
Computer Science / 15731-01 / 2018

Multimedia Retrieval

Chapter 2: Text Retrieval

Dr. Roger Weber, roger.weber@ubs.com

2.1 Overview and Motivation

2.2 Feature Extraction

2.3 Text Retrieval Models

2.4 Indexing Structures

2.5 Lucene - Open Source Text Search

2.6 Literature and Links

Page 2-2Multimedia Retrieval – 2018

2.1 Overview and Motivation

• Managing and retrieving information remains a challenging problem despite the impressive

advances in computer science. The first generation of computers used punch cards to store and

retrieve information, and memory and compute was precious. Many early algorithms hence have

used Boolean models and brute-force approaches that quickly decide whether something is relevant

or not. Today, memory and compute are extremely cheap, and we added more elaborated retrieval

techniques to speed up the searches. Only recently, map-reduce and deep learning have gone back

to the brute-force methods of the early days.

• Typical types of information retrieval:

– Database: information is maintained in a structured way. Queries refer to the structure of the

data and define constraints on the values (SQL as query language). Being structured, however,

does not allow for quick retrieval across all data items with something like this:

SELECT * FROM * WHERE * like ‘%house%‘

– Boolean Retrieval Systems: Boolean models simplified matters: while scanning the data, we

can decide whether an entry is relevant or not. There is no need to keep track and sort results

later on. This was a huge advantage for early information systems (those with the punch cards

and later with tapes) as they only had to filter out which data items were relevant based on a

Boolean outcome. Even though rather simple, it is still a dominant retrieval model.

– Retrieval System with Ranking: Basic Boolean retrieval suffers from the lack of a ranked list. A

user is typically interested in a few, good answers but has not the time to go through all of the

potential thousands of relevant documents. If you search a book in an online store, you expect

the best matches to be at the top. Newer models, hence, try to determine how relevant a

document is for the user (in his given context) given the query.

2.1 Overview and Motivation

Page 2-3Multimedia Retrieval – 2018

– Vague Queries against Database: this search type allows the user to specify soft constraints,

i.e., vague query parts. For instance, if you want to buy a new computer, you may specify an

“Intel Core i7” CPU, 32GB of memory, 1TB of SSD, and at least GTX-980 graphics card. And of

course, you don’t want to pay more than $1000. As you walk through the options, you may

realize that you can’t satisfy all constraints and you compromise on some of them (e.g., replace

SSD with HDD but now with 4TB). Vague queries are best executed with “fuzzy” retrieval models

with a cost function that needs to be optimized (to satisfy the user’s demand as far as possible)

– Natural Language Processing (NLP): Consider a database with industrial parts for machines. A

complex query may look as follows:

• “Find bolts made of steel with a radius of 2.5 mm, a length of 10 cm implementing DIN 4711.

The bolts should have a polished surface and can be used within an electronic engine.”

The challenge of the above query is that we are not actually looking for the keywords “radius”,

“DIN”, or “polished”. Rather, the keywords refer to constraints and to a context expressed by the

user. Recent improvements in Natural Language Processing (NLP) enabled systems to

“decipher” such queries. Modern recommendation systems can chat with the user to obtain the

context and then perform a search to answer the information need. We will, however, not look at

such systems in this course, but lay a few foundations here and there.

– Web Retrieval: early (text) retrieval systems focused on searches over managed and controlled

document collections. With the Web, search engines were faced with spamming, bad quality,

aggressive advertisements, fraud, malware, and click baits. Many retrieval models failed

completely in this uncontrolled environment. Web retrieval addresses many of these concerns

and tries to find, among trillions of possible answers, the best few pages for your query. The

sheer volume of information is a challenge in its own.

2.1 Overview and Motivation

Page 2-4Multimedia Retrieval – 2018

– Multimedia Content: with cheap storage and the digital transformation of enterprises and

consumers, enormous amounts of multimedia data gets created every day (images, audio files,

videos). The methods of text retrieval only work on the meta data but not on the signal

information of the content. We still have a large semantic gap when searching for multimedia

content, but recent improvements in deep learning techniques rapidly close that gap. These

techniques automatically label multimedia content to enable simpler text (or speech) search over

multimedia content and thereby bridging the semantic gap between the signal information and

the user’s intent.

– Heterogeneous, Distributed, Autonomous Information Sources: meta search is a generic

problem: the user does not want to repeat a query against all information sources, but rather

search once against all systems. In more complex setups, each system may hold the answer to a

part of the query and only the combination of all parts yields the best results. We will consider

more complex searches in later chapters.

2.1 Overview and Motivation

Page 2-5Multimedia Retrieval – 2018

Offline

docID = doc10

dog → word 10, word 25

cat → word 13

home → word 2, word 27

...

index

feature

extraction

new

document

insert

a

b

c

d

2.1.1 Text Retrieval – Overview

• Text retrieval encompasses two modes:

– an offline mode, that allows us to add

documents and to analyze them, and

– an online mode, that retrieves relevant

documents for queries given by users

• Obviously, we do not want to apply text

search on the native documents. Rather we

extract so-called features which represent

characteristic pieces of information about the

content of the document. The features also

should support fast retrieval afterwards.

• In more detail, the following steps occur

during the offline mode:

a) We add a new document (or we find a

new document by scanning/crawling)

b) Each addition triggers an event to extract

features and update search indexes

c) We extract features that based describe

the content and analyze & reason on

context and higher-level features

d) We pass the features to an index that

accelerates searches given a query

2.1.1 Text Retrieval – Overview

Page 2-6Multimedia Retrieval – 2018

Online

query

transformation

inverted file:

dog → doc3,doc4,doc10

cat → doc10

home → doc1,doc7,doc10

....

index

„Dogs at home“

Q= {dog,

dogs,

hound,

home}
retrieval

relevance ranking

sim(Q,doc1) = .2

sim(Q,doc4) = .4

sim(Q,doc10) = .6

result

doc10

doc4

doc1

3

2

1

4

• In the online mode, users can search for

documents. The query is analyzed similarly

to the documents in the offline mode, but

often we apply additional processing to

correct spelling mistakes or to broaden the

search with synonyms. The retrieval, finally,

is a comparison at the feature level. We

assume that two documents that have

similar features also are similar in content.

Hence, if the features of the query are close

to the ones of the document, the document

is considered a good match.

• In more detail, the following steps occur

during the offline mode:

1) User enters a query (or speech/

handwriting recognition)

2) We extract features like for the

documents, and transform the query as

necessary (e.g., spelling mistakes)

3) We use the query features to search the

index for document with similar features

4) We rank the documents (retrieval status

value, RSV) and return best documents

d

2.1.1 Text Retrieval – Overview

Page 2-7Multimedia Retrieval – 2018

2.1.2 The Retrieval Problem

Given

– 𝑁 text documents 𝔻 = (𝐷1, … , 𝐷𝑁) and the Query 𝑄 of the user

Problem

– find ranked list of documents which match the query well; ranking with respect to
relevance of document to the query

• We will consider the following parts of the problem in this chapter:

– Feature extraction (words, phrases, n-grams, stemming, stop words, thesaurus)

– Retrieval model (Boolean retrieval, vector space retrieval, probabilistic retrieval)

– Index structures (inverted list, relational database)

– Ranking of retrieved documents (RSV)

• We also look at a concrete implementation. Lucene is an open source project that provide
reach text retrieval for many languages and environments.

2.1.2 The Retrieval Problem

Page 2-8Multimedia Retrieval – 2018

2.2 Feature Extraction

• Normally, we do not search through documents with string operations. Rather, we extract

characteristic features that describe the essence of the document in a concise way, and operate on

these features only. In this chapter, we first look at lower level features that relate directly to the

character sequence. Later on, we extract higher level features, for instance, classifiers, that describe

the content with more abstract concepts.

• Feature extraction comprises of several steps which we subsequently analyze in more details:

• We are also looking into the python package NLTK which is a good starting point for advanced text

processing. To get ready, ensure (as required for your Python environment):

sudo pip install -U nltk # or pip3

sudo pip install -U numpy # or pip3

python # or python3

import nltk

nltk.download() # select: popular or all-nltk

• Apache OpenNLP is a good package for the Java world (also available through Lucene)

2.2 Feature Extraction

1. Cleanse document and reduce to sequence of characters

2. Create tokens from sequence

3. Tag token stream with additional information

4. Lemmatization, spell checking, and linguistic transformation

5. Summarize to feature vector (given a vocabulary)

Page 2-9Multimedia Retrieval – 2018

HTML

• Example of Feature Extraction

2.2 Feature Extraction

cleanse

In the year 1878 I took my degree of

Doctor of Medicine of the University of

London, and proceeded to Netley to go

through the course prescribed for

surgeons in the army. Having completed

my studies there, I was duly attached to

the Fifth Northumberland Fusiliers as

Assistant Surgeon. The regiment was

stationed in India at the time, and before

I could join it, the second Afghan war

had broken out. On landing at Bombay,

I learned that my corps had advanced

through the passes, and was already

deep in the enemy's country. I …

tokenize

(IN,1) (THE,2) (YEAR,3) (1878,4) (I,5) (TOOK,6)

(MY,7) (DEGREE,8) (OF,9) (DOCTOR,10)

(OF,11) (MEDICINE,12) (OF,13) (THE,14)

(UNIVERSITY,15) (OF,16) (LONDON,17) (‘,’,18)

(AND,19) (PROCEEDED,20) (TO,21)

(NETLEY,22) (TO,23) (GO,24) (THROUGH,25)

(THE,26) (COURSE,27) (PRESCRIBED,28)

(FOR,29) (SURGEONS,30) (IN,31) (THE,32)

(ARMY,33) (‘.’,34) (HAVING,35)

(COMPLETED,36) (MY,37) (STUDIES,38)

(THERE,39) (‘,’,40) (I,41) (WAS,42) (DULY,43)

(ATTACHED,44) (TO,45) (THE,46) (FIFTH,47)

(NORTHUMBERLAND,48) (FUSILIERS,49)

(AS,50) (ASSISTANT,51) (SURGEON,52) …

ta
g

g
in

g

(IN,1,<IN>) (THE,2,<DT>) (YEAR,3,<NN>)

(1878,4,<CD>) (I,5,<PRP>) (TOOK,6,<VBD>)

(MY,7,<PRP$>) (DEGREE,8,<NN>) (OF,9,<IN>)

(DOCTOR,10,<NNP>) (OF,11,<IN>)

(MEDICINE,12,<NNP>) (OF,13,<IN>)

(THE,14,<DT>) (UNIVERSITY,15,<NNP>)

(OF,16,<IN>) (LONDON,17,<NNP>) (‘,’,18,<,>)

(AND,19,<CC>) (PROCEEDED,20,<VBD>)

(TO,21,<TO>) (NETLEY,22,<NNP>)

(TO,23,<TO>) (GO,24,<VB>)

(THROUGH,25,<IN>) (THE,26,<DT>)

(COURSE,27,<NN>) (PRESCRIBED,28,<VBD>)

(FOR,29,<IN>) (SURGEONS,30,<NNS>)

(IN,31,<IN>) (THE,32,<DT>) …

lemmatize

(IN,1,<IN>) (THE,2,<DT>) (YEAR,3,<NN>)

(1878,4,<CD>) (I,5,<PRP>) (TAKE,6,<VBD>)

(MY,7,<PRP$>) (DEGREE,8,<NN>) (OF,9,<IN>)

(DOCTOR,10,<NNP>) (OF,11,<IN>)

(MEDICINE,12,<NNP>) (OF,13,<IN>)

(THE,14,<DT>) (UNIVERSITY,15,<NNP>)

(OF,16,<IN>) (LONDON,17,<TOWN>) (‘,’,18,<,>)

(AND,19,<CC>) (PROCEED,20,<VBD>)

(TO,21,<TO>) (NETLEY,22,<NNP>)

(TO,23,<TO>) (GO,24,<VB>)

(THROUGH,25,<IN>) (THE,26,<DT>)

(COURSE,27,<NN>) (PRESCRIBE,28,<VBD>)

(FOR,29,<IN>) (SURGEON,30,<NNS>)

(IN,31,<IN>) (THE,32,<DT>) …

summarize

(YEAR, 10)

(MEDICINE, 20)

(HOLMES, 203)

(SURGEON, 20)

(LONDON, 109)

(ATTACH, 80)

(UNIVERSITY, 53)

(DULY, 200)

(FIFTH, 19)

(NETLEY, 7)

(WATSON,107)

(DOCTOR, 83)

PRESCRIBE, 17)

(NORTHUMBERLAND, 1) vocabulary

Page 2-10Multimedia Retrieval – 2018

2.2.1 Step 1: Cleanse Document (with the example of HTML)

• Text documents come in various formats like HTML, PDF, EPUB, or plain text. The initial step is to

extract meta information and the sequence of characters that make up the text stream. This may

include structural analysis of the document, encoding adjustments, and the identification of relevant

information for the feature extraction. We do not want to index control sequences!

• Let us look at a simple example in HTML. The following snippet contains the rough structure of a

web page. The first step is to identify which parts contain meaningful information. The header has

rich meta information, the body contains the main text parts. Even though HTML is a well-defined

standard, extracting information (so-called scraping) requires analysis of the data structure used for

the documents. A web search engine simply considers everything.

