L/
UNIVERSITAT BASEL e Computer Science / 15731-01 /2018

Multimedia Retrieval

Chapter 2: Text Retrieval

2.1 Overview and Motivation

2.2 Feature Extraction

2.3 Text Retrieval Models

2.4 Indexing Structures

2.5 Lucene - Open Source Text Search
Dr. Roger Weber, roger.weber@ubs.com 2.6 Literature and Links

AW
) f)/ /:f

/ ;
~ \},‘»L\‘ &‘ o -o " " » .:i
] ek

F . = B

3 = ey <)°.’
UNIVERSITAT Blsja.

2.1 Overview and Motivation

retrieving information remains a challenging problem despite the impressive
advances in computer science

» Typical types of information retrieval:
— Database: Queries refer to the structure of the
data and define constraints

SELECT * FROM * WHERE * like ‘%house%"‘

— Boolean Retrieval Systems: while scanning the data, we
can decide whether an entry is relevant or not

— Retrieval System with Ranking:

determine how relevant a
document is for the user (in his given context) given the query.

Multimedia Retrieval — 2018 2.1 Overview and Motivation Page 2-2

— Vague Queries against Database:

Vague queries are best executed with “fuzzy” retrieval models
with a cost function that needs to be optimized (to satisfy the user's demand as far as possible)

— Natural Language Processing (NLP)

» “Find bolts made of steel with a radius of 2.5 mm, a length of 10 cm implementing DIN 4711.
The bolts should have a polished surface and can be used within an electronic engine.”

keywords refer to constraints and to a context

— Web Retrieval:
faced with spamming, bad quality,
aggressive advertisements, fraud, malware, and click baits

Multimedia Retrieval — 2018 2.1 Overview and Motivation Page 2-3

— Multimedia Content:

semantic gap when searching for multimedia
content

— Heterogeneous, Distributed, Autonomous Information Sources:

may hold the answer to a
part of the query and only the combination of all parts yields the best results

Multimedia Retrieval — 2018 2.1 Overview and Motivation Page 2-4

2.1.1 Text Retrieval — Overview
Offline

Il uuh IADEE \\\
' i 1 | fh! . - (3
B Insert gi)

document

feature
extraction

docID =doc10
dog —» word 10, word 25
cat > word 13

home — word 2, word 27 @_.

« Text retrieval encompasses two modes:
— an offline mode

— an online mode,

extract features

support fast retrieval

offline mode:
a) We add a new document

b) Each extract
features and update search indexes
c) We describe

content and analyze & reason
index

d) We pass features to an index

Multimedia Retrieval — 2018

2.1.1 Text Retrieval — Overview Page 2-5

online mode
query analyzed similarly
to documents

retrieval
IS a comparison at the feature level

features of the query are close

offline mode:
1) User enters a query

2) We extract features

3) We use guery features to search

4) We rank the documents

® 5 >

result

Online

»| ,Dogs at home*

doc10 GBIt @
doc4 transformation
docl

= {dog,
relevance ranking Qdégsg
sim(Q,docl) =.2 / hound,
sim(Q,doc4) = .4 retrieval home}
sim(Q,doc10) = .6 ©)
inverted file:

index

dog —» doc3,doc4,docl10
cat > docl0
home — docl,doc7,doc10

Multimedia Retrieval — 2018

2.1.1 Text Retrieval — Overview

Page 2-6

2.1.2 The Retrieval Problem

Given
— N text documents D = (Dy, ..., Dy) and the Query Q of the user
Problem

— find ranked list of documents which match the query well; ranking with respect to
relevance of document to the query

« We will consider the following parts of the problem in this chapter:
— Feature extraction
— Retrieval model
— Index structures
— Ranking of retrieved documents

 We also look at a concrete implementation. Lucene is an open source project

Multimedia Retrieval — 2018 2.1.2 The Retrieval Problem Page 2-7

2.2 Feature Extraction

do not search through documents with string operations

» Feature extraction comprises of several steps

Cleanse document and reduce to sequence of characters
Create tokens from sequence

Tag token stream with additional information
Lemmatization, spell checking, and linguistic transformation
Summarize to feature vector (given a vocabulary)

A A

« We are also looking into the python package NLTK which is a good starting point for advanced text

processing. To get ready, ensure (as required for your Python environment):

sudo pip install -U nltk # or pip3
sudo pip install -U numpy # or pip3
python # or python3

import nltk
nltk.download () # select: popular or all-nltk

» Apache OpenNLP is a good package for the Java world (also available through Lucene)

Multimedia Retrieval — 2018 2.2 Feature Extraction

Page 2-8

« Example of Feature Extraction

I THE YEAR 1878 T1ook n

In the year 1878 | took my degree of
Doctor of Medicine of the University of
London, and proceeded to Netley to go
through the course prescribed for
surgeons in the army. Having completed
my studies there, | was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
| could join it, the second Afghan war
had broken out. On landing at Bombay,
| learned that my corps had advanced
through the passes, and was already
deep in the enemy's country. | ...

