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Chapter 11: Neural Encoder-Decoder Models
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Figure 16.1 in the supplement of K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT Press, 2023. High level

structure of the encoder-decoder transformer architecture. https://jalammar.github.io/illustrated-transformer/
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Non-linear latent variable models

Latent variable z ~~ Gaussian likelihood with
nonlinearly transformed mean

p=1f(z, ). (z3)
Prior and likelihood:
A
p(z) = N(0.)) (%)
p(xlz, $) = N(F(z,).0I). n
@ Given observed x, we want to understand what possible values of the
hidden variable z were responsible for it:

_ p(x|2)p(2)
p(Z|X) - ,D(X) :

@ No closed form expression available. Cannot evaluate denominator
p(x) and so we can't even compute the numerical value of the
posterior for a given pair z and x.
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Sampling

KO

n

@ ...but it is easy to generate a new sample x* using sampling:
» Draw z* from the prior p(z), pass this through f(z*, ¢)

~» mean of likelihood p(x*|z*),

» then draw x* from this distribution.

@ Prior and likelihood are normal distributions ~~ sampling is easy.

Volker Roth (University of Basel)

4/50



Evaluating marginal likelihood (evidence)
p(x|#) = [ plx. zi¢)dz
= [ pxiz. @)p(2)dz
= / N(f[z, ¢],a%1) - N(O, 1) dz.

No closed form for this integral ~~ lower bound (Jensen's inequality):
oglp(x|6)] = log | [ plx.z|6)dz]

> [ q(z)og [”(’;(j')"”] dz,

Known as the evidence lower bound ELBO, because p(x|¢) is the evidence
(= marginal likelihood) in the context of Bayes' rule.
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ELBO

In practice, the distribution g(z) will have some parameters 6:
p(x, z|$)
ELBO[6, ¢] /q(z|9)log { 4(210) } dz.

@ To learn the non-linear latent variable model, we'll maximize this

quantity as a function of both ¢ and 6.
o We will see: the maximum is obtained (theoretically) if the variational

distribution is the true posterior, q(z|0) = p(z|x, ¢).
@ In practice, we maximize ELBO over some tractable family of
distributions g(z|x, @) to obtain an approximation of the intractable
posterior.

@ The neural architecture that computes this is the
variational autoencoder.
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Tightness of ELBO

ELBO[H,(;S]:/ q(2|6) log {p(’z’ﬂg‘f)}dz

_/ (z]0) Iog[ p(zlx. ('Z)o)(xkb)] dz

B plzlx. )
— [ atzlo)ioglp(xl¢)] dz + [ a(zio)iog | e | oz
—toglp(x(6)] + [ a(zl6)tog | P71V 2

— loglp(x|)] — Dxt [4(210) p(2x, #)].

ELBO is the log marginal likelihood minus Dy [q(z]0)| p(z|x, ¢)].
Dkr zero when q(z|0) = p(z|x, ¢) ~ ELBO = log[p(x|¢)].
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ELBO as reconstruction loss minus KL to prior

ELBOI6, ¢] = /q(z|9) log {’W} dz

_/ z|0)|og{ x|z( Te))( )} dz

— [ atzio)toglp(xiz. ) dz + [ atzlo)iog | £ oz

. / q(210) log [p(x|z, ¢)] dz — Dyr[q(2]6), p(2)]

o First term measures the average agreement p(x|z, ¢») of the hidden
variable and the data (reconstruction loss)

@ Second one measures the degree to which the auxiliary distribution
q(z,0) matches the prior.
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The variational approximation

e ELBO is tight when we choose q(z|0) = p(z|x, ¢).

@ Intractable ~~ variational approximation: choose simple parametric

form for g(z|@), use it as an approximation to the true posterior.
o Choose a normal distribution with parameters g and ¥ = o2/.

@ Optimization ~~ find normal distribution closest to true posterior
p(z|x). Corresponds to minimizing the KL divergence.

