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Chapter 11: Neural Encoder-Decoder Models

Figure 16.1 in the supplement of K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT Press, 2023. High level

structure of the encoder-decoder transformer architecture. https://jalammar.github.io/illustrated-transformer/
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Non-linear latent variable models

Latent variable z ⇝ Gaussian likelihood with
nonlinearly transformed mean
µ = f (z, ϕ).

Prior and likelihood:

p(z) = N(0, I)
p(x|z, ϕ) = N(f (z, ϕ), σ2I).

x i

z i

n

φ

Given observed x, we want to understand what possible values of the
hidden variable z were responsible for it:

p(z|x) = p(x|z)p(z)
p(x) .

No closed form expression available. Cannot evaluate denominator
p(x) and so we can’t even compute the numerical value of the
posterior for a given pair z and x.
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Sampling

x i

z i

n

φ

...but it is easy to generate a new sample x∗ using sampling:
▶ Draw z∗ from the prior p(z), pass this through f (z∗, ϕ)
⇝ mean of likelihood p(x∗|z∗),

▶ then draw x∗ from this distribution.
Prior and likelihood are normal distributions ⇝ sampling is easy.
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Evaluating marginal likelihood (evidence)

p(x|ϕ) =
∫

p(x, z|ϕ)dz

=
∫

p(x|z, ϕ)p(z)dz

=
∫

N(f [z, ϕ], σ2I) · N(0, I) dz.

No closed form for this integral ⇝ lower bound (Jensen’s inequality):

log[p(x|ϕ)] = log
[∫

p(x, z|ϕ)dz
]

= log
[∫

q(z)p(x, z|ϕ)
q(z) dz

]
≥

∫
q(z) log

[p(x, z|ϕ)
q(z)

]
dz,

Known as the evidence lower bound ELBO, because p(x|ϕ) is the evidence
(= marginal likelihood) in the context of Bayes’ rule.
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ELBO

In practice, the distribution q(z) will have some parameters θ:

ELBO[θ, ϕ] =
∫

q(z|θ) log
[p(x, z|ϕ)

q(z|θ)

]
dz.

To learn the non-linear latent variable model, we’ll maximize this
quantity as a function of both ϕ and θ.
We will see: the maximum is obtained (theoretically) if the variational
distribution is the true posterior, q(z|θ) = p(z|x, ϕ).
In practice, we maximize ELBO over some tractable family of
distributions q(z|x, θ) to obtain an approximation of the intractable
posterior.
The neural architecture that computes this is the
variational autoencoder.
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Tightness of ELBO

ELBO[θ, ϕ] =
∫

q(z|θ) log
[p(x, z|ϕ)

q(z|θ)

]
dz

=
∫

q(z|θ) log
[p(z|x, ϕ)p(x|ϕ)

q(z|θ)

]
dz

=
∫

q(z|θ) log [p(x|ϕ)] dz +
∫

q(z|θ) log
[p(z|x, ϕ)

q(z|θ)

]
dz

= log[p(x|ϕ)] +
∫

q(z|θ) log
[p(z|x, ϕ)

q(z|θ)

]
dz

= log[p(x|ϕ)]− DKL [q(z|θ)∥p(z|x, ϕ)] .

ELBO is the log marginal likelihood minus DKL [q(z|θ)∥p(z|x, ϕ)].
DKL zero when q(z|θ) = p(z|x, ϕ) ⇝ ELBO = log[p(x|ϕ)].
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ELBO as reconstruction loss minus KL to prior

ELBO[θ, ϕ] =
∫

q(z|θ) log
[p(x, z|ϕ)

q(z|θ)

]
dz

=
∫

q(z|θ) log
[p(x|z, ϕ)p(z)

q(z|θ)

]
dz

=
∫

q(z|θ) log [p(x|z, ϕ)] dz +
∫

q(z|θ) log
[ p(z)

q(z|θ)

]
dz

=
∫

q(z|θ) log [p(x|z, ϕ)] dz − DKL[q(z|θ), p(z)]

First term measures the average agreement p(x|z, ϕ) of the hidden
variable and the data (reconstruction loss)
Second one measures the degree to which the auxiliary distribution
q(z, θ) matches the prior.
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The variational approximation