(IN,1) (THE,2) (YEAR,3) (1878,4) (1,5) (TOOK,6)
(MY,7) (DEGREE,8) (OF,9) (DOCTOR,10)
(OF,11) (MEDICINE,12) (OF,13) (THE,14)
(UNIVERSITY, 15) (OF,16) (LONDON,17) (*,,18)
(AND,19) (PROCEEDED,?20) (TO,21)
(NETLEY,22) (TO,23) (GO,24) (THROUGH, 25)
(THE,26) (COURSE,27) (PRESCRIBED,28)
(FOR,29) (SURGEONS,30) (IN,31) (THE,32)
(ARMY,33) (*.",34) (HAVING,35)
(COMPLETED,36) (MY,37) (STUDIES, 38)
(THERE, 39) (*,,40) (1,41) (WAS,42) (DULY,43)
(ATTACHED,44) (TO,45) (THE, 46) (FIFTH,47)
(NORTHUMBERLAND,48) (FUSILIERS,49)
(AS,50) (ASSISTANT,51) (SURGEON,52) ...

Buibbey

(YEAR, 10)
(MEDICINE, 20)
(HOLMES, 203)
(SURGEON, 20)
(LONDON, 109)
(ATTACH, 80)
(UNIVERSITY, 53)
(DULY, 200)
(FIFTH, 19)
(NETLEY, 7)
(WATSON,107)
(DOCTOR, 83)
PRESCRIBE, 17)
(NORTHUMBERLAND, 1)

UN;2,<IN>) (FHE 2 <DT>) (YEAR,3,<NN>)
(1878,4,<CD>) {;5,<PRP>) (TAKE,6,<VBD>)
{MY-7.<PRP$>) (DEGREE,8,<NN>) (OF;9;<iN>)
(DOCTOR,10,<NNP>) {OF11;<IN>)
(MEDICINE,12,<NNP>) {OF;13,<IN>)

{FHE 14.<DT>) (UNIVERSITY,15,<NNP>)
{OF16,<IN>) (LONDON,17,<TOWN>) {,-18,<>)
{AND;19,<CC>) (PROCEED,20,<VBD>)
{F0,;21,<F0>) (NETLEY,22,<NNP>)
{FO;23,<FO>) (GO,24,<VB>)

(THROUGH, 25,<IN>) {FHE,26,<DF>)
(COURSE,27,<NN>) (PRESCRIBE,28,<VBD>)
{FOR;29,<IN>) (SURGEON,30,<NNS>)

(IN,1,<IN>) (THE,2,<DT>) (YEAR,3,<NN>)
(1878,4,<CD>) (I,5,<PRP>) (TOOK,6,<VBD>)
(MY,7,<PRP$>) (DEGREE,8,<NN>) (OF,9,<IN>)
(DOCTOR,10,<NNP>) (OF,11,<IN>)
(MEDICINE,12,<NNP>) (OF,13,<IN>)
(THE,14,<DT>) (UNIVERSITY,15,<NNP>)
(OF,16,<IN>) (LONDON,17,<NNP>) (‘,’,18,<,>)
(AND,19,<CC>) (PROCEEDED,20,<VBD>)
(TO,21,<TO>) (NETLEY,22,<NNP>)
(TO,23,<TO>) (GO,24,<VB>)
(THROUGH,25,<IN>) (THE,26,<DT>)
(COURSE,27,<NN>) (PRESCRIBED,28,<VBD>)
(FOR,29,<IN>) (SURGEONS,30,<NNS>)
(IN,31,<IN>) (THE,32,<DT>) ...

Multimedia Retrieval — 2018

2.2 Feature Extraction

Page 2-9

2.2.1 Step 1: Cleanse Document (with the example of HTML)

» Text documents come in various formats

* Let uslook at a simple example in HTML

<html>
<head>
<title> MMIR - SS01 </title>
<meta name=,keywords"
content=,multimedia, information,
retrieval, course™“>
</head>

<body>

</body>
</html>

Header:
Contains meta-information about
the document. We can use this
information both for adding
relevant features as well as
cataloguing the document.

Body:
Contains the main content
enriched with markups. The flow
of the document is not always
obvious and may look different on
screen than in the file

Multimedia Retrieval — 2018

Page 2-10

« Meta data:

— URI of page
http://www-dbs.ethz.ch/~mmir/

— Title of document
<title>Multimedia Retrieval - Homepage</title>

— Meta information in header section
<meta name=“keywords” content=“"MMIR, information,retrieval,”>

<meta name=“description” content=“"This will change your life..”>

 Body Text: flow on
the page must not necessarily follow the order in the HTML file

— Headlines: <hl>2. Information Retrieval </hl>

— Emphasized: Please read carefully!
or<i>Information Retrieval</i>

 Encoding:

— ->space, ü -> 1
— Transformation to Unicode, ASCII or other character set

Multimedia Retrieval — 2018 2.2.1 Step 1: Cleanse Document (with the example of HTML) Page 2-11

* Web pages contain links. How do we handle them best?

describe the referenced document

" _ % UBS swireild ~ languogsx Contact v Search
Top 10 Investment Banks in the World 2015 list
nk Name Founded Headquarter venue
(= svomin |
Goldman Sachs 2000 200 West Street, New York, New York, U.S. US$28.81 billion
Morgan Stanley 2009

Morgan Stanley Building, New York City, New York, U.S. US$ 32.40 billion

1
2
3 J.P.Morgan & C 1969 270 Park Avenue, Manhattan, New York, New York, US. US$ 9723 billion . - "
u l Credit Suisse %j Paradeplatz 8 Zurich, Switzerland US$ 27.05 Billio P | a n WI Se |y fo r * i
E:::hnl Amel Merril Bank of America Tower, New York City, U.S US$ 94.42 billion > ret I re m e n‘t 4 2 *&1
6
7