@ True posterior p(z|x) depends on x
~~ variational approximation should also depend on x:

q(216,x) = N(gu[x|6], g,2(x6]),

where g[x, 0] is a neural network with parameters 6.
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The variational autoencoder
Recall
ELBOIB. ¢] = | q(z[x,0)l0g [p(x|z, #)] dz — Dicla(z|x. 6). p(2)]

Involves an intractable integral, but it is an expectation
~~ approximate with samples:

z|x 9)[|Og [p(X|Z ¢ Zbg [P X|Zna¢)]

where z* is the n-th sample from g(z|x, 8). Limit: use a single sample:
ELBO[#, ¢] ~ log[p(x|z", ¢)] — Dkila(z|x,0), p(2)]

The second term is just the KL divergence between two Gaussians and is
available in closed form.
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The reparameterization trick
Recall: Want to sample from

q(216, x) = N(g[x|6], g,2[x|6]),
To let PyTorch / Tensorflow perform automatic differentiation via
backpropagation, we must avoid the sampling step.
Simple solution: draw a sample & ~ N(0, /) and use
1/2
z" = 8u + gg2/ £

Now “the gradient can flow through the network” Encoder network:
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VAE

e Finally, minimize negative expectation of ELBO over p(x):
r(g,iﬂn _Ep(x) Eq(z|x,0) [lOg [p(X‘Z, ¢)]] + Ep(x)DKL[q(z|X7 0)7 p(Z)]
@ The first term is approximated as

1 n
Ep(x)Eq(z|x.0)llog [P(x|Z, @)]] = - > log[p(xilz}, )]
=1

We assume p(x;|z}F, ) = N (fs(z}), 0?),
where f is implemented via a neural net: ~» Decoder network

loss (least squares)

loss (least squares)
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Further Variations

o For maximizing ELBO, we jointly optimize over the parameters of
encoder and decoder network.

@ When adjusting the decoder, we also change the “true” posterior that
we are going to approximate!

@ So approximation quality should not be our only goal...
need “tuning knob" for steering the model into a desired direction.

@ Solution: introduce parameter $ > 0 that controls the relative
importance of the two loss terms:

m|n ;ZDKL[q ZIX,, ) Z)]— Z'Og[P x,\z,, )]
i=1

Volker Roth (University of Basel) 13 /50



Applications: MNIST example
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Taken from Louis Tiago: A Tutorial on Variational Autoencoders with a Concise Keras Implementation
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Applications: Medical example

2
o o,
H [r—
é Nommal g
A 5 4 st 5,
Original Visual Field Reconstructed Visual Field 5 ® Glwcoma §
| 3
Latent Features 8
Encoder Decoder
2 2
B 8, o,
o1 C2_R1_F1 F2 R2 D1 D2 03 g g
r " (Lo T " " 1 2 2
g H
I i, i,
E g =} -E] : H
o o 3
\ ~ ~ = ) T ™ B3 ) T K
Enceder et Latent Dimension: 1 Latent Dimension: 1

Berchuck, S.I., Mukherjee, S. & Medeiros, F.A. Estimating Rates of Progression and Predicting Future Visual Fields in

Glaucoma Using a Deep Variational Autoencoder. Sci Rep 9, 18113 (2019). https://doi.org/10.1038/s41598-019-54653-6
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Multiple Views: Deep Information Bottleneck

@ Consider paired samples from different views.
@ What is the dependency structure between the views 7

@ Nonlinear model: dependency detected by deep IB.
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Two-view version: The deep information bottleneck

@ So far we argued that since the true posterior p(z|x) depends on x,
the variational approximation should also depend on x.

o Restricted setting: explain posterior only by external variable X:
q= q(Z|0, )N()
ELBOIO, ¢] = /q(z|)”(, 0)log [p(x|z, ¢)] dz — Dki[q(z|%,0), p(2)]

= Eq(zj,6) log [p(x|z, )] — Dkilq(z|%, 0), p(2)]
@ Connection to IB:
» Assume (or define) g(z|%,0) := p(z|%,0)
> Take expectation w.r.t. joint data distribution p(%, x):
Ep(x.x) En(z1%.0) 108 [P(X|2, @)] — Epx)Drelp(2]%, ), p(2)]
> First term < Zg 4(z; x) + const. Second term = Zy(X; z),
o This defines the deep information bottleneck (with weight /)

r(rﬁ]ig To(%;z) — BI&?‘g(z; x), where 7" is a lower bound of Z.

)
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Applications: Face images
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& ~

v ~57a

Archetype 2:
ANGER

Reconstruction

74

| side Information
"0 HAP: 133, HAP: 287, ...