2.2.1 Step 1: Cleanse Document (with the example of HTML)

<html>

<head>

<title> MMIR - SS01 </title>

<meta name=„keywords“

content=„multimedia, information,

retrieval, course“>

</head>

<body>

...

...

</body>

</html>

Header:

Contains meta-information about

the document. We can use this

information both for adding

relevant features as well as

cataloguing the document.

Body:

Contains the main content

enriched with markups. The flow

of the document is not always

obvious and may look different on

screen than in the file

Page 2-11Multimedia Retrieval – 2018

• Meta data: the Web standards provide ways to define meta-information such as:

– URI of page: (may contain concise key words)
http://www-dbs.ethz.ch/~mmir/

– Title of document: (concise summary of what to expect)
<title>Multimedia Retrieval - Homepage</title>

– Meta information in header section: (enriched information provided by author)
<meta name=“keywords” content=“MMIR,information,retrieval,”>

<meta name=“description” content=“This will change your life…”>

The typical approach is to use the meta data for both the catalogue entry of the document and the

text sequence. If we know the context of web pages, we can extract more accurate information.

• Body Text: the body subsumes all text blocks and tags them to control presentation. The flow on

the page must not necessarily follow the order in the HTML file, but its typical a good enough

approximation. Some of the tags provide useful additional information on the text pieces:

– Headlines: <h1>2. Information Retrieval </h1>

– Emphasized: Please read carefully!

or <i>Information Retrieval</i>

A typical approach is to add meta information into the text stream to use the HTML tags during the

processing steps. For instance, we could assign more weights to bold-faced terms.

• Encoding: most formats provide escape sequences or special characters, that need to be

normalized. Furthermore, each document may use a different encoding which may lead to

difficulties when searching for terms due to differences in representations

– -> space, ü -> ü

– Transformation to Unicode, ASCII or other character set

2.2.1 Step 1: Cleanse Document (with the example of HTML)

Page 2-12Multimedia Retrieval – 2018

• Web pages contain links. How do we handle them best? They describe relationships between

documents and can add to the description of the current document. But more importantly, they also

describe the referenced document. As authors of web pages keep link texts rather small, the set of

keywords used by links is an good source for additional keywords in the referenced document.

– Embedded objects (image, plug-ins):
<IMG SRC=„img/MeAndMyCar.jpeg"

ALT="picture of me in front of my car">

– Links to external references:

read this important note

– Approach: Usually, the link text is associated with both the embedding and the linked document.

However, we may weight keywords much higher when describing the referenced document with

it. However, be aware of the effectiveness of such an approach, e.g., when considering click

baits (promises much more than the referenced documents reveal) or navigational hints (“click

here”, “back to main page”). We will look into this in the Web Retrieval chapter in more details.

2.2.1 Step 1: Cleanse Document (with the example of HTML)

Page 2-13Multimedia Retrieval – 2018

2.2.2 Step 2: Create Tokens

• Segmentation: consider a book with several chapters, sections, paragraphs, and sentences. The

goal of segmentation is to extract this meta structure from the text (often with the information

provided by the previous step). While the broader segmentations (e.g., chapters) require control

information from the document, sentence segmentation is possible on the text stream alone:

– If we observe a ? or a !, a sentence ends (quite unambiguous, but this line is an exception)

– The observation of a . (period) is rather ambiguous: it is not only used for sentence boundaries,

but also in abbreviations, numbers, and ellipses that do not terminate a sentence

– Some language specifics like ¿ in Spanish

– Sentence-final particles that do not carry content information but add an effect to the sentence

• Japanese: か ka: question. It turns a declarative sentence into a question.

っけ kke: doubt. Used when one is unsure of something.

な na: emotion. Used when one wants to express a personal feeling.

• English: Don't do it, man. The blue one, right? The plate isn't broken, is it?

• Spanish: Te gustan los libros, ¿verdad? Le toca pasar la aspiradora, ¿no?

– A good heuristic works as follows (95% accuracy with English):

– The approach in NLTK uses a trained method (Punkt) to determine sentence boundary.

2.2.2 Step 2: Create Tokens

1. If it is a ‘?’ or ‘!’, the sentence terminates

2. If it is a ‘.’, then

a. if the word before is a known abbreviation, then the sentence continues

b. if the word afterwards starts with capital letter, then the sentence terminates

Page 2-14Multimedia Retrieval – 2018

• Token Generation: There are different ways to create tokens: a) Fragments of words, b) Words,

and c) Phrases (also known a n-grams).

– Fragments of words: an interesting approach in fuzzy retrieval is to break open words and

extract sequences of characters (so-called k-grams) from the text stream. For example:

street → str, tre, ree, eet

streets → str, tre, ree, eet, ets

strets → str, tre, ret, ets

An obvious advantage is that different inflections still appear similar at the fragment level. It also

compensate for simple misspellings or bad recognition (OCR, speech analysis). Further, no

language specific lemmatization is required afterwards. An early example included EuroSpider a

search engine that used 3-grams to index OCR texts. However, while the technology was

compelling, it has become superficial with the increased recognition and correction capabilities. In

other retrieval scenarios, however, the method is still of interest. Music retrieval, DNA retrieval,

and Protein Sequencing use fragments to model a sequence. In linguistic analysis, n-grams of

words also play an important role for colocation analysis.

– Words: using words as terms is the straightforward approach. But there as some subtle issues to

deal with. For instance, how do you tokenize the following sequences?

Finland’s capital → Finland, Finlands, or Finland’s?

what’re, I’m, isn’t → What are, I am, is not?

l’ensemble → le ensemble?

San Francisco → one token or two?

m.p.h., PhD. → ??

$380.2, 20% → ??

Leuchtrakete → one word or composite word?

2.2.2 Step 2: Create Tokens

Page 2-15Multimedia Retrieval – 2018

– Words (contd): In most languages, tokenization can use (space) separators between words. In

Japanese and Chinese, words are not separated by spaces. For example:

莎拉波娃现在居住在美国东南部的佛罗里达。

莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达

Sharapova now lives in US southeastern Florida

In Japanese, texts can use different formats and alphabets mixed together.

• The conventional approach for tokenization is based on a regular expression to split words.

One way to do so is as follows:

• In addition, we may want to consider the special expressions/controls in the environment like

hashtags (#blowsyourmind), user references (@thebigone), emoticons (☺), or control

sequences in the format (e.g., wiki).

• NLTK uses the Treebank tokenizer and the Punkt tokenizer depending on the language. There

are a few simpler methods that split sequences on whitespaces or regular expression.

• For Japanese and Chinese, we identify token boundaries with longest matches that lead a

known word from the dictionary. This approach would not work in other languages if we would

omit spaces.

1. Match abbreviations with all upper case characters (e.g., U.S.A.)

2. Match sequences of word characters including hyphens (-) and apostrophes (‘)

3. Match numbers, currencies, percentage, and similar ($2.3, 20%, 0.345)

4. Match special characters and sequences (e.g., … ; “” ’’ () [])

2.2.2 Step 2: Create Tokens

Page 2-16Multimedia Retrieval – 2018

• Phrases: we have seen some examples, where it seems more appropriate to consider several

words as a singular term (e.g., New York, San Francisco, Sherlock Holmes). In other examples, the

combinations of two or more words can change or add to the meaning beyond the words. Examples

include express lane, crystal clear, middle management, thai food, Prime Minister, and other

compounds. To capture them, we can extract so-called n-grams from the text stream:

However, this leads to many meaningless compounds such as “the house”, “I am”, “we are”, or “it is”

which are clearly not interesting to us. More over, we generate thousands of new term groups that

are just accidentally together (like “meaningless compounds” or “better control” in this paragraph).

To better control the selection of n-grams, various methods have been proposed. We consider here

only two simple and intuitive measures:

– A simple approach is to reject n-grams that contain at least one so-called stop word. A stop word

is a linguistic element that bears little information in itself. Examples include: a, the, I, me, your,

by, at, for, not, … Although very simple, this already eliminates vast amounts of useless n-grams.

– Pointwise Mutual Information (PMI). For simplicity, we consider only the case of 2-grams but

generalization to n-grams is straightforward. The general idea is that the 2-gram is interesting

only if it occurs more frequently than the individual distributions of the two terms would suggest

(and assuming they are independent). To this end, we can compute the Pointwise Mutual

Information 𝑝𝑚𝑖 for two terms 𝑡1 and t2 as follows:

1. Extract the base terms (as discussed before)

2. Iterate through the term sequence

• Add 2-grams, 3-grams, …, n-grams over subsequent terms at a given position

𝑝𝑚𝑖 𝑡1, 𝑡2 = log
𝑝 𝑡1, 𝑡2

𝑝 𝑡1 ∙ 𝑝 𝑡2
= log

𝑝 𝑡1 𝑡2
𝑝 𝑡1

= log
𝑝 𝑡2 𝑡1
𝑝 𝑡2

= log𝑝 𝑡1, 𝑡2 − log𝑝 𝑡1 − log𝑝 𝑡2

2.2.2 Step 2: Create Tokens

Page 2-17Multimedia Retrieval – 2018

– Pointwise Mutual Information (contd): Let 𝑝 𝑡𝑗 be the probability that we observe the term 𝑡𝑗 in

the text. We compute this probability with a maximum likelihood approach. Let 𝑀 be the number

of different terms in the collection and 𝑡𝑓 𝑡𝑗 be the so-called term frequency of term 𝑡𝑗 with a

total of 𝑁 occurrences of terms in the text. We then obtain 𝑝 𝑡𝑗 as follows:

Now, assume we have two terms 𝑡1 and 𝑡2. If they are independent from each other, then the

probability 𝑝 𝑡1, 𝑡2 of their co-occurrence is the product of their individual probabilities 𝑝 𝑡𝑗 and

the 𝑝𝑚𝑖 becomes 0. If 𝑡2 always follows 𝑡1, then 𝑝 𝑡2 𝑡1 = 1 and the 𝑝𝑚𝑖 is positive and large. If

𝑡2 never follows 𝑡1, then 𝑝 𝑡2 𝑡1 = 0 and 𝑝𝑚𝑖 = −∞. Hence, we keep 2-grams if their 𝑝𝑚𝑖 is

positive and large, and otherwise dismiss them. In addition, we dismiss infrequent 2-grams with

𝑡𝑓 𝑡1, 𝑡2 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to avoid accidental co-occurrences with high 𝑝𝑚𝑖 (seldom words):

𝑝 𝑡𝑗 =
𝑡𝑓 𝑡𝑗
𝑁

∀𝑗: 1 ≤ 𝑗 ≤ 𝑀

Bigram 𝑡𝑓(𝑡1) 𝑡𝑓(𝑡𝟐) 𝑡𝑓(𝑡𝟏, 𝒕𝟐) 𝑝𝑚𝑖(𝒕𝟏, 𝒕𝟐)

salt lake 11 10 10 11.94

halliday private 5 12 5 11.81

scotland yard 8 9 6 11.81

lake city 10 23 9 10.72

private hotel 12 14 6 10.59

baker street 6 29 6 10.54

brixton road 15 28 13 10.38

jefferson hope 37 56 34 9.47

joseph stangerson 13 47 10 9.46

enoch drebber 8 62 8 9.44

old farmer 39 9 5 9.26

john rance 39 10 5 9.11

john ferrier 39 62 29 9.01

sherlock holmes 52 98 52 8.78

2.2.2 Step 2: Create Tokens

similarly: 𝑝 𝑡1, 𝑡2 =
𝑡𝑓 𝑡1, 𝑡2

𝑁

Page 2-18Multimedia Retrieval – 2018

2.2.3 Step 3: Tagging of Tokens

• A simple form of tagging is to add position information to the tokens. Usually, this is already done at

token generation time (term position in stream).

• For natural language processing, tagging associates a linguistic or lexical category to the term. With

Part of Speech (POS), we label terms as nouns, verbs, adjectives, and so on. Based on this

information, we can construct tree banks to define the syntactic and semantic structure of a

sentence. Tree banks have revolutionized computational linguistic in the 1990s with “The Penn

Treebank” as first large-scale empirical data set. It defines the following tags:

2.2.3 Step 3: Tagging of Tokens

Tag Description

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

Tag Description

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

WH-words are: where,

what, which, when, …

with NLTK, use
nltk.help.upenn_tagset()

Proper nouns are specific

people, places, things.

Page 2-19Multimedia Retrieval – 2018

• NLTK also provides a simpler variant with the universal POS tagset. It is based on the same

(machine learning) approach as Penn Treebank but maps tags to a smaller/simpler set. Here is an

example together with the number of occurrences in “A Study in Scarlet”:

POS tags are the basis for natural language processing (NLP). They are used to define a parse tree

which allows the extraction of context and the transformation of sentences. Named entities is one

such transformation. Based on the initial POS tagging and with the help of a entity database,

individual tokens or groups of tokens are collapsed to a single named entity.

Chunking is the more generic technique. We can define a simple grammar which is used to
construct non-overlapping phrases (NP). For example, the grammar “NP: {<DT>?<JJ>*<NN>}“

collapses a sequence of article, adjectives, and noun into a new group.