Barclays Capital 1870 Canary Wharf] London, United Kingdom US $ 50.2 billion < And win a dream trip worth 15,000 CHF / 4 >
Citigroup 1856 399 Park Aveque, Manhattan, New York City, New York, uss m L | |
us. 78.35 billion
8 Deutsche Bank 1690 Frankfurt, Gerfnany

illion
US$ 29.58 billion
US $86.08

) Lotest Group news: 1 fst nfastucture debtfund s @ cantinues o grow s FUR 5.8 bilon infrstrctiee ivestment platform ++4 UBS Asiet Management
billion ” “

— Embedded objects (image, plug-ins):
<IMG SRC=, img/MeAndMyCar.jpeg"
ALT="picture of me in front of my car">
— Links to external references:

read this important note

— Approach embedding and the linked document

effectiveness of approach when considering click
baits

Multimedia Retrieval — 2018 2.2.1 Step 1: Cleanse Document (with the example of HTML) Page 2-12

2.2.2 Step 2: Create Tokens

+ Segmentation:

broader segmentations (e.g., chapters) require control
information sentence segmentation is possible-on-the text stream alone:

— If we observera ? or a !, a sentence ends
— The observation of a . (perjod) is rather ambiguous

— Some language specifics like ¢, in fpanish
— Sentence-final particles
« Japanese: M ka: question. It turns a declarative sentence into a question.
2 [T kke: doubt. Used when one is unsure of something.
7% na: emotion. Used when one wants to express a personal feeling.
» English: Don't'do it, man. The blue one, right? The plate isn't broken, is it?
« Spanish: Te gustan los libros, ¢verdad? Le toca pasar la aspiradora, ¢no?
— A good heuristic works as follows (95% accuracy with English):

1. Ifitisa “? or /', the sentence terminates
2. Ifitisa‘’, then
a. if the word before is a known abbreviation, then the sentence continues
b. if the word afterwards starts with capital letter, then the sentence terminates

— The approach in NLTK uses a trained method (Punkt) to determine sentence boundary.

Multimedia Retrieval — 2018 Page 2-13

 Token Generation:
— Fragments of words

i street - str, Ere, ree, eet
streets’ -» str, tre, ree, eet, ets
strets = - str, tre, ret, ets

~different inflections still appear similar at the fragment leve
misspellings or bad recognition (OCR, speech analysis)

¢

— Words:using words as terms is the straightforward approach
how do you tokenize the following sequences?

Finland’s capital - Finland, Finlands, or Finland’s?
what’re, I'm, isn’t - What are, | am, is not?
'ensemble - le ensemble?

San Francisco - one token or two?

m.p.h., PhD. - ??

$380.2, 20% > ??

Leuchtrakete - one word or composite word?

Multimedia Retrieval — 2018 2.2.2 Step 2: Create Tokens Page 2-14

— Words (contd)
Japanese Chinese, words are not separated by spaces
smﬁs&aiiﬂm‘é‘@ﬁ/zz%%@gﬂ KB B -
SHRLRYE A BiE £ X<E AREEl B HEZEX
Sharapova now livesin US southeastern Florida
In Japanese, texts can use different formats and alphabets mixed together.
tokenization is based on a regular expression to split words

1. Match abbreviations with all upper case characters (e.g., U.S.A.)
2. Match sequences of word characters including hyphens (-) and apostrophes (‘)
3. Match numbers, currencies, percentage, and similar ($2.3, 20%, 0.345)
4. Match special characters and sequenceS (e.g., ... ;" (Lﬂ)’)
[

consider the special expressions/controls .
hashtags blowsyourm@, user reference thebigone); emoticons @ ontr 3

 NLTK uses the Treebank tokenizer and the Punkt tokenizer depending on the language.

Japanese and Chinese identify token boundaries with longest matches
- \WOTTSsS-C

Multimedia Retrieval — 2018 2.2.2 Step 2: Create Tokens Page 2-15

* Phrases: more appropriate to consider several
words as a singular term (e.g., New York, San Francisco, Sherlock Holmes).

Examples
include express lane, crystal clear, middle management, thai food, Prime Minister

1. Extract the base terms (as discussed before)
2. lterate through the term sequence
« Add 2-grams, 3-grams, ..., n-grams over subsequent terms at a given position

leads to many meaningless compounds

control the selection of n-grams

— A simple approach reject n-grams that contain at least one so-called stop word

— Pointwise Mutual Information (PMI).
idea is that the 2-gram is interesting
only if it occurs more frequently than the individual distributions

. p(ty, t2) p(t,[t;) p(tz1t1)
mi(ty, t,) = lo =log——= 1o = logp(ty, t,) —logp(t;) —logp(t,)
Pl t2) =108ty)~ p() B py) | oeP) Tlesp(t) —losplt