ELBO is tight when we choose q(z|θ) = p(z|x, ϕ).
Intractable ⇝ variational approximation: choose simple parametric
form for q(z|θ), use it as an approximation to the true posterior.
Choose a normal distribution with parameters µ and Σ = σ2I.
Optimization ⇝ find normal distribution closest to true posterior
p(z|x). Corresponds to minimizing the KL divergence.
True posterior p(z|x) depends on x
⇝ variational approximation should also depend on x:

q(z|θ, x) = N(gµ[x|θ], gσ2 [x|θ]),

where g [x, θ] is a neural network with parameters θ.
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The variational autoencoder

Recall

ELBO[θ, ϕ] =
∫

q(z|x, θ) log [p(x|z, ϕ)] dz − DKL[q(z|x, θ), p(z)]

Involves an intractable integral, but it is an expectation
⇝ approximate with samples:

Eq(z|x,θ)[log [p(x|z, ϕ)]] ≈ 1
N

N∑
n=1

log [p(x|z∗
n, ϕ)]

where z∗
n is the n-th sample from q(z|x, θ). Limit: use a single sample:

ELBO[θ, ϕ] ≈ log [p(x|z∗, ϕ)]− DKL[q(z|x, θ), p(z)]

The second term is just the KL divergence between two Gaussians and is
available in closed form.
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The reparameterization trick
Recall: Want to sample from

q(z|θ, x) = N(gµ[x|θ], gσ2 [x|θ]),
To let PyTorch / Tensorflow perform automatic differentiation via
backpropagation, we must avoid the sampling step.
Simple solution: draw a sample ξ ∼ N(0, I) and use

z∗ = gµ + g1/2
σ2 ξ.

Now “the gradient can flow through the network”. Encoder network:

noise input ξ

1µ

2µx2

x1
1

+

+

z2

noise input ξ

z

z

z
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VAE
Finally, minimize negative expectation of ELBO over p(x):

min
ϕ,θ
−Ep(x)Eq(z|x,θ)[log [p(x|z, ϕ)]] + Ep(x)DKL[q(z|x, θ), p(z)]

The first term is approximated as

Ep(x)Eq(z|x,θ)[log [p(x|z, ϕ)]] ≈ 1
n

n∑
i=1

log [p(x i |z∗
i , ϕ)] .

We assume p(x i |z∗
i , ϕ) = N (fϕ(z∗

i ), σ2),
where f is implemented via a neural net: ⇝ Decoder network

1µ

2µ

1µ

2µ

1

+

+

z2

1

2

L

noise input ξ loss (least squares)

loss (least squares)

L

z

z

z

x2

x1

noise input ξ

x

x

x

x
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Further Variations

For maximizing ELBO, we jointly optimize over the parameters of
encoder and decoder network.
When adjusting the decoder, we also change the “true” posterior that
we are going to approximate!
So approximation quality should not be our only goal...
need “tuning knob” for steering the model into a desired direction.
Solution: introduce parameter β > 0 that controls the relative
importance of the two loss terms:

min
θ,ϕ

1
n

n∑
i=1

DKL[q(z|x i , θ), p(z)]− β
1
n

n∑
i=1

log [p(x i |z∗
i , ϕ)]
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Applications: MNIST example

Taken from Louis Tiago: A Tutorial on Variational Autoencoders with a Concise Keras Implementation
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Applications: Medical example

Berchuck, S.I., Mukherjee, S. & Medeiros, F.A. Estimating Rates of Progression and Predicting Future Visual Fields in

Glaucoma Using a Deep Variational Autoencoder. Sci Rep 9, 18113 (2019). https://doi.org/10.1038/s41598-019-54653-6
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Multiple Views: Deep Information Bottleneck

Consider paired samples from different views.
What is the dependency structure between the views ?
Nonlinear model: dependency detected by deep IB.
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Two-view version: The deep information bottleneck
So far we argued that since the true posterior p(z|x) depends on x,
the variational approximation should also depend on x.
Restricted setting: explain posterior only by external variable x̃:

q = q(z|θ, x̃).