Tag Description Freq Examples

ADJ adjective 2812 new, good, high, special, big, local

ADP adposition 5572 on, of, at, with, by, into, under

ADV adverb 2607 really, already, still, early, now

CONJ conjunction 1711 and, or, but, if, while, although

DET determiner, article 5307 the, a, some, most, every, no, which

NOUN noun 9358 year, home, costs, time, Africa

NUM numeral 354 twenty-four, fourth, 1991, 14:24

PRT particle 1535 at, on, out, over per, that, up, with

PRON pronoun 5705 he, their, her, its, my, I, us

VERB verb 8930 is, say, told, given, playing, would

. punctuation marks 7713 . , ; !

X other 36 ersatz, esprit, dunno, gr8, univeristy

2.2.3 Step 3: Tagging of Tokens

Page 2-20Multimedia Retrieval – 2018

2.2.4 Step 4: Lemmatization and Linguistic Transformation

• Lemmatization and linguistic transformation are necessary to match query terms with document

terms even if they use different inflections or spellings (colour vs. color). Depending on the scenario,

one or several of the following methods can be applied.

• A very common step is stemming. In most languages, words appear in many different inflected

forms depending on time, case, or gender. Examples:

– English: go, goes, went, going, house, houses, master, master’s

– German: gehen, gehst, ging, gegangen, Haus, Häuser, Meister, Meisters

As we see from the example, the inflected forms vary greatly but essentially do mean the same. The

idea of stemming is to reduce the term to a common stem and use this stem to describe the context.

In many languages, like German, stemming is challenging due to its many irregular forms and the

use of strong inflection (gehen → ging). In addition, some languages allow the construction of “new

terms” through compound techniques which may lead to arbitrarily long words:

– German (law in Mecklenburg-Vorpommern, 1999-2013): Rinderkennzeichnungs- und

Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz. Literally ‘cattle marking and

beef labeling supervision duties delegation law’

– Finnish: atomiydinenergiareaktorigeneraattorilauhduttajaturbiiniratasvaihde. Literally 'atomic

nuclear energy reactor generator condenser turbine cogwheel stage’

In many cases, we want to decompose the compounds to increase chances to match against query

terms. Otherwise, we may never find that German cattle law with a query like “Rind

Kennzeichnung”. On the other side, breaking a compound may mislead from the true meaning

– German: Gartenhaus → Garten, Haus (ok, not too far away from the true meaning)

– German: Wolkenkratzer → Wolke, Kratzer (no, this is completely wrong)

2.2.4 Step 4: Lemmatization and Linguistic Transformation

Page 2-21Multimedia Retrieval – 2018

• For English, the Porter Algorithm determines a near-stem of words that is not linguistic correct but

in most cases, words with the same linguistic stem are reduced to same near-stem. The algorithm is

very efficient and several extensions have been proposed in the past. We consider here the original

version of Martin Porter from 1980:

– Porter defines character v as a „vocal“ if

• it is an A, E, I, O, U

• it is a Y and the preceding character is not a „vocal“ (e.g. RY, BY)

– All other characters are consonants (c)

– Let C be a sequence of consonants, and let V be a sequence of vocals

– Each word follows the following pattern:

• [C](VC)m[V]

• m is the measure of the word

– further:

• *o: stem ends with cvc; second consonant must not be W, X or Y (-WIL, -HOP)

• *d: stem with double consonant (-TT, -SS)

• *v*: stem contains a vocal

– The following rules define mappings for words with the help of the forms introduced above. m is

used to avoid overstemming of short words.

Source: Porter, M.F.: An Algorithm for Suffix Stripping. Program, Vol. 14, No. 3, 1980

2.2.4 Step 4: Lemmatization and Linguistic Transformation

Page 2-22Multimedia Retrieval – 2018

– Porter algorithm - extracts (1)

2.2.4 Step 4: Lemmatization and Linguistic Transformation

Step 1

SSES -> SS caresses -> caress

IES -> I ponies -> poni

SS -> SS caress -> caress

S -> cats -> cat

(m>0) EED ->EE feed -> feed

(*v*) ED -> plastered -> plaster

(*v*) ING -> motoring -> motor

... (further rules)

Step 2

(m>0) ATIONAL -> ATE relational -> relate

(m>0) TIONAL -> TION conditional -> condition

(m>0) ENCI -> ENCE valenci -> valence

(m>0) IZER -> IZE digitizer -> digitize

... (further rules)

Rule Examples

a)

b)

Page 2-23Multimedia Retrieval – 2018

Step 3

(m>0) ICATE -> IC triplicate -> triplic

(m>0) ATIVE -> formative -> form

(m>0) ALIZE -> AL formalize -> formal

... (further rules)

Step 4

(m>1) and (*S or *T)ION -> adoption -> adopt

(m>1) OU -> homologou -> homolog

(m>1) ISM -> platonism -> platon

... (further rules)

Step 5

(m>1) E -> rate -> rate

(m=1) and (not *o)E -> cease -> ceas

(m>1 and *d and *L) -> single letter controll -> control

Rule Examples

a)

b)

– Porter algorithm - extracts (2)

2.2.4 Step 4: Lemmatization and Linguistic Transformation

Page 2-24Multimedia Retrieval – 2018

• There are several variants and extensions of the Porter Algorithm. Lancaster uses a more

aggressive stemming algorithm that can result in almost obfuscated stems but at increased

performance. Snowball is a set of rule based stemmers for many languages. An interesting aspect

is the domain specific language to define stemmers, and compilers to generate code in many

computer languages.

• In contrast to the rule based stemmers, a dictionary based stemmer reduces terms to a linguistic

correct stem. This comes at additional stemming costs and the need to maintain a dictionary. The

EuroWordNet initiative develops a semantic dictionary for many of the European languages. Next to

words, the dictionary also contain all inflected forms, a simplified rule-based stemmer for regular

inflections, and semantic relations between words (so-called ontologies).

– Examples of such dictionaries / ontologies:

• EuroWordNet: http://www.illc.uva.nl/EuroWordNet/

• GermaNet: http://www.sfs.uni-tuebingen.de/lsd/

• WordNet: http://wordnet.princeton.edu/

– We consider in the following the English version of WordNet with its stemmer Morphy. It consists

of three parts

• a simple rule-based stemmer for regular inflections (-ing, -ed, …)

• an exception list for irregular inflections

• a dictionary of all possible stems of the language

2.2.4 Step 4: Lemmatization and Linguistic Transformation

Page 2-25Multimedia Retrieval – 2018

– The rule-based approach is quite similar to the Porter rules but they

only apply to certain word types (noun, verb, adjective).

– The stemming works as follows:

2.2.4 Step 4: Lemmatization and Linguistic Transformation

Type Suffix Ending

NOUN s

NOUN ses s

NOUN xes x

NOUN zes z

NOUN ches ch

NOUN shes sh

NOUN men man

NOUN ies y

VERB s

VERB ies y

VERB es e

VERB es

VERB ed e

VERB ed

VERB ing e

VERB ing

ADJ er

ADJ est

ADJ er e

ADJ est e

1. Search the current term in the dictionary. If found, return the term as its

own stem (no stemming required)

2. Search the current term in the exception lists. If found, return the

associated linguistic stem (see table below)

3. Try all rules as per the table on the right. Replace the suffix with the

ending (we may not know the word type, so we try all of them)

a. If a rule matches, search in the indicated dictionary for the reduced

stem. If found, return it as the stem

b. If several rules succeed, choose the more likely stem

Example: axes → axis, axe

4. If no stem is found, return the term as its own stem

adj.exc (1500):

...

stagiest stagy

stalkier stalky

stalkiest stalky

stapler stapler

starchier starchy

starchiest starchy

starer starer

starest starest

starrier starry

starriest starry

statelier stately

stateliest stately

...

noun.exc (2000):

...

neuromata neuroma

neuroptera neuropteron

neuroses neurosis

nevi nevus

nibelungen nibelung

nidi nidus

nielli niello

nilgai nilgai

nimbi nimbus

nimbostrati nimbostratus

noctilucae noctiluca

...

verb.exc (2400):

...

ate eat

atrophied atrophy

averred aver

averring aver

awoke awake

awoken awake

babied baby

baby-sat baby-sit

baby-sitting baby-sit

back-pedalled back-pedal

back-pedalling back-pedal

backbit backbite

...

Page 2-26Multimedia Retrieval – 2018 2.2.4 Step 4: Lemmatization and Linguistic Transformation

• NLTK supports Porter, Lancaster, Snowball and WordNet stemmers. An example of all stemmers at

works yields the following table for comparison. Note that the Morphy implementation in NLTK

requires a hint for the word type, otherwise it considers the term as a noun.

Term Porter Stem Lancaster Stem Snowball Stem WordNet Stem

took took took took take

degree degre degr degre degree

doctor doctor doct doctor doctor

medicine medicin medicin medicin medicine

university univers univers univers university

proceeded proceed process proceed proceed

course cours cours cours course

surgeons surgeon surgeon surgeon surgeon

army armi army armi army

completed complet complet complet complete

studies studi study studi study

there there ther there there

was wa was was be

duly duli duly duli duly

fifth fifth fif fifth fifth

fusiliers fusili fusy fusili fusiliers

assistant assist assist assist assistant

regiment regiment regy regiment regiment

stationed station stat station station

time time tim time time

afghan afghan afgh afghan afghan

had had had had have

broken broken brok broken break

Page 2-27Multimedia Retrieval – 2018

• When analyzing text or parsing a user query, we will come across homonyms (equal terms but

different semantics) and synonyms (different terms but equal semantics). Homonyms may require

additional annotations from the context to extract the proper meaning. Synonyms are useful to

expand a user query if the original search is not (that) successful. Examples:

– Homonyms (equal terms but different semantics):

• bank (shore vs. financial institute)

– Synonyms (different terms but equal semantics):

• walk, go, pace, run, sprint

WordNet groups English words into so-called synsets or synonym sets and provides short

definitions of their usage. Furthermore, it contains further relations among these synsets:

– Hypernyms (umbrella term) / Hyponym (species)

• Animal dog, cat, bird, ...

– Holonyms (is part of) / Meronyms (has parts)

• door lock

These relationships define a knowledge structure. The hypernym/hyponym relationship defines a

hierarchy with synsets at each level and the unique beginner synset “entity”. We can use this

structure to derive further information or context data for our annotations. For instance, if we find the

term horse, we can try to derive whether the text is about an animal or about a chess figure.

– NLTK provides the corpus nltk.corpus.wordnet which provides access to the WordNet knowledge

structure. You can also browse through the structure online.

• Spell checking: for user queries, we often use spell checkers to fix simple misspellings or to

suggest corrected versions of the terms. Most systems provide a fuzzy search which automatically

looks for similar terms and adds them to the query if necessary (see Lucene later on)

2.2.4 Step 4: Lemmatization and Linguistic Transformation

Page 2-28Multimedia Retrieval – 2018

2.2.5 Step 5: Summarize to Feature Vector

• Before we can create a feature vector, we first must define the vocabulary and decide how to

statistically summarize the term information.

• Vocabulary: how many different terms does a collection of documents contain? Church and Gale

gave a very good and rough estimator: the number of distinct terms is about the square root of the

number of tokens in the entire collection. But not all of these terms are equally important for the

retrieval task. So how can we find the most important ones?

– We usually normalize terms before we add them to the vocabulary (but this is not necessary). As

discussed in the previous section, we may end up with near-stems or real stems of the words.

Normalization not only reduces the size of vocabulary but it also merges different terms with

(mostly) the same meaning. For instance:

• we can consider the set {cat, cats, cat’s, cats’} as 4 individual terms or as a single term

• we can treat a synset as one term or each constituent of the synset as an individual term

– Regardless of the chosen method to extract and normalize terms, we want to eliminate terms that

do not help us much with describing the content of the document. For instance, the term ‘it’ is

used in almost every English text and bears little information about the content. So we may want

to ignore these so-called stop words; here some examples for English:

2.2.5 Step 5: Summarize to Feature Vector

i me my myself we our ours ourselves you your yours yourself yourselves he him his himself she her hers herself it

its itself they them their theirs themselves what which who whom this that these those am is are was were be been

being have has had having do does did doing a an the and but if or because as until while of at by for with about

against between into through during before after above below to from up down in out on off over under again further

then once here there when where why how all any both each few more most other some such no nor not only own

same so than too very s t can will just don should now d ll m o re ve y ain aren couldn didn doesn hadn hasn haven

isn ma mightn mustn needn shan shouldn wasn weren won wouldn

Page 2-29Multimedia Retrieval – 2018

– Stop word elimination is very common but bears some risks if not done carefully. In the example

before, we stated that “it” is not meaningful to distinguish English texts. But consider this:

• Stephen King wrote a book “It” – We never will find this book if we eliminate ‘it’ as a stop word

• If we write IT we actually mean information technology – even though it looks like our ‘it’, the

big IT is a homonym with a very distinct meaning

• What do you get if you search the web for ‘it’?