Multimedia Retrieval — 2018 2.2.2 Step 2: Create Tokens Page 2-16

— Pointwise Mutual Information (contd):
Let M be the number

of different terms tf(tj) be the so-called term frequency
N occurrences of terms in the text
tf(t) - tf (s, t2)

p(t) = Viil<j<M similarly: p(t,t,) =

N

independent from each other
p(ty, t,) is product of p(t;) and
the pmi becomes 0
keep 2-grams if their pmi is

positive and large dismiss infrequent 2-grams
salt lake 11.94
halliday private 5 12 5 11.81
scotland yard 8 9 6 11.81
lake city 10 23 9 10.72
private hotel 12 14 6 10.59
baker street 6 29 6 10.54
brixton road 15 28 13 10.38
jefferson hope 37 56 34 9.47
joseph stangerson 13 47 10 9.46
enoch drebber 8 62 8 9.44
old farmer 39 9 5 9.26
john rance 39 10 5 9.11
john ferrier 39 62 29 9.01
sherlock holmes 52 98 52 8.78

Multimedia Retrieval — 2018 2.2.2 Step 2: Create Tokens Page 2-17

2.2.3 Step 3: Tagging of Tokens

* A simple form of tagging is to add position information to the tokens

With
Part of Speech (POS), we label terms as nouns, verbs, adjectives, and so on.

“The Penn
Treebank”
CC Coordinating conjunction PRP$ Possessive pronoun with NLTK, use
CD Cardinal number RB Adverb nltk.help.upenn tagset ()
DT Determiner RBR Adverb, comparative _
EX Existential there RBS Adverb, superlative
FW Foreign word RP Particle
IN Preposition or subordinating conjunction SYM Symbol
JJ Adjective TO to
JJR Adjective, comparative UH Interjection
JJS Adjective, superlative VB Verb, base form
LS Listitem marker VBD Verb, past tense
MD Modal VBG Verb, gerund or present participle
NN Noun, singular or mass VBN Verb, past participle
NNS Noun, plural — VBP Verb, non-3rd person singular present
NNP Proper noun, singular PL%%eglg,oglgz:;?tﬁﬁlzcslflc VBZ Verb, 3rd person singular present
NNPS Proper noun, plural WDT Wh-determiner .
PDT Predeterminer WP Wh-pronoun what, which, when, ...
POS Possessive ending WP$ Possessive wh-pronoun
PRP Personal pronoun WRB Wh-adverb

Multimedia Retrieval — 2018

2.2.3 Step 3: Tagging of Tokens

Page 2-18

« NLTK also provides a simpler variant with the universal POS tagset

ADJ
ADP
ADV
CONJ
DET
NOUN
NUM
PRT
PRON
VERB

adjective
adposition

adverb
conjunction
determiner, article
noun

numeral

particle

pronoun

verb

punctuation marks

other

2812
5572
2607
1711
5307
9358
354
1535
5705
8930
7713
36

new, good, high, special, big, local
on, of, at, with, by, into, under
really, already, still, early, now
and, or, but, if, while, although
the, a, some, most, every, no, which
year, home, costs, time, Africa
twenty-four, fourth, 1991, 14:24
at, on, out, over per, that, up, with
he, their, her, its, my, |, us
is, say, told, given, playing, would
-

ersatz, esprit, dunno, gr8, univeristy

POS tags are the basis for natural language processing (NLP).

Chunking
construct non-overlapping phrases (NP)

13

NP:

{<DT>?2<JJI>*<NN>}“

Multimedia Retrieval — 2018

2.2.3 Step 3: Tagging of Tokens

Page 2-19

2.2.4 Step 4: Lemmatization and Linguistic Transformation

Lemmatization and linguistic transformation
different inflections or spellings (colour vs. color)

A very common step is stemming

— English: go, goes, went, going, house, houses, master, master’'s
— German: gehen, gehst, ging, gegangen, Haus, Hauser, Meister, Meisters

stemming to reduce the term to a common stem

strong inflection (gehen - ging)
compound techniques

— German (law in Mecklenburg-Vorpommern, 1999-2013): Rinderkennzeichnungs- und
Rindfleischetikettierungstiberwachungsaufgabenlbertragungsgesetz

— Finnish: atomiydinenergiareaktorigeneraattorilauhduttajaturbiiniratasvaihde

decompose the compounds to increase chances to match against query
terms
may mislead from the true meaning

— German: Gartenhaus -> Garten, Haus (ok, not too far away from the true meaning)
— German: Wolkenkratzer - Wolke, Kratzer (no, this is completely wrong)

Multimedia Retrieval — 2018 2.2.4 Step 4: Lemmatization and Linguistic Transformation Page 2-20

* For English, the Porter Algorithm determines a near-stem

Martin Porter from 1980:
— Porter defines character yasa ,2vocal“ if
e itisan A, E, I,0, U
 itis a@wd the preceding character is not a ,vocal® (e.g. RY, BY)
— All other characters are consonants @ '
— Let C be a sequence of consonants, and let v be a sequence of vocals
— Each word follows the following pattern:
e [C] (VO™ [V
« m is the measure of the word
— further:
« *o: stem ends with cvc; second consonant must not be W, X or Y (-WIL, -HOP)
« *d: stem with double consonant (-TT, -SS)
« *y*: stem contains a vocal

— The following rules define mappings for words with the help of the forms introduced above. m is
used to avoid overstemming of short words.