ELBO[θ, ϕ] =
∫

q(z|x̃, θ) log [p(x|z, ϕ)] dz − DKL[q(z|x̃, θ), p(z)]

= Eq(z|x̃,θ) log [p(x|z, ϕ)]− DKL[q(z|x̃, θ), p(z)]
Connection to IB:

▶ Assume (or define) q(z|x̃, θ) := p(z|x̃, θ)
▶ Take expectation w.r.t. joint data distribution p(x̃, x):

Ep(x̃,x)Ep(z|x̃,θ) log [p(x|z, ϕ)]− Ep(x̃)DKL[p(z|x̃, θ), p(z)]
▶ First term ≤ Iθ,ϕ(z; x) + const. Second term = Iθ(x̃; z),

This defines the deep information bottleneck (with weight β)
min
ϕ,θ
Iθ(x̃; z)− βI low

θ,ϕ(z; x), where I low is a lower bound of I.
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Applications: Face images

Keller et al. 2020: Learning Extremal Representations with Deep Archetypal Analysis
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Applications: Face images

Keller et al. 2020: Learning Extremal Representations with Deep Archetypal Analysis
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Applications: Deep Chemical Variational Autoencoders

(Gomez-Bombarelli et al., ACS Cent Sci, 2018)
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Neural Encoder/Decoder Models for Machine Translation

m’

a

il he

hit

me

with

a

pie

entarte

https://commons.wikimedia.org/w/index.php?curid=9105527

no single−word
equivalent in English

<START>entarteail m’

Summary of input sequence

Input sequence

Target sequence
<END>ahe hit me with pie

ahe hit me with pie

Target sequence (shifted right)

E
n

c
o

d
e
r 

R
N

N

D
e
c
o

d
e
r 

R
N

N
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Neural Machine Translation (NMT)

The sequence-to-sequence model is an example of a
Conditional Language Model:

▶ Language Model because the decoder is predicting the next word of
the target sentence y = {y1, y2, . . . , yT}

▶ Conditional because its predictions are also conditioned on the source
sentence x.

NMT directly calculates
P(y |x) = P(y1|x) · P(y2|y1, x) · · · P(yT |y1:(T−1), x)

One term is the probability of the next target word, given all target
words so far and the input sequence.
How to train a NMT system? Get a big parallel corpus containing
input/target sequence pairs!
Seq2seq is optimized as a single system.
Backpropagation operates end-to-end.
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Sequence-to-sequence: Training

he hit <END>ame with pie

<START>entarteail m’

Target sequence (shifted right)

he ahit me with pie

Input sequence from corpus

Target sequence from corpus

ŷ2ŷ1

L1 L2 L3 L4 L5 L6 L7Loss L = 1
T (L1 + L2 + · · · + LT )

x1 x3x2 x4

ŷ3 ŷ4 ŷ5 ŷ6 ŷ7
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Sequence-to-sequence: Test time behavior

he hit <END>ame with pie

<START>entarteail m’ he ahit me with pie

Input sequence from corpus
Last decoder output used as next step’s input

Test time behavior:

ŷ2ŷ1

x1 x3x2 x4

ŷ3 ŷ4 ŷ5 ŷ6 ŷ7
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Sequence-to-sequence: bottleneck problem

Input sequence

he hit <END>ame with pie

<START>entarteail m’

Target sequence (shifted right)

Needs to capture all information

−> bottleneck!

Summary of input sequence

he ahit me with pie

Target sequence

lo
s

s

ŷ2

x1 x3x2 x4

ŷ1 ŷ3 ŷ4 ŷ5 ŷ6 ŷ7

Idea: allow the decoder to look directly at input, bypass bottleneck.
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Sequence-to-sequence with attention

lo
s
s

<START>entarteail m’

he

Encoder RNN

Attention scores

Attention distribution

Attention output

Dot product similarity

softmax turns scores into

Hidden state for "il"

received high attention

probabilities

Query

(= 1st decoder hidden state     )

attends to values

(= all encoder hidden states)

to produce

and decoder hidden state

Concatenate attention output

Weighted sum of encoder hidden states

Input sequence

h2 h3

x1 x3x2 x4

ŷ1

h4
s1

a4 = s⊤1 h4
a4

α = softmax(a)

α

z = ∑
i
αihi

h1

a1 a2 a3

ŷ1
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Sequence-to-sequence with attention

lo
s
s

<START>entarteail m’

Encoder RNN

Attention scores

Attention distribution

Attention output

Input sequence

he

hit

x1 x3

ŷ2

x2 x4
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Sequence-to-sequence with attention

Input sequence

lo
s
s

<START>entarteail m’