SAD: 4.2, 5A: 153,
SUR: 173, SUR:

Keller et al. 2020: Learning Extremal Representations with Deep Archetypal Analysis
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Applications: Face images

ba Archetype 3: SURPRISE Archetype 3 Archetype 2

as -
SRR

-0.25

155 O oal

]
= % 000
4 4 5 =3 x
' =
2
2 025
@
£
)
€
£ 050
075 \ A /
JAFFE data set N4 S
4 happiness “ /
® sadness \A
1.00 4 surprise ¥
o anger
e disgust Archetype 1

0.75 -0.50 0.25 0.00 0.25 0.50 0.75
latent dimension, y-axis
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Applications: Deep Chemical Variational Autoencoders

(a) (b)

SMILES input ©
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ENCODER
Neural Network
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(Latent Space)
PROPERTY
PREDICTION
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Neural Network

SMILES output ©

Cleceeet

Most Probable Decoding
argmax p(*lz)

(Gomez-Bombarelli et al., ACS Cent Sci, 2018)
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Neural Encoder/Decoder Models for Machine Translation

il =————=he
a it
m’ me
entarté with
no single-word a
equivalent in English pie v : AAL’
Target sequence
. he hit me with a pie  <END>
Summary of input sequence
=2
8 .8 .8 |9 z
o O O |o ]
[} )
| o
il a m’ entarté <START> he hit me with a pie
Input sequence Target sequence (shifted right)
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Neural Machine Translation (NMT)

@ The sequence-to-sequence model is an example of a
Conditional Language Model:

» Language Model because the decoder is predicting the next word of

the target sentence y = {y1,y2,...,y71}
» Conditional because its predictions are also conditioned on the source
sentence x.

o NMT directly calculates
P(y|x) = P(y1|x) - P(y2ly1,x) - P(yT|y1:(7-1), %)

One term is the probability of the next target word, given all target
words so far and the input sequence.

@ How to train a NMT system? Get a big parallel corpus containing
input/target sequence pairs!

@ Seq2seq is optimized as a single system.
Backpropagation operates end-to-end.
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Sequence-to-sequence: Training

Target sequence from corpus
he hit me with a pie  <END>

Loss L =L(Li+ Lo+ - +Ly) L11 LZI L31 L4I L5I L(,I L7I

hon B
O O O 0]
o o o o
O O O ©)
©) ©) ©) @)
]I ]: n[’ entarté <START> he hit me with a

X1 X2 X3 X4 Target sequence (shifted rlght)
Input sequence from corpus
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Sequence-to-sequence: Test time behavior

me with a pie <END>

0] @) 0] 0]

O 0] O O

@) @) @) @)

@) @) @) @)

L1 '
\|

il a m’ entarté <START> he hit

X1 X2 X3 X4

Test time behavior:

Input sequence from corpus .
p q P Last decoder output used as next step’s input
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Sequence-to-sequence: bottleneck problem

. Target sequence
Summary of input sequence he hit me with a pie <END>

Needs to capture all information wI I I I I I
—> bottleneck!

Ios

0] 0] 0] (@)

@) @) @) (@)

@) @) @) (@)

I 1 n[ entarté <START> he hit me  with a pie
X1 X X3 X4 Target sequence (shifted right)

Input sequence

Idea: allow the decoder to look directly at input, bypass bottleneck.
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Sequence-to-sequence with attention

Weighted sum of encoder hidden states z = >q;h;
I

Hidden state for "il" Attention output %
received high attention o
-7 1 Concatenate atieniion output
- DN and decoder hidden state
S, to produce §;
Attention distribution ' VN
« !/ \ .
b 1] .3 softmax turns scores into

probabilities o = softmax(a)

ap

Attention scores Dot product similarity a; = 51Th4

0 0] Query
O —_— O (= 1st decoder hidden state s1)
o o attends to
Tl
Input sequence I a m entarté <START>
X1 X2 X3 X4
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Sequence-to-sequence with attention

hit
Attention output

P \
. o 4 ’ \
Attention distribution R ’ \ H
’ A}
= 11 = ,

Attention scores

0] O O

O O O

@) O O

O O O
il I r]\ entarté <START> he
X1 X2 X3 X4

Input sequence
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Sequence-to-sequence with attention

Attention output pie

Attention distribution e ’ ’ \ H

Attention scores

o
]
o

o o

O O

O O

O O
il a m’ entarté <START> he hit me with a
X1 X2 X3 Xa

Input sequence
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Sequence-to-sequence with attention

We have encoder hidden states hy,..., hy € R" (~ values)

o On timestep t, we have decoder hidden state s; € R/ (~ query)

We get the attention scores for this step (query/value similarities):
at = (S;rhl, ce 7S;rh/\/) S RN

@ We take softmax to get the attention distribution

a! = softmax(at) € RV.
o We use af to take a weighted sum of the encoder hidden states to
get the attention output z; = YN, ath; € R”
Finally we concatenate the attention output with the decoder hidden
state [z;; s¢] and preceded as usual:

> Use this to generate the probability of the next target word, given all
target words so far and input sequence. Example: use a MLP with
softmax output for generating P(y:|y1.(¢—1), X).