Source: Porter, M.F.: An Algorithm for Suffix Stripping. Program, Vol. 14, No. 3, 1980

Multimedia Retrieval — 2018 2.2.4 Step 4: Lemmatization and Linguistic Transformation Page 2-21

— Porter algorithm - extracts (1)

Rule Examples

Step 1

a) S4ES —@ caresses -> caress
IES => I ponies -> poni
SS -> S8 caress -> caress
S -> cats -> cat

b) (m>0) EED ~>EE feed -> feed
(*v*) ED -> plastered -> plaster
(*v*) ING -> motoring -> motor
... (further rules)
Step 2
(m>0) ATIONAL -> ATE relational -> relate
(m>0) TIONAL —-> TION conditional -> condition
(m>0) ENCI -> ENCE valenci -> valence
(m>0) IZER -> IZE digitizer -> digitize

... (further rules)

Multimedia Retrieval — 2018

2.2.4 Step 4: Lemmatization and Linguistic Transformation

Page 2-22

— Porter algorithm - extracts (2)

Rule Examples
Step 3
(m>0) ICATE -> IC triplicate -> triplic
(m>0) ATIVE -> formative -> form
(m>0) ALIZE -> AL formalize -> formal
... (further rules)
Step 4
(m>1) and (*S or *T)ION -> adoption -> adopt
(m>1) OU -> homologou -> homolog
(m>1) ISM -> platonism -> platon
... (further rules)
Step 5
a) (m>1) E -> rate -> rate
(m=1) and (not *0o)E -> cease -> ceas
b) (m>1 and *d and *L) -> single letter controll -> control

Multimedia Retrieval — 2018

2.2.4 Step 4: Lemmatization and Linguistic Transformation

Page 2-23

Lancaster more
aggressive stemming obfuscated stems
Snowball is a set of rule based stemmers for many languages

» In contrast to the rule based stemmers, a dictionary based stemmer reduces terms to a linguistic
correct stem

— Examples of such dictionaries / ontologies:

« EuroWordNet: http://www.illc.uva.nl/EuroWordNet/
GermaNet: http://www.sfs.uni-tuebingen.de/1lsd/
WordNet: http://wordnet.princeton.edu/

a simple rule-based stemmer for regular inflections (-ing, -ed, ...)
an exception list for irregular inflections
a dictionary of all possible stems of the language

Multimedia Retrieval — 2018 2.2.4 Step 4: Lemmatization and Linguistic Transformation Page 2-24

— The rule-based approach is quite similar to the Porter rules but they Type Suffix Ending

i i i NOUN S
only apply to certain word types (noun, verb, adjective). NOUN e]
NOUN xes X
NOUN zes z
NOUN ches ch
1. Search the current term in the dictionary. If found, return the term as its HSSH fnh:rf fnhan
own stem (no stemming required) NOUN - y
2. Search the current term in the exception lists. If found, return the VERB .
associated linguistic stem (see table below) VERB ies y
3. Try all rules as per the table on the right. Replace the suffix with the vERD e e
ending (we may not know the word type, so we try all of them) VERB ed e
. VERB d
a. Ifarule matches, search in the indicated dictionary for the reduced e ﬁ]g o
stem. If found, return it as the stem VERB ing
b. If several rules succeed, choose the more likely stem ADJ or
Example: axes - axis, axe ADJ est
. . ADJ er e
4. If no stem is found, return the term as its own stem ADJ est e
adj.exc (1500): verb.exc (2400): noun.exc (2000):
ét'agiest stagy éie eat Héuromata neuroma
stalkier stalky atrophied atrophy neuroptera neuropteron
stalkiest stalky averred aver neuroses neurosis
stapler stapler averring aver nevi nevus
starchier starchy awoke awake nibelungen nibelung
starchiest starchy awoken awake nidi nidus
starer starer babied baby nielli niello
starest starest baby-sat baby-sit nilgai nilgai
starrier starry baby-sitting baby-sit nimbi nimbus
starriest starry back-pedalled back-pedal nimbostrati nimbostratus
statelier stately back-pedalling back-pedal noctilucae noctiluca
stateliest stately backbit backbite

Multimedia Retrieval — 2018 Page 2-25

Porter Stem Lancaster Stem Snowball Stem WordNet Stem

took
degree
doctor
medicine
university
proceeded
course
surgeons
army
completed
studies
there
was

duly

fifth
fusiliers
assistant
regiment
stationed
time
afghan
had

broken

took
degre
doctor
medicin
univers
proceed
cours
surgeon
armi
complet
studi
there
wa

duli

fifth
fusili
assist
regiment
station
time
afghan
had

broken

took
degr
doct
medicin
univers
process
cours
surgeon
army
complet
study
ther
was
duly

fif

fusy
assist
regy
stat

tim

afgh
had
brok

NLTK supports Porter, Lancaster, Snowball and WordNet stemmers

took
degre
doctor
medicin
univers
proceed
cours
surgeon
armi
complet
studi
there
was

duli

fifth
fusili
assist
regiment
station
time
afghan
had

broken

take
degree
doctor
medicine
university
proceed
course
surgeon
army
complete
study
there

be

duly

fifth
fusiliers
assistant
regiment
station
time
afghan
have

break

Multimedia Retrieval — 2018

2.2.4 Step 4: Lemmatization and Linguistic Transformation

Page 2-26

homonyms (equal terms but
different semantics) and synonyms (different terms but equal semantics)

— Homonyms (equal terms but different semantics):
* bank (shore vs. financial institute)

— Synonyms (different terms but equal semantics):
« walk, go, pace, run, sprint

— Hypernyms (umbrella term) / Hyponym (species)
« Animal <« dog, cat, bird, ...