Encoder RNN

Attention scores

Attention distribution

Attention output

he ahit me with

pie

x1 x3x2 x4

ŷ6
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Sequence-to-sequence with attention

We have encoder hidden states h1, . . . , hN ∈ Rh (⇝ values)
On timestep t, we have decoder hidden state st ∈ Rh (⇝ query)
We get the attention scores for this step (query/value similarities):

at = (s⊤
t h1, . . . , s⊤

t hN) ∈ RN

We take softmax to get the attention distribution
αt = softmax(at) ∈ RN .
We use αt to take a weighted sum of the encoder hidden states to
get the attention output zt =

∑N
i=1 αt

i hi ∈ Rh

Finally we concatenate the attention output with the decoder hidden
state [zt ; st ] and preceded as usual:

▶ Use this to generate the probability of the next target word, given all
target words so far and input sequence. Example: use a MLP with
softmax output for generating P(yt |y1:(t−1), x).

▶ predict next word as ŷt = arg max P(yt |y1:(t−1), x).
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Attention is great
Attention solves the bottleneck problem: It allows decoder to look
directly at the input sequence, bypass bottleneck
Attention helps with vanishing gradient problem:
Provides shortcut to faraway states

Interpretability: Attention distribution
provides (probabilistic) word alignments for
free!
We never explicitly trained an alignment
system, the network learned it by itself!

m’

a

il he

hit

me

with

a

pie

entarte

no single−word
equivalent in English

Attention is also the main building block of transformers:
We “transform” queries st to attention outputs zt , conditioned on
inputs and previous queries.
To understand this better, we first generalize the idea.
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Attention: General setting

We can better understand attention by comparing it to
kernel ridge regression (KRR).
In KRR, we compare input (“query”) x ∈ Rd to each of the training
examples X = (x1, . . . , xn) using a kernel function K(x, x ′) to get a
vector of similarity scores α = α(x, X ) .
We then use this to retrieve a weighted combination of the target
values y i ∈ Rdv to compute the predicted output: z =

∑n
i=1 αiy i .

KRR example: one-dimensional targets, i.e. dv = 1. Given kernel
function K(x, x ′), the predicted regression output for query x is

z := f (x) = Kt
x(K(X , X ) + λI)−1︸ ︷︷ ︸

αt

y =
n∑

i=1
αi(x, X )yi .

Intuitively, α(x, X ) measures how well the query x is aligned with the
examples in the training set X .
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Attention: General setting

α

α

(K
 +

   I)
λ

−
1

x

X

f(x)

Targets y

1

n

Kernel

KRR as input-output mapping. Adapted from Figure 16.6 in K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT

Press, 2023.
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A differentiable and parametric version
Replace X with a learned embedding, to create a set of
keys, K = XWk ∈ Rn×dk .
Replace Y , to create a set of values, V = YWv ∈ Rn×dv .
Embed input to create a query, q = Wqx ∈ Rdk .
Parameters to be learned: the three embedding matrices.
Replace similarity scoring function with a soft attention layer:
Define the weighted output for query q to be

z := Attn(q, (k1, v1), . . . , (kn, vn)) =
n∑

i=1
αi(q, K )v i

αi(q, K ) is i’th attention weight, satisfying 0 ≤ αi ≤ 1 and
∑

i αi = 1.
The αi(q, K ) are computed from an attention score a(q, k i) ∈ R ,
that computes the similarity of query q to key k i .
Example: (scaled) dot product attention a(q, k) = qtk/

√
dk .

Given the scores, compute attention weights:
αi(q, k1:n) = softmaxi([a(q, k1), . . . , a(q, kn)]).
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Attention: General setting

Figure 16.6 in K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT Press, 2023. Attention layer. (a) Mapping a

single query q to a single output, given a set of keys and values.
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Matrix Calculation of Self-Attention. Taken from https://jalammar.github.io/illustrated-transformer/
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Attention

Matrix Calculation of Self-Attention. Taken from https://jalammar.github.io/illustrated-transformer/
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Attention and Self-Attention

similarity
scores

attention
weights

softmax

q

o

V

K

softmax

q

K K

V

o

V

softmax

inputs X

output

queries

outputs

+

+

+

+

+

+

++

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

11

32

13

23

3331

2221

12

1 2 3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

11

32

13

23

3331

2221

12

1 2 3

1 2 3

Left: Mapping a single query q to a single output o, given a set of keys and values. Middle: simplified notation. Right: Mapping

multiple queries to multiple outputs, either for given values and keys (without the red arrows and without inputs X), or in the

self-attention case, where queries, values and keys are functions of inputs X (red arrows) .
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Masked Attention

