilq(z|%, 0), p(2)]
@ Connection to IB:
» Assume (or define) g(z|%,0) := p(z|%,0)
> Take expectation w.r.t. joint data distribution p(%, x):
Ep(x.x) En(z1%.0) 108 [P(X|2, @)] — Epx)Drelp(2]%, ), p(2)]
> First term < Zg 4(z; x) + const. Second term = Zy(X; z),
o This defines the deep information bottleneck (with weight /)

r(rﬁ]ig To(%;z) — BI&?‘g(z; x), where 7" is a lower bound of Z.

)
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Applications: Face images
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Keller et al. 2020: Learning Extremal Representations with Deep Archetypal Analysis
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Applications: Face images

ba Archetype 3: SURPRISE Archetype 3 Archetype 2

as -
SRR

-0.25

155 O oal

]
= % 000
4 4 5 =3 x
' =
2
2 025
@
£
)
€
£ 050
075 \ A /
JAFFE data set N4 S
4 happiness “ /
® sadness \A
1.00 4 surprise ¥
o anger
e disgust Archetype 1

0.75 -0.50 0.25 0.00 0.25 0.50 0.75
latent dimension, y-axis

Keller et al. 2020: Learning Extremal Representations with Deep Archetypal Analysis
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Applications: Deep Chemical Variational Autoencoders
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(Gomez-Bombarelli et al., ACS Cent Sci, 2018)
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