— Holonyms (is part of) / Meronyms (has parts)
« door <« lock

These relationships define a knowledge structure

— NLTK provides the corpus nltk.corpus.wordnet

« Spell checking: queries use spell checkers to fix simple misspellings or to
suggest corrected versions of the terms

Multimedia Retrieval — 2018 2.2.4 Step 4: Lemmatization and Linguistic Transformation Page 2-27

2.2.5 Step 5: Summarize to Feature Vector

« Vocabulary: how many different terms does a collection of documents contain?
about the square root of the

number of tokens in the entire collection
how can we find the most important ones?

normalize terms
near-stems or real stems of the words.

« we can consider the set {cat, cats, cat’s, cats’} as 4 individual terms or as a single term

* Wwe can treat a synset as one term or each constituent of the synset as an individual term
eliminate terms that

do not help us much

stop words

i me my myself we our ours ourselves you your yours yourself yourselves he him his himself she her hers herself it
its itself they them their theirs themselves what which who whom this that these those am is are was were be been
being have has had having do does did doing a an the and but if or because as until while of at by for with about
against between into through during before after above below to from up down in out on off over under again further
then once here there when where why how all any both each few more most other some such no nor not only own
same so than too very s t can will just don should now d [m o re ve y ain aren couldn didn doesn hadn hasn haven
isn ma mightn mustn needn shan shouldn wasn weren won wouldn

Multimedia Retrieval — 2018 2.2.5 Step 5: Summarize to Feature Vector Page 2-28

— Stop word elimination is very common but bears some risks

« Stephen King wrote a book “It”
« If we write IT we actually mean-information technology

« What do you get if you search the web for it'?
— The other extreme case are seldom terms

endoplasmic reticulum. Is it worth to index this bigram?

pmi is a
simple measure to reduce the numbers

170’000 currently used words in English
obtain trillions of
combinations (upper bound by the number of tokens in the collection)

spelling mistakes. Britney, Britni, Bridney, Britnei
blow up our vocabulary (consider all
spelling mistakes ever done by all people!)
all of the names given before do also exist

Multimedia Retrieval — 2018 2.2.5 Step 5: Summarize to Feature Vector Page 2-29

— A pragmatic approach Zipf’'s law N total
number of term occurrences M number of distinct terms
term frequency tf (t)
decreasing term frequencies rank(t)
probability p,- of randomly
selecting the term t with rank(t) = r

= % = %(t) for the term t with rank(t) = r. c is a constant depending only on M
same constant value ¢ - N«if We multiply the“rank of a term with
. N
its term frequenc rank(t) = c-——
quency ®) =c 7
M M M
=Y nm Yt) L
= = —=C- = = =~
4 r r 2 Ty L 05772+InM
r=1 r=1 r=1 Zr:l?

With this we get a simple lookup table for ¢ given the number M of distinct terms:

5000 10°000 50'000 100’000

0.11 0.10 0.09 0.08

Multimedia Retrieval — 2018 2.2.5 Step 5: Summarize to Feature Vector Page 2-30

— The right hand figure shows the Zipf A 5 5
distribution 2 3 3 |
i discriminating power i
idea was to define
threshold and eliminate the words |
outside the indicated range
5'4— Significant words ——————»i \
[rank f
typical approach is to)
eliminate only stop words S or keep all terms

express how well a term can distinguish between relevant and non-
relevant documents

best
terms are those, that divide documents clearly

Multimedia Retrieval — 2018 2.2.5 Step 5: Summarize to Feature Vector Page 2-31

— Discrimination power inverse document

frequency to define weights)
L0 AL
\

—_—

df(t) = = log(N + 1) — log(df(t) + 1)

log 7t + 1

weight on the term used both in the document
description as in the query description estimate discrimination power by
multiplying the squared idf (t)-value with the probability that the term occurs

discrimination power e df-weights
« Terms with low document frequencies
discrimination power is low
* On the right side, the terms with high document
frequency
* The terms around df = 100 = 0.1 - N have 0 200 400 600 800 1000
the highest discrimination power. document frequency df

Multimedia Retrieval — 2018 2.2.5 Step 5: Summarize to Feature Vector Page 2-32

— The discrimination method
measure how much a term is able to discriminate the document collection

Let 0 < sim(D;, D;) < 1 denote

—_— R L

* In a collection with N documents, compute the centroid docy

N a
. .
f(C4) = z tf(Dyt) for viil<j<M xS

=1

— ~

Q&V{ <‘Q

Ap S S

« We define the density of the colleetion 3
N Y 4
Q = sim(D;{C)
2

e

« Now assur]le we emove the term t rom the collec
dp(®) =(2,)- @

Q+>Q = M‘f _g
laré/\

Multimedia Retrieval — 2018 Page 2-33

—

* If the dj:szcﬂation value is large

_——

term t differentiates the collection
and is hence a significant term if dp(t) is negative —
term is likely “spamming” the collection and has a (very) negative
Impact

« We select the most useful terms by ordering them by their decreasing dp(t)-values

Once the vocabulary is fixed

describe documents D; by feature value d;. The set-of
words model

considers whether a term is present and
disregards order of terms, number of occurrences, and proximity between terms