– The other extreme case are seldom terms (or bigrams, n-grams) that only appear once in the

entire collection. This multimedia retrieval course is the only one containing the bigram

endoplasmic reticulum. Is it worth to index this bigram? Is any student ever going to search for

this in a computer science collection? If this is unlikely, why bother with such terms.

• We already considered the 𝑝𝑚𝑖 earlier when we extracted n-grams from the text. 𝑝𝑚𝑖 is a

simple measure to reduce the numbers of n-grams that we want to consider. Without such a

control, we would end up with excessive numbers of terms. According to the Oxford English

Dictionary, there are about 170’000 currently used words in English. With bigrams, the potential

number is in the billions, and with n-grams (and large corpuses) we may obtain trillions of

combinations (upper bound by the number of tokens in the collection). Google’s n-gram viewer

has 1 trillion tokens but “only” 13 million n-grams. Clearly, rare combinations were taken off the

vocabulary. So filtering rare terms is an important step.

– A final issue are spelling mistakes. Britney, Britni, Bridney, Britnei all appear similar but are

different terms for our retrieval system. Misspellings not only blow up our vocabulary (consider all

spelling mistakes ever done by all people!), but they also make it impossible to retrieve the

content by the correct spelling. On the other side, all of the names given before do also exist

(maybe in some cases the parents misspelled the name on the form)

2.2.5 Step 5: Summarize to Feature Vector

Page 2-30Multimedia Retrieval – 2018

– A pragmatic approach to control vocabulary size is based on Zipf’s law. Let 𝑁 be the total

number of term occurrences (tokens) in the collection and 𝑀 be the number of distinct terms in

the vocabulary. We already used the term frequency 𝑡𝑓 𝑡 to denote the number of occurrences

of term 𝑡. Now, let us order all terms by decreasing term frequencies and assign 𝑟𝑎𝑛𝑘(𝑡) to term

𝑡 based on that order. The central theorem of Zip’s law is that the probability 𝑝𝑟 of randomly

selecting the term 𝑡 with 𝑟𝑎𝑛𝑘 𝑡 = 𝑟 from the collection is

In other words, we always get the same constant value 𝑐 ∙ 𝑁 if we multiply the rank of a term with

its term frequency. Or we can estimate the rank of a term 𝑡 as: 𝑟𝑎𝑛𝑘 𝑡 = 𝑐 ∙
𝑁

𝑡𝑓(𝑡)
. We can easily

compute 𝑐 as a function of 𝑀 as follows:

With this we get a simple lookup table for 𝑐 given the number 𝑀 of distinct terms:

𝑝𝑟 =
𝑐

𝑟
=

𝑡𝑓 𝑡

𝑁
for the term 𝑡 with 𝑟𝑎𝑛𝑘 𝑡 = 𝑟. 𝑐 is a constant depending only on 𝑀

1 =

𝑟=1

𝑀

𝑝𝑟 =

𝑟=1

𝑀
𝑐

𝑟
= 𝑐 ∙

𝑟=1

𝑀
1

𝑟
𝑐 =

1

σ𝑟=1
𝑀 1

𝑟

≈
1

0.5772 + ln𝑀→

𝑀 5’000 10’000 50’000 100’000

𝑐 0.11 0.10 0.09 0.08

2.2.5 Step 5: Summarize to Feature Vector

Page 2-31Multimedia Retrieval – 2018

– The right hand figure shows the Zipf

distribution. As discussed, the most

frequent words (above the upper cut-off

line) bear little meaning as they occur in

almost every text. The least frequent

words (below the lower cut-off) appear

too seldom to be used in queries and

only discriminate a few documents. The

range of significant words lies in between

the lower and upper cut-off.

– Originally, the idea was to define

threshold and eliminate the words

outside the indicated range. This would

save memory and speed up search. This

has become irrelevant.

– Today, the typical approach is to

eliminate only stop words from a short well-maintained list, or to keep even all terms as the

additional (storage) overhead is minimal. In the latter case, we use weights depending on the

frequency of terms. Or more generically, based on the discriminative power the terms possess.

With this weights, we can express how well a term can distinguish between relevant and non-

relevant documents. The figure above indicates that power of discrimination with the red plot.

Note that even though the very rare terms are directly pointing to the relevant documents, they

are also rarely used in queries and, hence, their expected discrimination power is low. The best

terms are those, that divide documents clearly (contain term, do not contain term) and are

frequently used in queries.

rank

fr
e
q
u
e
n
c
y

u
p
p
e
r

c
u
t-

o
ff

lo
w

e
r

c
u
t-

o
ff

Significant words

discriminating power

2.2.5 Step 5: Summarize to Feature Vector

Page 2-32Multimedia Retrieval – 2018

– Discrimination power: in vector space retrieval, we use the so-called inverse document

frequency to define weights on terms that correspond directly to their discrimination power.

Instead of counting the total number of occurrences as in the term frequency 𝑡𝑓 𝑡 , the document

frequency 𝑑𝑓 𝑡 counts in how many documents the term 𝑡 appears at least once. Let 𝑁 be the

number of documents in the collection. The inverse document frequency 𝑖𝑑𝑓 𝑡 is then given as

(note that there are many similar definitions):

The inverse document frequency denotes a weight on the term used both in the document

description as in the query description. We can estimate the discrimination power of a term 𝑡 by

multiplying the squared 𝑖𝑑𝑓 𝑡 -value with the probability that the term occurs in the query, or its

expected contribution to the ranking (=discrimination power).The figure below shows 𝑖𝑑𝑓-weights

(blue) and discrimination power (red) as a function of the document frequency 𝑑𝑓 and with 𝑁 =
1000 documents.

• Terms with low document frequencies (on the

left side) received the highest 𝑖𝑑𝑓-weights but

as they also seldom appear in queries, their

discrimination power is low

• On the right side, the terms with high document

frequency have both low weights and

discrimination power.

• The terms around 𝑑𝑓 = 100 = 0.1 ∙ 𝑁 have

the highest discrimination power.

𝑖𝑑𝑓 𝑡 = log
𝑁 + 1

𝑑𝑓 𝑡 + 1
= log 𝑁 + 1 − log 𝑑𝑓 𝑡 + 1

0 200 400 600 800 1000

document frequency df

discrimination power idf-weights

2.2.5 Step 5: Summarize to Feature Vector

Page 2-33Multimedia Retrieval – 2018

– The discrimination method provides and alternative to the 𝑖𝑑𝑓-weights. In essence, we want to

measure how much a term is able to discriminate the document collection, or from a different

angle: if we remove the term from the collection, how much more similar do the documents

become without that term. Let 0 ≤ 𝑠𝑖𝑚 𝐷𝑖 , 𝐷𝑗 ≤ 1 denote the similarity between two documents

𝐷𝑖 and 𝐷𝑗 where 0 means the documents are totally dissimilar and 1 means they are identical.

• In a collection with 𝑁 documents, compute the centroid document 𝐶 as the document that

contains all 𝑀 terms with mean frequency over the collection. If t𝑓(𝐷𝑖 , 𝑡𝑗) is the term frequency

of term 𝑡𝑗 in document 𝐷𝑖, then

• We define the density of the collection as the sum of all similarities between documents and

their centroid 𝐶:

• Now assume we remove the term 𝑡 from the collection. We can compute the density 𝑄𝑡 for this

modified collection and then define the discrimination power of term 𝑡 as:

𝑡𝑓 𝐶, 𝑡𝑗 =
1

𝑁
∙

𝑖=1

𝑁

𝑡𝑓(𝐷𝑖 , 𝑡𝑗) for ∀𝑗: 1 ≤ 𝑗 ≤ 𝑀

𝑄 =

𝑖=1

𝑁

𝑠𝑖𝑚 𝐷𝑖 , 𝐶

𝑑𝑝 𝑡 = 𝑄𝑡 − 𝑄

2.2.5 Step 5: Summarize to Feature Vector

Page 2-34Multimedia Retrieval – 2018

• If the discrimination value is large, 𝑄𝑡 is larger than 𝑄. Hence, if we remove the term 𝑡 from the

collection, similarities to the centroid become larger. If we add the term again, documents

become more distinct from their centroid. In other words, the term 𝑡 differentiates the collection

and is hence a significant term. On the other side, if 𝑑𝑝 𝑡 is negative, we conclude that 𝑄 is

larger than 𝑄𝑡. That means if we remove the term from the collection, documents become more

distinct from the centroid. If we add the term again, the documents become more similar to the

centroid. In other words, the term is likely “spamming” the collection and has a (very) negative

impact on describing the documents. For example, if we add the term “hello” a 1’000 times to

each document, they obviously become more similar to each other (and the centroid). Hence,

terms with very small 𝑑𝑝 𝑡 are not significant (or even harmful) to describe the collection.

• We can now select the most useful terms by ordering them by their decreasing 𝑑𝑝 𝑡 -values

and cut-off the list if the discrimination value falls below some threshold value.

• Once the vocabulary is fixed, we can describe documents 𝐷𝑖 by a feature value 𝑑𝑖. The set-of

words model is a simple representation that only considers whether a term is present and

disregards order of terms, number of occurrences, and proximity between terms. The most simple

representation is simply the set of terms appearing at least once, or a binary feature vector where

dimension 𝑗 denotes the presence (= 1) or absence (= 0) of term 𝑡𝑗.

The bag-of-of words model is the more common representation and differs from the set-of-words

by keeping multiplicity of terms. The representation is a feature vector over term frequencies

𝑑𝑖,𝑗 ∈ {0,1}𝑀 , 𝑑𝑖,𝑗 = ൝
1 𝑡𝑓 𝐷𝑖 , 𝑡𝑗 > 0

0 𝑡𝑓 𝐷𝑖 , 𝑡𝑗 = 0
or 𝑑𝑖 = 𝑡𝑗 | 𝑡𝑓 𝐷𝑖 , 𝑡𝑗 > 0

𝑑𝑖,𝑗 ∈ ℕ𝑀 , 𝑑𝑖,𝑗 = 𝑡𝑓 𝐷𝑖 , 𝑡𝑗

2.2.5 Step 5: Summarize to Feature Vector

Page 2-35Multimedia Retrieval – 2018

2.3 Text Retrieval Models

• In the following sections we consider different retrieval models and discuss their advantages and

disadvantages. We only touch the essential method while there many more extensions in the

literature. We will use the following notations in this chapter:

2.3 Text Retrieval Models

Notation Value Range Description

𝔻 𝐷1, … , 𝐷𝑁 Collection of 𝑁 documents

𝐷𝑖 Representation of a document with 1 ≤ 𝑖 ≤ 𝑁

𝕋 𝑡1, … , 𝑡𝑀 Collection of 𝑀 terms

𝑡𝑗 Representation of a term with 1 ≤ 𝑗 ≤ 𝑀

𝒅𝑖 {0,1}𝑀, ℕ𝑀, or ℝ𝑀 Feature description of document 𝐷𝑖 with the 𝑗-the dimension describing document

with regard to term 𝑡𝑗

𝐀 {0,1}𝑀×𝑁, ℕ𝑀×𝑁, or ℝ𝑀×𝑁 Term-document matrix with 𝑎𝑗,𝑖 = 𝑡𝑓(𝐷𝑖 , 𝑡𝑗), that is rows denote terms and columns

denote documents. For instance, the 𝑖-th column is 𝑎:,𝑖 = 𝒅𝑖.

𝑡𝑓 𝐷𝑖 , 𝑡𝑗 ℕ Term frequency of term 𝑡𝑗 in document 𝐷𝑖, i.e., number of occurrences of term 𝑡𝑗 in

document 𝐷𝑖

𝑑𝑓 𝑡𝑗 ℕ Document frequency of term 𝑡𝑗 in the collection 𝔻, i.e., number of documents in 𝔻

that contain term 𝑡𝑗 at least once

𝑖𝑑𝑓(𝑡𝑗) ℝ Inverse document frequency of term 𝑡𝑗 given by

𝑖𝑑𝑓 𝑡𝑗 = log 𝑁 + 1 − log 𝑑𝑓 𝑡𝑗 + 1

𝑄 Representation of a query

𝒒 {0,1}𝑀, ℕ𝑀, or ℝ𝑀 Feature description of query 𝑄 with the 𝑗-the dimension describing query with regard

to term 𝑡𝑗

𝑠𝑖𝑚 𝑄, 𝐷𝑖 [0,1] Similarity between query 𝑄 and document 𝐷𝑖. 0 means dissimilar, 1 means identical

Page 2-36Multimedia Retrieval – 2018

2.3.1 Standard Boolean Model

• The standard Boolean model is the classical text retrieval method introduced in the 1970s. Given

the limited capabilities of computing at this time, it was important that we can answer queries by

considering only the current data set (tape drives were sequential). Even though more advanced

methods were developed, it is still used by many methods and works fairly well.