> predict next word as §; = arg max P(y:|y1.(¢—1), X)-
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Attention is great

@ Attention solves the bottleneck problem: It allows decoder to look
directly at the input sequence, bypass bottleneck

@ Attention helps with vanishing gradient problem:
Provides shortcut to faraway states

il ———he
o Interpretability: Attention distribution

a it
provides (probabilistic) word alignments for m: me
|
freel entarté with
@ We never explicitly trained an alignment no single-word a

system, the network learned it by itself! equivalent in English

o Attention is also the main building block of transformers:
We “transform” queries s; to attention outputs z;, conditioned on
inputs and previous queries.

@ To understand this better, we first generalize the idea.
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Attention: General setting

@ We can better understand attention by comparing it to
kernel ridge regression (KRR).

o In KRR, we compare input (“query”) x € R? to each of the training
examples X = (x1,...,x,) using a kernel function K(x, x’) to get a
vector of similarity scores a@ = a(x, X) .

@ We then use this to retrieve a weighted combination of the target
values y; € R% to compute the predicted output: z =", a;y;.

@ KRR example: one-dimensional targets, i.e. d, = 1. Given kernel
function KC(x, x"), the predicted regression output for query x is

z:=f(x) = KLKX, X) + )ty = Za, x, X)y,
at

o Intuitively, a(x, X) measures how well the query x is aligned with the
examples in the training set X.
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Attention: General setting

+

O—> Output

Kernel
function
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|
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Targets Yy
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J e

KRR as input-output mapping. Adapted from Figure 16.6 in K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT

Press, 2023.
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A differentiable and parametric version
@ Replace X with a learned embedding, to create a set of
keys, K = XW, € R %,
@ Replace Y, to create a set of values, V = YW, € RM%dv,

@ Embed input to create a query, g = Wyx € RY%,
@ Parameters to be learned: the three embedding matrices.

@ Replace similarity scoring function with a soft attention layer:
Define the weighted output for query g to be

Z = Attn(q, (k17V1)7 kn,Vn Za/ q, K

ai(qg, K) is i'th attention weight, satisfying O S aj<land > ;a;=1
@ The «aj(q, K) are computed from an attention score a(q, k;) € R,
that computes the similarity of query q to key k;.
e Example: (scaled) dot product attention a(q, k) = q*k/+/dx.
@ Given the scores, compute attention weights:
ai(q, k1.n) = softmax;([a(q, k1), ..., a(q, kn)]).
33/50



Attention: General setting

Attention Attention ®_>|:| Output

weights

scoring
function

!

Keys I:l— /_:@_.g Values
e O
=0~

Figure 16.6 in K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT Press, 2023. Attention layer. (a) Mapping a

single query g to a single output, given a set of keys and values.
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Matrix Calculation of Self-Attention. Taken from https://jalammar.github.io/illustrated-transformer/
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Attention
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Matrix Calculation of Self-Attention. Taken from https://jalammar.github.io/illustrated-transformer/
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Attention and Self-Attention

output 0]

(®

1
Vi2
3
softmaxg]
[ —{1]
K{2|—2]
|3 ] >3]

Gl

attention
weights

similarity
scores

[ ]-]

[ ] -]

0]
B
3
softmax 5
1
L
2 |
3]
&l

outputs [1]2]3]

1 1"

12113

inputs X

Left: Mapping a single query g to a single output o, given a set of keys and values. Middle: simplified notation. Right: Mapping

multiple queries to multiple outputs, either for given values and keys (without the red arrows and without inputs X), or in the

self-attention case, where queries, values and keys are functions of inputs X (red arrows) .
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Masked Attention

O

[1]
V2
|3 |

outputs [1]2]3]

0|22

23

+
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22

-00] -0

)

(masked)
SelfAttention

t

inputs X mﬂ

Masked self-attention layer: Prevent vectors from looking at future vectors by

setting similarity scores to —oo
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Multi-head Attention

Scaled Dot-Product Attention Multi-Head Attention
— [Covpus ]
SoftMax
" Scaled Dot-Product (masked)
Attention N Multi-Head
] T I SelfAttention
[ MatMul | Linear PH{ Linear P Linear
f
Q K vV
v K Q

Adapted from Figure 16.7: Left: (Masked) Scaled dot-product (self-)attention.
Right: (Masked) Multi-head (self-)attention.
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Self-Attention in Language Models