7
1 tf(Dyt;) >0 :
tf(D;t;) > 1
di,j € {O,l}M, di,j = {O tf(Di’tj) —0 or di = {t] | tf(Di, t]) > 0} 5’
O\

: o
The bag-of-of words model is the more common representation and differs from the set-offwgyd
by keeping multiplicity of terms. The representation is a feature vector over term frequenci Sty

di,j € NM, di,j = tf(Di, t])

@
<3
)

Multimedia Retrieval — 2018

. Page 2-34

2.3 Text Retrieval Models

* In the following sections we consider different retrieval models

Value Range

{Dy, ..., Dy}

D;
{ty, ..., ty}
tj
d; (0,1}, NM, or RM
A {0 1}M>(N NMXN or]RMXN
tf (D, t;) N
af () N
idf (t) R
Q
(0,1}, NM, or RM
sim(Q, D;) [0,1]

Collection of N documents

Representation of a documentwith 1 <i < N
Collection of M terms

Representationof atermwith 1 <j < M

Feature description of document D; with the j-the dimension describing document
with regard to term ¢;

Term-document matrix with a;; = tf (D, t;), that is rows denote terms and columns
denote documents. For instance, the i-th columnis a.; = d;.

Term frequency of term ¢; in document D;, i.e., number of occurrences of term ¢; in
document D;

Document frequency of term ¢; in the collection I, i.e., number of documents in D
that contain term ¢; at least once

Inverse document frequency of term ¢; given by
idf(t;) =log(N + 1) —log(df(¢;) + 1)
Representation of a query

Feature description of query Q with the j-the dimension describing query with regard
to term ¢;

Similarity between query Q and document D;. 0 means dissimilar, 1 means identical

Multimedia Retrieval — 2018

2.3 Text Retrieval Models Page 2-35

2.3.1 Standard Boolean Model

 The standard Boolean model is the classical text retrieval

« As the names suggests, the model operates on Boolean logic over sets of terms

e 0=t Term t must be present

e |0 Ht Term t must not be present

s Q=0Q,V0, Sub-query g, or sub-query g, fullfilled
* Q=0,N0, Both sub-query q; and g, fullfilled

« To evaluate such queries, we can transform them into their disjunctive normal form

K

L
Q - (T1,1 FANRERIWA Tl:Kl) V-V (TL,I N A TL,KL) - \/ /\Tl’k

=1 \ k=1

with Tik = tj(l,k) or7;, = _'tj(l;k)

« For each atomic part 7, ;, we can compute the set S; , of documents that contain or do not contain
the term:

_ {Di | tf (D, tj(l,k)) =1} ifry = k)

ble {D; 1 tf(Di, tjupy) =0} if 715 = iy

Multimedia Retrieval — 2018 2.3.1 Standard Boolean Model Page 2-36

« The final result Q is then a combination of intersections and unions

fTe = tign

If Tl,k = _Itj(l,k)

« Advantages: simple model simple to implement
intuitive for users
inverted lists provides a very efficient way to compute
Boolean expression
provides accurate way to define what relevance means.

« Disadvantages: no (intuitive) control over the size of retrieved documents
lack of ranking requires the user to
browse users
may find it hard to express a complex information need
stop words contribute equally to the result as the most significant

QO{OD of Caqt) A\ND <l’\0\«_§Qu[

— A /\ n I o4
/dlos (C\J\ L\UL/\Q/\ (/\UW\,\\

terms

Multimedia Retrieval — 2018 2.3.1 Standard Boolean Model Page 2-37

2.3.2 Extended Boolean Model

* The lack of ranking is a huge handicap extended versions of
the Boolean
algebra is still Boolean

but evaluations return a similarity value

A document D; is represented as a vector d; with normalized term frequencies:

Vj:1<j<M with @ = max (tf(Di, t;) - idf(tj)) (or some other value)

guery Q follows the same structure

L K;
Q == (Tl,l A A Tl,Kl) V-V (TL,l A A TL,KL) - \/</\Tl’k>
=1

k=1
With 7y = tj k) OF Ty = k)

- For each atomic part 7, , we can compute the similarity value sim(Q = t;, D;) for a document D;:

. dijak if 7,0 = G (
sim(Q = Ty, D)[= 19, _ dijwe T = =t 6 L 7

Multimedia Retrieval — 2018 Page 2-38

» There are several variants that calculate the AND and OR operators.
— Fuzzy Algebraic: (onIy works for two operands)

Slm(Ql A QZ: Dl) - Slm(Qll Dl) Slm(QZl Dl)
sim(Q, V Qy, D;) = sim(Qy, D;) + sim(Q3, D;) — sim(Qq, D;) - sim(Qo, DL) X

— Fuzzy Set: (generalization to K sub-queries is straight forward)

sim(Q1 A Q,, D;) = min{sim(Q4, D;), sim(Q,, D;)} <
sim(Q, V Q,, D;) = max{sim(Q4, D;), sim(Q,, D;)}

— Soft Boolean Operator: (generalization to K sub-queries'is straight forward)

sim(Q, A Q,, D;) = (1 — a) - min{sim(Q, D;), sim(Q,, D;)} # a* max{sim(Q4, D;),sim(Q,,D;)} 0<a<0.5
sim(Q, V Q,,D;) = (1 — ,3) min{sim(Q,, D;), sim(Q,, D;)} + ,8 max{sim(Qq, D;),sim(Q,,D;)} 05<pB<1