• As the names suggests, the model operates on Boolean logic over sets of terms. Documents are

represented by sets of words, and queries come from the following grammar:

• To evaluate such queries, we can transform them into their disjunctive normal form

• For each atomic part 𝜏𝑙,𝑘, we can compute the set 𝕊𝑙,𝑘 of documents that contain or do not contain

the term:

2.3.1 Standard Boolean Model

• 𝑄 = 𝑡 Term 𝑡 must be present

• 𝑄 = ¬𝑡 Term 𝑡 must not be present

• 𝑄 = 𝑄1 ∨ 𝑄2 Sub-query 𝑞1 or sub-query 𝑞2 fullfilled

• 𝑄 = 𝑄1 ∧ 𝑄2 Both sub-query 𝑞1 and 𝑞2 fullfilled

𝑄 = 𝜏1,1 ∧ ⋯ ∧ 𝜏1,𝐾1 ∨ ⋯ ∨ 𝜏𝐿,1 ∧ ⋯ ∧ 𝜏𝐿,𝐾𝐿 =ሧ

𝑙=1

𝐿

ሥ

𝑘=1

𝐾𝑙

𝜏𝑙,𝑘

with 𝜏𝑙,𝑘 = 𝑡𝑗(𝑙,𝑘) or 𝜏𝑙,𝑘 = ¬𝑡𝑗(𝑙,𝑘)

𝕊𝑙,𝑘 = ቐ
𝐷𝑖 | 𝑡𝑓 𝐷𝑖 , 𝑡𝑗(𝑙,𝑘) = 1 if 𝜏𝑙,𝑘 = 𝑡𝑗(𝑙,𝑘)

𝐷𝑖 | 𝑡𝑓 𝐷𝑖 , 𝑡𝑗(𝑙,𝑘) = 0 if 𝜏𝑙,𝑘 = ¬𝑡𝑗(𝑙,𝑘)

Page 2-37Multimedia Retrieval – 2018

• The final result ℚ is then a combination of intersections and unions over the sets derived from the

atomic parts

• Advantages: simple model with a clean description of query semantics. Very simple to implement

and intuitive for users. Even though the definition of query evaluation is based on sets, we will see

later in this chapter that the inverted lists provides a very efficient way to compute the inner

intersections of the evaluation (with some restrictions on query structure). The Boolean expression

provides an accurate way to define what relevance means.

• Disadvantages: no (intuitive) control over the size of retrieved documents and a user may get

either too few or too many results. For larger result sets, the lack of ranking requires the user to

browse through the documents to find the best match. Although the query language is simple, users

may find it hard to express a complex information need as a combination of ANDs and ORs. All

terms are treated equally, hence, stop words contribute equally to the result as the most significant

terms. Retrieval quality is ok but other methods (with equal computational complexity) achieve much

better results.

ℚ =ራ

𝑙=1

𝐿

ሩ

𝑘=1

𝐾𝑙

𝕊𝑙,𝑘 =ራ

𝑙=1

𝐿

ሩ

𝑘=1

𝐾𝑙

ቐ
𝐷𝑖 | 𝑡𝑓 𝐷𝑖 , 𝑡𝑗(𝑙,𝑘) = 1 if 𝜏𝑙,𝑘 = 𝑡𝑗(𝑙,𝑘)

𝐷𝑖 | 𝑡𝑓 𝐷𝑖 , 𝑡𝑗(𝑙,𝑘) = 0 if 𝜏𝑙,𝑘 = ¬𝑡𝑗(𝑙,𝑘)

2.3.1 Standard Boolean Model

Page 2-38Multimedia Retrieval – 2018

2.3.2 Extended Boolean Model

• The lack of ranking is a huge handicap of the standard Boolean model. The extended versions of

the Boolean model overcome this drawback: we consider term weights, use a bag of words model,

and apply partial matching similar to the vector space retrieval model. The algebra is still Boolean

but evaluations return a similarity value rather than a 0/1-view. There are several variants but all

following a similar concept

• A document 𝐷𝑖 is represented as a vector 𝒅𝑖 with normalized term frequencies:

Other methods to normalization are possible (like the discrimination value we have seen previously).

A query 𝑄 follows the same structure as in the standard Boolean model, hence:

• For each atomic part 𝜏𝑙,𝑘, we can compute the similarity value 𝑠𝑖𝑚 𝑄 = 𝜏𝑙,𝑘 , 𝐷𝑖 for a document 𝐷𝑖:

2.3.2 Extended Boolean Model

𝑑𝑖,𝑗 = min 1,
𝑡𝑓 𝐷𝑖 , 𝑡𝑗 ∙ 𝑖𝑑𝑓 𝑡𝑗

𝛼
∀𝑗: 1 ≤ 𝑗 ≤ 𝑀 with 𝛼 = max 𝑡𝑓 𝐷𝑖 , 𝑡𝑗 ∙ 𝑖𝑑𝑓 𝑡𝑗 (or some other value)

𝑄 = 𝜏1,1 ∧ ⋯ ∧ 𝜏1,𝐾1 ∨ ⋯ ∨ 𝜏𝐿,1 ∧ ⋯ ∧ 𝜏𝐿,𝐾𝐿 =ሧ

𝑙=1

𝐿

ሥ

𝑘=1

𝐾𝑙

𝜏𝑙,𝑘

with 𝜏𝑙,𝑘 = 𝑡𝑗(𝑙,𝑘) or 𝜏𝑙,𝑘 = ¬𝑡𝑗(𝑙,𝑘)

𝑠𝑖𝑚(𝑄 = 𝜏𝑙,𝑘 , 𝐷𝑖) = ൝
𝑑𝑖,𝑗(𝑙,𝑘) if 𝜏𝑙,𝑘 = 𝑡𝑗(𝑙,𝑘)

1 − 𝑑𝑖,𝑗(𝑙,𝑘) if 𝜏𝑙,𝑘 = ¬𝑡𝑗(𝑙,𝑘)

Page 2-39Multimedia Retrieval – 2018

• There are several variants that calculate the AND and OR operators.

– Fuzzy Algebraic: (only works for two operands)

– Fuzzy Set: (generalization to 𝐾 sub-queries is straight forward)

– Soft Boolean Operator: (generalization to 𝐾 sub-queries is straight forward)

– Paice-Model: order the sub-queries in increasing order of their similarity values for AND

operator, and order the sub-queries in decreasing order of their similarity values for OR. r is a

constant coefficient:

𝑠𝑖𝑚 𝑄1 ∧ 𝑄2, 𝐷𝑖 = 𝑠𝑖𝑚 𝑄1, 𝐷𝑖 ∙ 𝑠𝑖𝑚 𝑄2, 𝐷𝑖
𝑠𝑖𝑚 𝑄1 ∨ 𝑄2, 𝐷𝑖 = 𝑠𝑖𝑚 𝑄1, 𝐷𝑖 + 𝑠𝑖𝑚 𝑄2, 𝐷𝑖 − 𝑠𝑖𝑚 𝑄1, 𝐷𝑖 ∙ 𝑠𝑖𝑚 𝑄2, 𝐷𝑖

𝑠𝑖𝑚 𝑄1 ∧ 𝑄2, 𝐷𝑖 = min{𝑠𝑖𝑚 𝑄1, 𝐷𝑖 , 𝑠𝑖𝑚 𝑄2, 𝐷𝑖 }
𝑠𝑖𝑚 𝑄1 ∨ 𝑄2, 𝐷𝑖 = max{𝑠𝑖𝑚 𝑄1, 𝐷𝑖 , 𝑠𝑖𝑚 𝑄2, 𝐷𝑖 }

𝑠𝑖𝑚 𝑄1 ∧ 𝑄2, 𝐷𝑖 = 1 − 𝛼 ∙ min 𝑠𝑖𝑚 𝑄1, 𝐷𝑖 , 𝑠𝑖𝑚 𝑄2, 𝐷𝑖 + 𝛼 ∙ max 𝑠𝑖𝑚 𝑄1, 𝐷𝑖 , 𝑠𝑖𝑚 𝑄2, 𝐷𝑖 0 ≤ 𝛼 ≤ 0.5
𝑠𝑖𝑚 𝑄1 ∨ 𝑄2, 𝐷𝑖 = 1 − 𝛽 ∙ min 𝑠𝑖𝑚 𝑄1, 𝐷𝑖 , 𝑠𝑖𝑚 𝑄2, 𝐷𝑖 + 𝛽 ∙ max 𝑠𝑖𝑚 𝑄1, 𝐷𝑖 , 𝑠𝑖𝑚 𝑄2, 𝐷𝑖 0.5 ≤ 𝛽 ≤ 1

𝑠𝑖𝑚 ሥ

𝑘=1

𝐾

𝑄𝑘 , 𝐷𝑖 =
σ𝑘=1
𝐾 𝑟𝑘−1 ∙ 𝑠𝑖𝑚 𝑄𝑘, 𝐷𝑖

σ𝑘=1
𝐾 𝑟𝑘−1

with ∀𝑘, 1 ≤ 𝑘 < 𝐾: 𝑠𝑖𝑚 𝑄𝑘, 𝐷𝑖 ≤ 𝑠𝑖𝑚 𝑄𝑘+1, 𝐷𝑖

𝑠𝑖𝑚 ሧ

𝑘=1

𝐾

𝑄𝑘 , 𝐷𝑖 =
σ𝑘=1
𝐾 𝑟𝑘−1 ∙ 𝑠𝑖𝑚 𝑄𝑘, 𝐷𝑖

σ𝑘=1
𝐾 𝑟𝑘−1

with ∀𝑘, 1 ≤ 𝑘 < 𝐾: 𝑠𝑖𝑚 𝑄𝑘, 𝐷𝑖 ≥ 𝑠𝑖𝑚 𝑄𝑘+1, 𝐷𝑖

2.3.2 Extended Boolean Model

Page 2-40Multimedia Retrieval – 2018

– P-Norm-Model:

• Advantages: simple model with a clean description of query semantics. Very simple to implement

and intuitive for users. Even though the definition of query evaluation is rather heuristic,

performance is quite good. With the inverted lists method, there is a very efficient way to compute

the similarity values. In comparison with the standard Boolean model, we now obtain ranked lists

and partial matches, i.e., we can control the size of results to be presented back to the user. Terms

are treated differently based on their term occurrence and their discrimination power.

• Disadvantages: heuristic similarity scores with little intuition why they work well (no theoretic

background for the model). Although the query language is simple, users may find it hard to express

a complex information need as a combination of ANDs and ORs. Retrieval quality is ok but other

methods (with equal computational complexity) achieve better results.

𝑠𝑖𝑚 ሥ

𝑘=1

𝐾

𝑄𝑘 , 𝐷𝑖 = 1 −
𝑝 σ𝑘 1 − 𝑠𝑖𝑚 𝑄𝑘, 𝐷𝑖

𝑝

𝐾
with 1 ≤ 𝑝 < ∞

𝑠𝑖𝑚 ሧ

𝑘=1

𝐾

𝑄𝑘 , 𝐷𝑖 = 1 −
𝑝 σ𝑘 𝑠𝑖𝑚 𝑄𝑘, 𝐷𝑖

𝑝

𝐾

2.3.2 Extended Boolean Model

Page 2-41Multimedia Retrieval – 2018

2.3.3 Vector Space Retrieval

• The vector space retrieval model is by far the most popular of the classic text retrieval models. It has

a clean and simple query structure and offers a very fast computational scheme through inverted

lists. In contrast to the Boolean models considered so far, it uses the bag-of-words model both to

describe the documents and the queries. In other words, a query is considered as a (mini) document

and then used as a reference to find similar documents.

• A document 𝐷𝑖 is represented as a vector 𝒅𝑖 using weighted term frequencies (we do not normalize

the term frequencies as with the extended Boolean models):

• All the vectors 𝑑𝑖 of the collection 𝔻 form the so-called term-document-matrix 𝐀 with 𝑑𝑖 denoting the

𝑖-th column of the matrix, i.e., 𝑎𝑗,𝑖 = 𝑑𝑖,𝑗 (the switch of indexes is necessary as 𝑑𝑖 is a column

vector). A visual representation is as follows:

It follows that the 𝑗-th row in 𝐀 contains the information about the term 𝑡𝑗.

2.3.3 Vector Space Retrieval

𝑑𝑖,𝑗 = 𝑡𝑓 𝐷𝑖 , 𝑡𝑗 ∙ 𝑖𝑑𝑓 𝑡𝑗 ∀𝑗: 1 ≤ 𝑗 ≤ 𝑀

𝒅𝑖 =

𝑑𝑖,1
⋮

𝑑𝑖,𝑀

𝐀 =

𝑑1,1 ⋯ 𝑑𝑖,1 ⋯ 𝑑𝑁,1
⋮ ⋯ ⋮ ⋯ ⋮

𝑑1,𝑗 ⋯ 𝑑𝑖,𝑗 ⋯ 𝑑𝑁,𝑗
⋮ ⋯ ⋮ ⋯ ⋮

𝑑1,𝑀 ⋯ 𝑑𝑖,𝑀 ⋯ 𝑑𝑁,𝑀

term 𝑡𝑗

document 𝐷𝑖

Page 2-42Multimedia Retrieval – 2018

• Queries are represented as (very sparse) documents. In other words, the user is not required to

enter a complex Boolean query but rather provides a few keywords to search for. A query 𝑄 is

hence represented as a vector 𝒒 just like all the documents:

• We can compute similarity values between documents and queries as a function over the 𝑀-

dimensional vectors. Two popular methods exists:

– The inner vector product uses the dot-product over vectors to calculate similarity values.