The animal didn’t cross the street because it was too tired

Layer:| 5 & Attention: | Input - Input %/

The_ The_
animal_ animal_
didn_ didn_
i i
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it St
was_ was
too_ too
tire tire
d d

https://jalammar.github.io/illustrated-transformer/

Warning: When using Multi-head self-attention, the results are often
difficult to interpret...
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“Transformer”-language models
@ RNNs process one token at a time ~~ representation of a word at
location t depends on hidden state s; (a summary of previous words).
o Alternative approach: use attention to compute representation
directly as a function of all other words.

o This is the idea of a encoder-only transformer, used by LMs such
as BERT (Bidirectional Encoder Representations from Transformers).

RO O

Sentiment?

Next word?
@ ° @ @ - perer SpeeCh tags’?
Fig. 16.16 in K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT Press, 2023.

Original Image published in C. Joshi. Transformers are Graph Neural Networks. Tech. rep. 2020.
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“Transformer”-language models

o Alternative: Decoder-only transformer: each output y; only
attends to all previously generated outputs, y;.(t—1) -

@ This can be implemented using masked self-attention, and is useful
for generative language models, such as GPT.

o Combination: Sequence-to-sequence models, p(y1.7,[x1.7,).

t

( Feed Forward )
$ 'y
( Feed Forward j

Encoder-Decoder Attention

4 — 3

Self-Attention Self-Attention

'Y
—

i i

Figure 16.1 in the supplement of K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT Press, 2023. High level

structure of the encoder-decoder transformer architecture. https://jalammar.github.io/illustrated-transformer/

Volker Roth (University of Basel) 42 /50



Transformer: Encoder

A A
("( Add & Normalize }
i ( Feed Forward ) ( Feed Forward )

,-p( Add & Normalize )

L]
1
1
' Self-Attention
\( ...... P ——— 7Y ;

ENCODER #1

"Enconing @ @
x+ [ x- [N
Thinking Machines

https://jalammar.github.io/illustrated-transformer/
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Scale issues, Normalization and Feed Forward Layer

o MHSA often produces features at different scales or magnitudes:
- attention weights can be very different (i.e. sharp or distributed)
- combining multiple attention heads makes this even more
problematic.

@ Solution 1: add a normalization layer

@ Solution 2: add a word-wise feed forward MLP that updates the
representation of the i-th word:
h; < Norm(FeedFwd(Norm(h;))).

It seems that re-scaling the feature vectors independently of each
other helps to overcome remaining scaling issues...

@ Important role of the residual connections: allow the positional
information to propagate to higher layers.
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Transformer: Encoder

4 4

e

Add & Normalize

D)

H [ 4
i ( Feed Forward ) ( Feed Forward )
* 4

>

ENCODER #1

e —_—

(-

z1 I z;
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X
LayerNorm( BEEH + HHEH)
Iy Iy
1] 11
Self-Attention
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O R | I
POSITIONAL é é
ENCODING
x [EIEIEE e |
Thinking Machines

Figure 16.2 in the supplement of K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT Press, 2023. The encoder

block of a transformer for two input tokens. https://jalammar.github.io/illustrated-transformer/

Volker Roth (University of Basel) Machine Learning

45 /50



Transformer: Positional Encoding

Processing of the feature vectors for computing query, key and value
occurs in parallel.

@ The order information between the words is not known anywhere
inside the attention block.

But without it, building contextually rich embeddings might be
impossible! Example:

1. The man drove the woman to the store.

2. The woman drove the man to the store.

@ The order information has to be modeled ~~ positional encodings.
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Transformer: Positional Encoding

ENCODER #1 DECODER #1
ENCODER #0 DECODER #0
EMBEDDING
WITH TIME
siGNAL - xa [T [ TTT7] Xs
POSTIONAL [ « CIT  EIT
+ + +
EMBEDDINGS i [T x. [ xs [
INPUT Je suis étudiant
https://jalammar.github.io/illustrated-transformer/
Volker Roth (University of Basel) Machine Learning
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Transformer: Positional Encoding

Intuition: binary representation:

sin(wy.t) ]
cos(ws.t)

sin(wo.t)
cos(wy.t)

P:

~N O o B~ W NN = O
O O O O O O O o
= = B, P, O O O O
, , O O B B O O
_ O B O = O = O

sin(wg/2-t)
Lcos(wgy2-t)] 4, 4
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Transformer: Positional Encoding

0

s
®

<8
®

https://jalammar.github.io/illustrated-transformer/
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Seq2Seq with Transformers
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