K

V

softmax

outputs

Q

outputs

inputs

(masked)

SelfAttention

inputs X

+

+

1 2 3

− 8

− 8 − 8

1

2

3

1

2

3

11 13

23

33

22

12

1 2 3

11

0

13

23

33

22

12

1 2 3

=

0

0

Masked self-attention layer: Prevent vectors from looking at future vectors by
setting similarity scores to −∞.
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Multi-head Attention

outputs

inputs

(masked)

Multi−Head

SelfAttention

X

X

=

Adapted from Figure 16.7: Left: (Masked) Scaled dot-product (self-)attention.
Right: (Masked) Multi-head (self-)attention.
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Self-Attention in Language Models
The animal didn’t cross the street because it was too tired

https://jalammar.github.io/illustrated-transformer/

Warning: When using Multi-head self-attention, the results are often
difficult to interpret...
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“Transformer”-language models
RNNs process one token at a time ⇝ representation of a word at
location t depends on hidden state st (a summary of previous words).
Alternative approach: use attention to compute representation
directly as a function of all other words.
This is the idea of a encoder-only transformer , used by LMs such
as BERT (Bidirectional Encoder Representations from Transformers).

Fig. 16.16 in K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT Press, 2023.
Original Image published in C. Joshi. Transformers are Graph Neural Networks. Tech. rep. 2020.
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“Transformer”-language models

Alternative: Decoder-only transformer: each output yt only
attends to all previously generated outputs, y1:(t−1) .
This can be implemented using masked self-attention , and is useful
for generative language models , such as GPT.
Combination: Sequence-to-sequence models , p(y1:Ty |x1:Tx ).

Figure 16.1 in the supplement of K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT Press, 2023. High level

structure of the encoder-decoder transformer architecture. https://jalammar.github.io/illustrated-transformer/
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Transformer: Encoder

https://jalammar.github.io/illustrated-transformer/
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Scale issues, Normalization and Feed Forward Layer

MHSA often produces features at different scales or magnitudes:
- attention weights can be very different (i.e. sharp or distributed)
- combining multiple attention heads makes this even more
problematic.
Solution 1: add a normalization layer
Solution 2: add a word-wise feed forward MLP that updates the
representation of the i-th word:

hi ← Norm(FeedFwd(Norm(hi))).
It seems that re-scaling the feature vectors independently of each
other helps to overcome remaining scaling issues...
Important role of the residual connections: allow the positional
information to propagate to higher layers.
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Transformer: Encoder

Figure 16.2 in the supplement of K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT Press, 2023. The encoder

block of a transformer for two input tokens. https://jalammar.github.io/illustrated-transformer/
Volker Roth (University of Basel) Machine Learning 45 / 50



Transformer: Positional Encoding

Processing of the feature vectors for computing query, key and value
occurs in parallel.
The order information between the words is not known anywhere
inside the attention block.
But without it, building contextually rich embeddings might be
impossible! Example:
1. The man drove the woman to the store.
2. The woman drove the man to the store.
The order information has to be modeled ⇝ positional encodings.
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Transformer: Positional Encoding

https://jalammar.github.io/illustrated-transformer/
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Transformer: Positional Encoding

pt =



sin(ω1.t)
cos(ω1.t)

sin(ω2.t)
cos(ω2.t)

...

sin(ωd/2.t)
cos(ωd/2.t)


d×1

Intuition: binary representation:

0 : 0 0 0 0 8 : 1 0 0 0

1 : 0 0 0 1 9 : 1 0 0 1

2 : 0 0 1 0 10 : 1 0 1 0

3 : 0 0 1 1 11 : 1 0 1 1

4 : 0 1 0 0 12 : 1 1 0 0

5 : 0 1 0 1 13 : 1 1 0 1

6 : 0 1 1 0 14 : 1 1 1 0

7 : 0 1 1 1 15 : 1 1 1 1
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Transformer: Positional Encoding

https://jalammar.github.io/illustrated-transformer/
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Seq2Seq with Transformers

https://jalammar.github.io/illustrated-transformer/
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