We can also represent all similarity values between documents 𝐷𝑖 and the query 𝑄 as a matrix

multiplication:

Note that we only write the above formula for the sake of concise presentation, but we never

actually perform matrix multiplications to search for documents. Intuitively, documents are similar

to the query if they use the same term as the query (all terms not used in the query have a 0 in

𝒒). If the query terms are frequently used, high similarity values result. Further we observe that

not all query terms are necessary to obtain non-zero similarities (→ partial matches)

𝑞𝑗 = 𝑡𝑓 𝑄, 𝑡𝑗 ∙ 𝑖𝑑𝑓 𝑡𝑗 ∀𝑗: 1 ≤ 𝑗 ≤ 𝑀

𝑠𝑖𝑚 𝑄,𝐷𝑖 = 𝒒 ∙ 𝒅𝑖 =

𝑗=1

𝑀

𝑞𝑗 ∙ 𝑑𝑖,𝑗

𝒔𝒊𝒎 𝑄,𝔻 =
𝑠𝑖𝑚 𝑄,𝐷1

⋮
𝑠𝑖𝑚 𝑄, 𝐷𝑁

= 𝐀⊤𝒒

2.3.3 Vector Space Retrieval

Page 2-43Multimedia Retrieval – 2018

– The second measure calculates the cosine of the angle between the query vector and the

document vector to calculate similarity values.

Again, a matrix multiplication leads to all similarity values:

As before, we only write the above formula for the sake of concise presentation, but we never

actually perform matrix multiplications to search for documents. Intuitively, documents are similar

to the query if their vectors point to the same direction as the query vector. The number of terms

and the weights only play a role to define the direction but the length of the vectors is irrelevant.

This provides an equal chance for small and large documents to obtain a high similarity value.

𝑠𝑖𝑚 𝑄,𝐷𝑖 =
𝒒 ∙ 𝒅𝑖
𝒒 ∙ 𝒅𝑖

=
σ𝑗=1
𝑀 𝑞𝑗 ∙ 𝑑𝑖,𝑗

σ𝑗=1
𝑀 𝑞𝑗

2 ∙ σ𝑗=1
𝑀 𝑑𝑖,𝑗

2

𝒔𝒊𝒎 𝑄,𝔻 =
𝑠𝑖𝑚 𝑄,𝐷1

⋮
𝑠𝑖𝑚 𝑄, 𝐷𝑁

= 𝐋𝐀⊤𝒒′ with 𝐋 ∈ ℝ𝑁×𝑁 =

1

𝒅1
⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

𝒅𝑁

and 𝒒′ =
𝒒

𝒒

2.3.3 Vector Space Retrieval

Page 2-44Multimedia Retrieval – 2018

• Example: we consider a very simple collection of three documents to observe how the method

works. The documents and the query are as follows:

– We can extract terms and determine document frequencies and inverse document frequencies.

The document and query are then represented as vectors (𝑁 = 3,𝑀 = 11):

𝐷1 Shipment of gold damaged in a fire

𝐷2 Delivery of silver arrived in a silver truck

𝐷3 Shipment of gold arrived in a truck

𝑄 gold silver truck

𝒋 Term 𝑡𝑗 𝒅𝒇 𝒕𝒋 𝒊𝒅𝒇 𝒕𝒋 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒒

1 a 3 0

2 arrived 2 .176 .176 .176

3 damaged 1 .477 .477

4 delivery 1 .477 .477

5 fire 1 .477 .477

6 gold 2 .176 .176 .176 .176

7 in 3 0

8 of 3 0

9 silver 1 .477 .954 .477

10 shipment 2 .176 .176 .176

11 truck 2 .176 .176 .176 .176

𝐀To simplify, we use: 𝑖𝑑𝑓 𝑡𝑗 = log 𝑁 − log 𝑑𝑓 𝑡𝑗

𝐬𝐢𝐦 𝐐,𝔻 =
.031
.486
.062

with inner

vector product

𝐷2 > 𝐷3 > 𝐷1

2.3.3 Vector Space Retrieval

Page 2-45Multimedia Retrieval – 2018

– Observations: the term-document matrix is usually very sparse, that is a single document only

contains a small subset of all possible terms. We also note that we only need to consider the

query terms for evaluation; all other terms are eliminated due to the 0-value in 𝒒. On the other

side, a document does not have to contain all query terms to be relevant. In the example before,

none of the documents contained all terms. To express such a partial match query with Boolean

operators would quickly lead to quite complicated expressions. In the example before, the partial

match query in Boolean terms is: (gold AND silver AND truck) OR (gold AND silver) OR (gold

AND truck) OR (silver AND truck) OR gold OR silver OR truck.

• Advantages: extreme simple an intuitive query model. Very simple to implement and very fast to

calculate. Performance is better than with Boolean models and can compete with the best retrieval

methods. The model naturally includes partial match queries and documents do not have to contain

all query terms to obtain high similarity values.

• Disadvantages: heuristic similarity scores with little intuition why they work well (no theoretic

background for the model). The similarity measures are not robust and can be biased by authors

(spamming of terms). Main assumption of retrieval model is independence of terms which may not

hold true in typical scenarios (see synonyms and homonyms). There are several extensions that

address this latter aspect.

2.3.3 Vector Space Retrieval

Page 2-46Multimedia Retrieval – 2018

2.3.4 Probabilistic Retrieval

• The biggest criticism of the models so far is the heuristic approach they take. The methods work and

perform well, but there is no foundation to prove correctness. Probabilistic retrieval is a formal

approach based on the probability 𝑃 𝑅 𝐷𝑖 that a document 𝐷𝑖 is relevant for a query 𝑄 and the

probability 𝑃 𝑁𝑅 𝐷𝑖 = 1 − 𝑃 𝑅 𝐷𝑖 that a document 𝐷𝑖 is not relevant for a query 𝑄. The similarity

value is defined as follows:

• The Binary Independence Model (BIR) is a simple technique based on a few assumptions to

compute the conditional probabilities above which are

1. Documents and queries use the set-of-words model (binary vectors)

2. Terms are independent of each other (the previous models made the same assumptions)

3. If a term does not appear in the query, it is equally distributed in the relevant and the non-

relevant documents (it shall not impact the ranking)

With these assumptions, we can derive the similarity values. As a first step, we use Bayes’ theorem

on the definition of the similarity values:

We can interpret these new probabilities as follows: 𝑃 𝑅 and 𝑃(𝑁𝑅) are the probabilities that a

randomly selected document is relevant and not relevant, respectively. 𝑃 𝐷𝑖 𝑅 and 𝑃 𝐷𝑖 𝑁𝑅 are

the probabilities that 𝐷𝑖 is among the relevant and not relevant documents, respectively.

2.3.4 Probabilistic Retrieval

𝑠𝑖𝑚 𝑄,𝐷𝑖 =
𝑃(𝑅|𝐷𝑖)

𝑃 𝑁𝑅 𝐷𝑖)
=

𝑃(𝑅|𝐷𝑖)

1 − 𝑃(𝑅|𝐷𝑖)

𝑠𝑖𝑚 𝑄,𝐷𝑖 =
𝑃(𝑅|𝐷𝑖)

𝑃 𝑁𝑅 𝐷𝑖)
=

𝑃 𝐷𝑖 𝑅 ∙ 𝑃(𝑅)

𝑃 𝐷𝑖 𝑁𝑅 ∙ 𝑃(𝑁𝑅)

Page 2-47Multimedia Retrieval – 2018

– We now use the assumption that documents are binary vectors and that terms are independent

of each other:

– We introduce a short notation for the conditional probabilities on the right most side of the

formula above. Let 𝑟𝑗 = 𝑃 𝑑𝑖,𝑗 = 1 𝑅 denote the probability that a relevant document has the

term 𝑡𝑗 (i.e., 𝑑𝑖,𝑗 = 1). Further, let 𝑛𝑗 = 𝑃 𝑑𝑖,𝑗 = 1 𝑁𝑅 denote the probability that a not relevant

document has the term 𝑡𝑗 (i.e., 𝑑𝑖,𝑗 = 1). With that we can write the similarity value as:

Note that we do not need to compute 𝑃 𝑅 and 𝑃 𝑁𝑅 as they are depending only on the query

and do not change the order of similarity values of documents 𝐷𝑖. Hence, the right formula above

is a further simplification that yields the same ranking for documents as the left formula.

𝑃 𝐷𝑖 𝑅 = 𝑃 𝑑𝑖 𝑅 = ෑ

𝑗=1

𝑀

𝑃 𝑑𝑖,𝑗 𝑅 = ෑ

∀𝑗: 𝑑𝑖,𝑗=1

𝑃 𝑑𝑖,𝑗 = 1 𝑅 ∙ ෑ

∀𝑗: 𝑑𝑖,𝑗=0

𝑃 𝑑𝑖,𝑗 = 0 𝑅

𝑃 𝐷𝑖 𝑁𝑅 = 𝑃 𝑑𝑖 𝑁𝑅 =ෑ

𝑗=1

𝑀

𝑃 𝑑𝑖,𝑗 𝑁𝑅 = ෑ

∀𝑗: 𝑑𝑖,𝑗=1

𝑃 𝑑𝑖,𝑗 = 1 𝑁𝑅 ∙ ෑ

∀𝑗: 𝑑𝑖,𝑗=0

𝑃 𝑑𝑖,𝑗 = 0 𝑁𝑅

Assumption 1:

Documents are

binary vectors

Assumption 2: Terms

are independent

Assumption 1: Documents

are binary vectors

𝑠𝑖𝑚 𝑄,𝐷𝑖 =
𝑃(𝑅)

𝑃(𝑁𝑅)
∙ ෑ

∀𝑗: 𝑑𝑖,𝑗=1

𝑟𝑗
𝑛𝑗
∙ ෑ

∀𝑗: 𝑑𝑖,𝑗=0

1 − 𝑟𝑗
1 − 𝑛𝑗

→ 𝑠𝑖𝑚 𝑄,𝐷𝑖 ~ ෑ

∀𝑗: 𝑑𝑖,𝑗=1

𝑟𝑗
𝑛𝑗
∙ ෑ

∀𝑗: 𝑑𝑖,𝑗=0

1 − 𝑟𝑗
1 − 𝑛𝑗

2.3.4 Probabilistic Retrieval

Page 2-48Multimedia Retrieval – 2018

– We finally use the third assumption that 𝑟𝑗 = 𝑛𝑗 if the term 𝑡𝑗 does not occur in the query (the term

occurs equally likely in the set of relevant and not relevant documents). This means that for all

𝑞𝑗 = 0, the ratios
𝑟𝑗

𝑛𝑗
and

1−𝑟𝑗

1−𝑛𝑗
are 1 and we can eliminate them from the calculations:

We drop the condition 𝑑𝑖,𝑗 = 1 in the second product and must compensate in the first product:

Next, we eliminate terms that only depend on the query and do not change the ordering:

We finally obtain a very simple similarity function as a sum over 𝑐𝑗-values. Note that we only need

to compute 𝑐𝑗 for query terms, that is for a very small number of terms.

𝑠𝑖𝑚 𝑄,𝐷𝑖 ~ ෑ

∀𝑗: 𝑑𝑖,𝑗=1

𝑟𝑗
𝑛𝑗
∙ ෑ

∀𝑗: 𝑑𝑖,𝑗=0

1 − 𝑟𝑗
1 − 𝑛𝑗

= ෑ

∀𝑗: 𝑑𝑖,𝑗=1,𝑞𝑗=1

𝑟𝑗
𝑛𝑗
∙ ෑ

∀𝑗: 𝑑𝑖,𝑗=0,𝑞𝑗=1

1 − 𝑟𝑗
1 − 𝑛𝑗

𝑠𝑖𝑚 𝑄,𝐷𝑖 ~ ෑ

∀𝑗: 𝑑𝑖,𝑗=1,𝑞𝑗=1

𝑟𝑗 ∙ (1 − 𝑛𝑗)

𝑛𝑗 ∙ (1 − 𝑟𝑗)
∙ ෑ

∀𝑗: 𝑞𝑗=1

1 − 𝑟𝑗
1 − 𝑛𝑗

𝑠𝑖𝑚 𝑄,𝐷𝑖 ~ ෑ

∀𝑗: 𝑑𝑖,𝑗=1,𝑞𝑗=1

𝑟𝑗 ∙ (1 − 𝑛𝑗)

𝑛𝑗 ∙ (1 − 𝑟𝑗)

𝑠𝑖𝑚 𝑄,𝐷𝑖 ~

∀𝑗: 𝑑𝑖,𝑗=1,𝑞𝑗=1

𝑐𝑗 with 𝑐𝑗 = log
𝑟𝑗 ∙ (1 − 𝑛𝑗)

𝑛𝑗 ∙ (1 − 𝑟𝑗)

2.3.4 Probabilistic Retrieval

Assumption 3: non-query

terms do not impact result

Page 2-49Multimedia Retrieval – 2018

– Computing the 𝑐𝑗 values: recall that 𝑟𝑗 = 𝑃 𝑑𝑖,𝑗 = 1 𝑅 denotes the probability that a relevant

document contains the term 𝑡𝑗. Similarly, 𝑛𝑗 = 𝑃 𝑑𝑖,𝑗 = 1 𝑁𝑅 denotes the probability that a not

relevant document contains the term 𝑡𝑗. To obtain estimates for these probabilities, we ask the

user to rate some of the retrieved documents. The more feedback we gather, the better our

estimates become. In more details:

• Initial step: without any samples, we assume that query terms are likely to occur in relevant

documents while they appear in not relevant documents according to their document

frequency. We use the following estimates for the initial step to compute the 𝑐𝑗

• Feedback step: although the initial values are a heuristic, we only use them to generate a first

result set. We then ask the user to rate the 𝐾 retrieved documents and annotate them with

relevant (R) and not relevant (NR). Let 𝐿 be the number of documents that the user marked as

relevant. Further let 𝑘𝑗 be the number of retrieved documents that contain the term 𝑡𝑗 (that is

the document frequency of 𝑡𝑗 over the set of retrieved documents), and let 𝑙𝑗 be the number of

relevant documents that contain the term 𝑡𝑗 (that is the document frequency of 𝑡𝑗 over the set of

relevant documents). With that, we can estimate new values for 𝑟𝑗 and 𝑛𝑗 as follows:

We use the values 0.5 and 1 in the formula above to prevent numerical issues (0-divisions).

𝑟𝑗 = 0.5, 𝑛𝑗 =
𝑑𝑓 𝑡𝑗
𝑁

∀𝑗: 𝑞𝑗 = 1

𝑟𝑗 =
𝑙𝑗 + 0.5

𝐿 + 1
, 𝑛𝑗 =

𝑘𝑗 − 𝑙𝑗 + 0.5

𝐾 − 𝐿 + 1
∀𝑗: 𝑞𝑗 = 1

2.3.4 Probabilistic Retrieval

Page 2-50Multimedia Retrieval – 2018

• Advantages: the BIR model provides a probabilistic foundation based on simple assumption to

define similarity values. The ranking of documents is based on their probability of being relevant for

the query. Again, we only require query terms for the calculations of similarity values and, with the

inverted lists, we have a very efficient evaluation method at hand. Provides very good performance,

especially after a few feedback steps. Also support partial match queries, i.e., not all query terms

must occur in relevant documents.

• Disadvantages: the simple assumptions do not always hold true. Like discussed in the vector

space model, term independence generally does not apply. There are more sophisticated

probabilistic models that deal with term dependence, but often come at additional computational

overhead. Finally, we note that the ranking of documents does neither take term frequencies nor the

discrimination power of terms into account.

2.3.4 Probabilistic Retrieval

Page 2-51Multimedia Retrieval – 2018

2.4 Indexing Structures

• With all retrieval models considered so far, we have observed that ranking (or selection of an

answer in Boolean models) only depends on query terms. In addition, if the terms have high

discrimination value they are likely to appear only in a few documents. In this section, we look at

inverted lists as a simple retrieval model, and apply it to SQL databases for a fast and efficient

implementation of text retrieval.

• The term-document matrix is very sparse. We expect that documents only use a small subset of the

existing vocabulary, and many terms in the vocabulary occur only in very few documents. Instead of

storing the full matrix, we keep condensed rows for each term. For example, we have two terms

“dog” and “cat” which appear in some document. In addition, we want to keep track of term

frequencies in the documents to apply a more sophisticated ranking function. A typical inverted list

looks then something like this:

2.4 Indexing Structures

[7] 𝐷2(2), 𝐷3(1), 𝐷10(1), 𝐷19(2), 𝐷32(2), 𝐷45(1), 𝐷48(1)…
cat
…

dog
…

[4] 𝐷2(1), 𝐷5(2), 𝐷7(1), 𝐷19(3)
term frequency

document
inverted list

vocabulary
document frequency

Page 2-52Multimedia Retrieval – 2018

• Application to standard Boolean model: we can calculate the result with set operations over the

atomic parts of the query (must contain term, or must not contain term). The inverted lists provide

the sets for the atomic parts “must contain terms”, and, with some restrictions, we can also use

them for “must not contain terms”. For example:

– 𝑄 = “cat” AND “dog”

• 𝕊𝑐𝑎𝑡 = 𝐷2, 𝐷3, 𝐷10, 𝐷19, 𝐷32, 𝐷45, 𝐷48 , 𝕊𝑑𝑜𝑔 = 𝐷2, 𝐷5, 𝐷7, 𝐷19

• ℚ = 𝕊𝑐𝑎𝑡 ∩ 𝕊𝑑𝑜𝑔 = 𝐷2, 𝐷19

– 𝑄 = “cat” AND (NOT “dog”)

• 𝕊𝑐𝑎𝑡 = 𝐷2, 𝐷3, 𝐷10, 𝐷19, 𝐷32, 𝐷45, 𝐷48 , 𝕊𝑑𝑜𝑔 = 𝐷2, 𝐷5, 𝐷7, 𝐷19

• ℚ = 𝕊𝑐𝑎𝑡 − 𝕊𝑑𝑜𝑔 = 𝐷3, 𝐷10, 𝐷32, 𝐷45, 𝐷48

– More generally, NOT-clauses are only allowed within AND-clauses (translates into minus set-

operation), but not in OR-clauses. A query like: “cat” OR (NOT “dog) cannot be answered with

only the inverted lists; in addition, such a query is not really meaningful. So the restriction is

hardly relevant for users.

– To accelerate the set operations, we sort the inverted lists by increasing document frequencies.

This way the intermediate results sets are smaller.

• Retrieval Models with ranking: all the models with ranking that we considered so far, have a

partial match capability. In other words, we must retrieve all documents that contain at least one

query term and then evaluate the similarity values only for these selected documents. For example:

– 𝑄 = “cat dog” (vector space retrieval, probabilistic retrieval)

𝑄 = “cat AND dog” 𝑄 = “cat AND (NOT dog)” (extended Boolean model)

• 𝕊 = 𝕊𝑐𝑎𝑡 ∪ 𝕊𝑑𝑜𝑔 = 𝐷2, 𝐷3, 𝐷5, 𝐷7, 𝐷10, 𝐷19, 𝐷32, 𝐷45, 𝐷48

2.4 Indexing Structures

Page 2-53Multimedia Retrieval – 2018

• The typical implementation stores the inverted lists as individual files. But we can also efficiently

implement inverted lists in a SQL database and exploit other features that a database provides

(proven storage, transaction management, high availability, disaster recovery, …). For the

implementation, we need the tables: 1) document table, 2) vocabulary, 3) inverted list (here: index).

In addition, we require a (temporary) query table to simplify SQL queries.

docid doc_name date dateline

1 WSJ870323-0180 3/23/87 Turin, Italy

2 WSJ870323-0161 3/23/87 Du Pont Company, Wilmington, DE

Document

Term

term idf

according 0.9031

commercial 1.3802

company 0.6021

dale 2.3856

diversified 2.5798

february 1.4472

italy 1.9231

krol 4.2768

president 0.6990

products 0.9542

sales 1.0000

succeeding 2.6107

vehicle 1.8808

year 0.4771

QUERY

term tf

vehicle 1

sales 1

italy 1

doc_id term tf

1 commercial 1

1 vehicle 1

1 sales 2

1 italy 1

1 february 1

1 year 1

1 according 1

...

2 krol 2

2 president 2

2 diversified 1

2 company 1

2 succeeding 1

2 dale 1

2 products 2

....

Index

2.4 Indexing Structures

Page 2-54Multimedia Retrieval – 2018

• Evaluation of a Boolean Query

– Option 1: no Query table

𝑄 =„vehicle sales italy“

SELECT a.DocID

FROM Index a,Index b,Index c

WHERE a.Term=‘vehicle‘ AND

b.Term=‘sales‘ AND

c.Term=‘italy‘ AND

a.DocID=b.DocID AND

a.DocID=c.DocID;

– Option 2: with Query table

𝑄 =„vehicle sales italy“

DELETE FROM Query;

INSERT INTO Query

VALUES(‘vehicle‘,1);

INSERT INTO Query

VALUES(‘sales‘,1);

INSERT INTO Query

VALUES(‘italy‘,1);

SELECT i.DocID

FROM Index i, Query q

WHERE i.Term=q.Term

GROUP BY i.DocID

HAVING COUNT(i.Term)=

(SELECT COUNT(*) FROM QUERY)

Page 2-55Multimedia Retrieval – 2018

• Evaluation with Vector Space Retrieval

– Example: inner vector product

𝑄 =„vehicle sales italy“

DELETE FROM Query;

INSERT INTO Query

VALUES(‘vehicle‘,1);

INSERT INTO Query

VALUES(‘sales‘,1);

INSERT INTO Query

VALUES(‘italy‘,1);

SELECT i.DocID, SUM(q.tf * t.idf * i.tf * t.idf)

FROM Query q, Index i, Term t

WHERE q.Term=t.Term AND

i.Term=t.Term

GROUP BY i.DocID

ORDER BY 2 DESC;

2.4 Indexing Structures

Page 2-56Multimedia Retrieval – 2018

2.5 Lucene - Open Source Text Search

• Apache hosts several projects to provide easy to use yet powerful text and web retrieval. All of them

are based on the core engine called Lucene. In addition, third-party libraries enrich Lucene with

additional content extractor and analyzers.

– Lucene: core retrieval library for both analysis of documents and searching

– Apache Tika: parsers and extractors for various file formats

– Nutch: open source web search engine with scalable, distributed crawlers and a Tomcat web

application to search through the content

– Solr: open source enterprise search engine for a rich set of file formats

– Elasticsearch: an enterprise search server

• In this chapter, we look at:

– how Lucene analyzes documents

– how Lucene ranks documents

– how to use Lucene in own applications

• Note: this is not meant to be a complete

overview of Lucene. Refer to the online

documentation or to books such as

“Lucene in Action” to get more details

2.5 Lucene - Open Source Text Search

Page 2-57Multimedia Retrieval – 2018

2.5.1 History of Lucene

• Lucene started as a SourceForge project and joined the Apache Jakarta family in 2001. Original

author was Doug Cutting. Since 2005, Lucene is a top-level Apache project with many sub-projects.

Some of them, namely Nutch and Tika, have become independent Apache projects.

• Main versions introduced (selected versions):

– 1.01b (July 2001): last SourceForge release

– 2.0 (May 2006): clean up of code, removed deprecated methods

– 3.0 (November 2009): cleanup and migration to Java 1.5 (generics, var args)

3.6 is latest build released on July, 2012

– 4.0 (August 2012): speedup of indexing and retrieval

– 5.0 (February 2015): index safety, many adjustments on the API

– 6.0 (April 2016): Java 8, classification, spatial module update

– 7.0 (September 2017): Java 9 and support of Jigsaw modularization

– 7.5 (September 2018): Integration of OpenNLP

• Lucene implementations

– Java (original), C++ (CLucene), .NET (Lucene.NET), C (Lucene4c), Objective-C (LuceneKit),

Python (PyLucene), PHP 5 (Zend), Perl (Plucene), Delphi (MUTIS), JRuby (Ferret), Common

Lisp (Montezuma)

2.5.1 History of Lucene

Page 2-58Multimedia Retrieval – 2018

2.5.2 Core Data Model of Lucene

• Lucene is a high-performance, full-featured text search library. It is suitable for a wide range of

applications that require text retrieval functions. Most importantly, it works across different platforms,

firstly due to its Java implementation, and secondly, due to the many ports to other programming

languages.

• If you are looking for an open source search engine, Lucene based projects such as Nutch (web

search engine) or Solr (enterprise search engine) provide ready-to-deploy search applications. In all

other cases, we have to implement the search features through the Lucene APIs.

• The core concepts of Lucene revolve around

– Document and Field to encompass the content of documents

– Analyzer to parse the content and extract features

– IndexWriter which maintains the inverted index including concurrency control

– Directory that holds the inverted index structures

– Query and QueryParser represent queries and parse input strings, respectively

– Term and TermQuery denote unit search expressions

– IndexSearcher exposes search methods over the inverted indexes

– TopDocs contains the result of a search sorted by scores

2.5.2 Core Data Model of Lucene

Page 2-59Multimedia Retrieval – 2018

• Lucene’s API is split into offline analysis functions and online search function. The interaction with

an application is as follows:

Maintain

Document

Library

online → offline

↑ application

↓ Lucene

online → offline

application ↑

Lucene ↓

Special

Analyzers

Files

Database Internet

Intranet

DMS/CMS

Analyze &

Index

Inverted

List

User

Query

Construction

Result

Presentation

Analyze &

Index

2.5.2 Core Data Model of Lucene

Page 2-60Multimedia Retrieval – 2018

2.5.3 Indexing Documents with Lucene

1. Select Directory to store Index in
directory = FSDirectory.open("./index");

2. Create Analyzer for Documents
analyzer = new StandardAnalyzer();

3. Create Document and add Fields
doc = new Document();

doc.add(new TextField("title",title,

TextField.TYPE_STORED));

doc.add(new TextField("content",content,,

TextField.TYPE_NOT_STORED));

doc.add(new StoredField("id",id));

4. Get Index Writer and add Document
config = new IndexWriterConfig(anaylzer);

writer = new IndexWriter(directory,config);

writer.addDocument(doc);

5. Close Index Writer (optionally optimize)
writer.optimize();

writer.close();

Maintain

Document

Library

Analyze &

Index

Index Code

Steps 1-5

Field

(title)

Field

(content)

Field

(id)

Documents

Document

IndexWriter

Directory

Analyzer

2.5.3 Indexing Documents with Lucene

Page 2-61Multimedia Retrieval – 2018

2.5.4 Indexing Documents with Lucene

• Directory

– Lucene provides multiple ways to maintain and persist inverted indexes. Among them are file based indexes,

memory based indexes, and database indexes

– The LockFactory associated with a directory implements basic concurrency control mechanisms.

IndexWriter and IndexSearcher provide concurrency control to the application to ensure integrity of the

indexes (other transaction attributes depend on the selected directory implementation)

• Analyzers

– Lucene and 3rd party extensions provide a rich set of pre-defined analyzers with support for various languages.
The main function of an analyzer is to return a TokenStream. A token stream implements a pipeline that

cascades a tokenizer with a set of token filters.

– A Tokenizer parses the fields of documents, removes syntactical elements, and produces a stream of tokens.

– A TokenFilter filters/changes/aggregates elements in the token stream. Prominent examples include

stemming, stop word elimination, and lower case converter.

• Fields

– Lucene is able to store additional attributes for each document in the index. The purpose of fields is two-fold:

• Ability to restrict the search on specified meta data items (e.g., only title, author, abstract, etc.)

• Ability to store data that identify the document (or are relevant for presentational purposes)

– Creation of fields includes many options (newer release subsumes all of them in FieldType)

• Field.Store: YES or NO indicating whether the content needs to be stored. NO means that the content is only

analyzed but not available at search time any more. Use YES for identifying attributes (or for presentation).

Typical examples include ID, file name, document type, date of insertion, size of document.

• (deprecated)Field.Index: main values are ANALYZED and NO. NO indicates that the field must not be

analyzed; it is not possible to search for such attributes. ANALYZED is used for content that must be indexed.

• (deprecated)Field.TermVector: allows to fine tune what term vector information is kept in the index.

2.5.4 Indexing Documents with Lucene

Page 2-62Multimedia Retrieval – 2018

2.5.5 Searching Documents with Lucene

1.Select Directory where Index resides
directory = FSDirectory.open("./index");

2.Create Analyzer as used for Documents
analyzer = new StandardAnalyzer();

3.Create Query (optionally through QueryParser)
parser = new QueryParser("content", analyzer);

Query query = parser.parse(queryStringFromUser);

4.Get Index Searcher and Search
searcher = new IndexSearcher(directory);

TopDocs hits = searcher.search(query, NUM_RESULTS);

5.Present Result
for(int i=0;i<hits.scoreDocs.length;i++){

doc = searcher.doc(hits.scoreDocs[i].doc);

System.out.printf(" %4d %1.3f %s %s\n",

i+1,

hits.scoreDocs[i].score/hits.getMaxScore(),

doc.get("id"), doc.get("title"));

}

Query

Construction
Result

Presentation

Analyze &

Index

Search Code

Steps 1-5

User input

QueryParser

Query

IndexSearcher

Directory

Analyzer

TopDocs

Present

Result

2.5.5 Searching Documents with Lucene

Page 2-63Multimedia Retrieval – 2018

2.5.6 Searching Documents with Lucene

• Query and QueryParser

– Lucene provides multiple ways to query the content of an index. Queries are always against the content of

analyzed field data. Atomic queries consist of term queries, range queries, phrase queries, fuzzy queries

(searching for all terms that are close to the given one), wildcard queries, and so on. Atomic queries can be

combined by means of Boolean operators.

– QueryParser simplifies the interface with a standard way how users have to enter queries

• Query is a set of clauses optionally prefixed with '+' (must include) and '-' (must not be included)

• A clause can be a single term such as 'hello' for the default search field, a search term for a selected field such

as 'title:hello', a fuzzy query such as 'hello~' or-ing all similar terms in the index, a wildcard-query such as 'h?llo'

or-ing all matching terms, and many more.

– Scores are computed through a Similarity object. The example code uses the default scoring, but it is possible to

overwrite how Lucene scores and ranks documents (see next slide)

• TopDocs

– The search method of the IndexSearcher returns the top (NUM_RESULTS) documents matching the query and

ordered by their score.

– Retrieval of the content of fields of document is through the IndexSearcher. TopDocs only holds Lucene internal

document identifiers (property doc of scoreDocs field in TopDocs).

– Only fields that were indexed with Field.Store.YES can be retrieved after a search. Any other metadata has to be

retrieved by the application it self.

• Analyzer

– Use the same analyzer object as for indexing the documents in offline mode. Lucene provides versioned standard

analyzer to avoid confusion should the standard implementation change over time.

2.5.6 Searching Documents with Lucene

Page 2-64Multimedia Retrieval – 2018

2.5.7 Retrieval Model of Lucene

• Lucene combines Boolean retrieval with vector space retrieval. Only documents that match the

Boolean query are returned. The candidates are scored with an extended version of the vector

space retrieval model, and the top k documents are returned. The following discusses the standard

similarity scoring scheme, but you can change and tune many aspects of it (see JavaDoc for class
org.apache.lucene.search.Similarity).

• Boolean Retrieval Part

– Applications can define arbitrary Boolean expressions on fields content with

• atomic queries such TermQuery, RangeQuery, or any other Query

• and a Boolean clause constraint whether MUST, MUST NOT, or SHOULD occur

– Example: +information –multimedia retrieval search

TermQuery q1 = new TermQuery(new Term("content","information"));

TermQuery q2 = new TermQuery(new Term("content","retrieval"));

TermQuery q3 = new TermQuery(new Term("content","search"));

TermQuery q4 = new TermQuery(new Term("content","multimedia"));

BooleanQuery query = new BooleanQuery();

query.add(q1, BooleanClause.Occur.MUST);

query.add(q2, BooleanClause.Occur.SHOULD);

query.add(q3, BooleanClause.Occur.SHOULD);

query.add(q4, BooleanClause.Occur.MUST_NOT);

– FuzzyQuery and WildcardQuery translate into a MultiTermQuery over a set of terms

• FuzzyQuery ('hello~0.5') expands to a search over all terms in the index that have a

normalized similarity of 0.5 and larger (value btw 0 and 1). Similarity is measured with edit

distance and normalized over the length of the term.

• WildcardQuery ('h?llo') expands to a search over all terms that match the pattern

2.5.7 Retrieval Model of Lucene

Page 2-65Multimedia Retrieval – 2018

• Boolean Retrieval Part (contd)

– IndexSearcher uses the inverted lists in the directory to retrieve all documents that match the

Boolean condition. This is the set of candidates.

• Ranking uses an extended version of the cosine measure. However, there are several additional

factors and normalizations built into the standard similarity measure

– The conceptual scoring formula is:

• coord_factor 𝑞, 𝑑 : score factor based on how many query terms are found in the document. In essence, this

scores how many of the optional terms (OR clauses) are found in d.

• query_boost 𝑞 : boost factor for individual query terms to be taken into account

• 𝑉 𝑞 , 𝑉 𝑑 : vector representation, i.e., tf*idf weighted number of term occurrences

• 𝑑𝑜𝑐_𝑙𝑒𝑛_𝑛𝑜𝑟𝑚 𝑑 : unlike the normalization of queries by their length, documents are normalized by the length

of a field (number of term occurrences) to boost smaller fields over larger fields

• 𝑑𝑜𝑐_𝑏𝑜𝑜𝑠𝑡 𝑑 : application specified boost factor defined at document insertion time

– To simplify computation, Lucene's implementation is as follows

• query norm and query boost are combined as they are known at search start time

• document norm and document (filed) boost values are stored in the index for each term

2.5.7 Retrieval Model of Lucene

score 𝑞, 𝑑 = coord_factor 𝑞, 𝑑 ∙ query_boost 𝑞 ∙
𝑉 𝑞 ∙ 𝑉 𝑑

𝑉 𝑞
∙ 𝑑𝑜𝑐_𝑙𝑒𝑛_𝑛𝑜𝑟𝑚 𝑑 ∙ 𝑑𝑜𝑐_𝑏𝑜𝑜𝑠𝑡 𝑑

Page 2-66Multimedia Retrieval – 2018

• Ranking in Lucene (contd)

– The formula defined by TFIDFSimilarity is:

• 𝑐𝑜𝑜𝑟𝑑 𝑑, 𝑞 =
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

max _𝑜𝑣𝑒𝑟𝑙𝑎𝑝
boosts documents that contain more of the query terms (not the number of

occurrences. max_overlap is the maximum number of query terms found in a single document.

• 𝑞𝑢𝑒𝑟𝑦𝑁𝑜𝑟𝑚 𝑞 =
1

𝑏𝑜𝑜𝑠𝑡(𝑞)2∙σ𝑡 𝑖𝑛 𝑞 𝑖𝑑𝑓(𝑡)∙𝑏𝑜𝑜𝑠𝑡(𝑡) 2
is used to make scores of different (sub-)queries

comparable. It does not affect document ranking (constant factor) but how a query overall is weighted.

𝑏𝑜𝑜𝑠𝑡(𝑞) is an application specified boost factor for the query.

• 𝑡𝑓 𝑡, 𝑑 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡 𝑖𝑛 𝑑 documents with higher numbers of term occurrences obtain a higher weight.

Note the query term occurrences are not taken into account. Rather, Lucene treats each term occurrence the

same, e.g., if the term occurs twice, two sub-queries exist for weighting

• 𝑖𝑑𝑓 𝑡 = 1 + 𝑙𝑜𝑔
𝑛𝑢𝑚𝐷𝑜𝑐𝑠

𝑑𝑜𝑐𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦+1
denotes the standard inverse document frequency applied to both query

and document terms

• 𝑏𝑜𝑜𝑠𝑡 𝑡 represents an application specified boost value for a term t in the query

• 𝑛𝑜𝑟𝑚 𝑡, 𝑑 = 𝑏𝑜𝑜𝑠𝑡(𝑑) ∙
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑓𝑖𝑒𝑙𝑑
∙ ς𝑓𝑖𝑒𝑙𝑑 𝑓 𝑖𝑛 𝑑 𝑎𝑛𝑚𝑒𝑑𝑠 𝑎𝑠 𝑡 𝑏𝑜𝑜𝑠𝑡(𝑓) denotes a value that Lucene

computes at indexing time and stores within the inverted lists for each term in document d. 𝑏𝑜𝑜𝑠𝑡(𝑑) denotes

a boost factor that applications can specify when adding documents.

2.5.7 Retrieval Model of Lucene

𝑠𝑐𝑜𝑟𝑒 𝑞, 𝑑 = 𝑐𝑜𝑜𝑟𝑑(𝑑, 𝑞) ∙ 𝑞𝑢𝑒𝑟𝑦𝑁𝑜𝑟𝑚(𝑞) ∙

𝑡 𝑖𝑛 𝑞

𝑡𝑓 𝑡, 𝑑 ∙ 𝑖𝑑𝑓 𝑡 2 ∙ 𝑏𝑜𝑜𝑠𝑡 𝑡 ∙ 𝑛𝑜𝑟𝑚 𝑡, 𝑑

Page 2-67Multimedia Retrieval – 2018

2.6 Literature and Links

General Books on Text Retrieval

– Gerard Salton and Michael J. McGill. Information Retrieval - Grundlegendes für Informationswissenschaftler,
McGraw-Hill Book Company, 1983.

– W.B. Frakes and R. Baeza-Yates. Information Retrieval, Data Structures and Algorithms, Prentice Hall, 1992.

– Karen Sparck Jones and Peter Willet. Readings in Information Retrieval. Morgan Kaufmann Publishers Inc.,
1997.

– David A. Grossmann and Ophir Frieder. Information Retrieval: Algorithms and Heuristics, Kluwer Academic
Publishers, 1998 (1st edition), 2004 (2nd edition).

– Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval, ACM Press Books, 1999 (1st

edition), 2011 (2nd edition).

– Sandor Dominich. Mathematical Foundations of Information Retrieval, Kluwer Academic Publishers, 2001.

– Christopher Manning, Prabhakar Raghavan, Hinrich Schütze. Introduction to Information Retrieval, Cambridge
University Press, 2008

– Stefan Büttcher, Charles Clarke, Gordon Cormack. Information Retrieval - Implementing and Evaluating Search
Engines. MIT Press 2010.

– Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python. O'Reilly Media, 2009.
Free online version: http://www.nltk.org/book/

Thesaurus & Ontologies for selected Languages

– EuroWordNet: http://www.illc.uva.nl/EuroWordNet/

– GermanNet: http://www.sfs.uni-tuebingen.de/lsd/

– WordNet: http://www.cogsci.princeton.edu/~wn/

Implementations

– Natural Language Toolkit (NLTK), http://www.nltk.org

– Apache Lucene, https://lucene.apache.org

2.6 Literature and Links

http://www.nltk.org/book/
http://www.nltk.org/
https://lucene.apache.org/