— Paice-Modell: order the sub-queries in increasing order of their similarity values for AND
operator, and order the sub-queries in decreasing order of their similarity values for OR

J ;D' .
sim (/\ Qi ,D > Ziaa T e "+ sim(Qp, D) with Vk,1 < k < K:sim(Qy, D;) < sim(Qy+1,D;)

k—1
k=1T

gl

_. k1. sim(Q,, D;
sim (\/ Qk,Di> = Zic=1 & (@ D) with Vk,1 < k < K:sim(Qy, D;) = sim(Qy+1, D;)
k=1

k—1
k=11

Multimedia Retrieval — 2018

Page 2-39

— P-Norm-Modell:

K P e)P
sim (/\ Qk'Di> =1- \/Zk(l Sln;(Qk'Dl)) W|th 1 < |% < 0o
k=1

K -
k=1

« Advantages: simple model simple to implement
and intuitive for users
performance is quite good efficient way to compute

obtain ranked lists
and partial matches

discrimination power.
« Disadvantages: heuristic similarity scores

users may find it hard to express
a complex information need as a combination of ANDs and ORs

Multimedia Retrieval — 2018 2.3.2 Extended Boolean Model Page 2-40

2.3.3 Vector Space Retrieval

» The vector space retrieval model is by far the most popular of the classic text retrieval models

a query is considered as a (mini) document
and then used as a reference to find similar documents

A document D; is represented as a vector d; using weighted term frequencies

» All the vectors d; of the collection D form the so-called term-document-matrix A

| document D; O
i di1 idi,l dn,
di1 B SRS N U AL
dl - ' A= __(%]___]________ _6?1;! _________ fl_]Y_] ________ >tel’m t]
dim :
dlM di,M dNM

It follows that the j-th row in A contains the information about the term ¢;.

Multimedia Retrieval — 2018 2.3.3 Vector Space Retrieval Page 2-41

* Queries are represented as (very sparse) documents user
provides a few keywords to search for

« We can compute similarity values between documents and queries as a function over the M-
dimensional vectors. Two popular methods exists:

— The inner vector product uses the dot-product over vectors to calculate similarity values.
M
sim(Q,D;)) =q-d; = z qj - d;;
j=1

matrix
multiplication:
sim(Q, D,)
sim(Q,D) = : =ATq
sim(Q, D,yl)
V)

Note that we only write the above formula for the sake of concise presentation, but we never
actually perform matrix multiplications to search for documents

Multimedia Retrieval — 2018 2.3.3 Vector Space Retrieval Page 2-42

— The second measure calculates the cosine of the angle between the query vector and the
document vector to calculate similarity values.

di

sim(Q,D;) =

IICIII IIdlII M
j= 14]

M g2
j= 1le

Again, a matrix multiplication leads to all similarity values:

sim(Q, D,)
sim(Q,D) = :

sim(Q, D)()

N

=LATq’

1
lld4 i

with L € RVXN =

1

lldnll]

and q' =

!

liqll

As before, we only write the above formula for the sake of concise presentation, but we never

actually perform matrix multiplications to search for documents

Multimedia Retrieval — 2018

2.3.3 Vector Space Retrieval

Page 2-43

« Example

D; Shipment of gold damaged in a fire

D, Delivery of silver arrived in a silver truck

D; Shipment of gold arrived in a truck

Q gold silver truck

The document and query are then represented as vectors (N = 3,M = 11):

| dy | d, | d; N g
1 a 3 0

2 arrived 2 176
3 damaged 1 AT7
4 delivery 1 AT7
5 fire 1 ATT7
6 gold 2 176
7 in 3 0

8 of 3 0

9 silver 1 AT7
10 shipment 2 176
11 truck 2/&

To simplify, we use: idf(t;) = log(N) — log (df ()

176 176
ATT
ATT7
AT7
176 176
.954
176 176
‘ 176 176
T
A

with inner
vector product

031
sim(Q, D) = | 486
176 062
=it D, > D; > D,
176

Multimedia Retrieval — 2018

2.3.3 Vector Space Retrieval

Page 2-44

— Observations: the term-document matrix is usually very sparse

only need to consider the
query terms for evaluation

document does not have to contain all query terms to be relevant

partial match query with Boolean
operators

(gold AND silver AND truck) OR (gold AND silver) OR (gold
AND truck) OR (silver AND truck) OR gold OR silver OR truck.

« Advantages: extreme simple an intuitive query model simple to implement and very fast to
calculate. Performance is better than with Boolean models

partial match queries

« Disadvantages: heuristic similarity scores with little intuition

similarity measures are not robust and can be biased by authors

independence of terms which may not
hold true

Multimedia Retrieval — 2018 2.3.3 Vector Space Retrieval Page 2-45

2.3.4 Probabilistic Retrieval

» The biggest criticism of the models so far is the heuristic approach they take
q)

> &

PRID)) P(RID)

$im(@.D) = BTRRD) 1- P(RID)
3 =\gv ’ 0
 The Binary Independence Model (BIR) [j]

——

1. Documents and queries use the set-of-words model
2. Terms are independent of each other s meders
3. If aterm does not appear in the query, it is equally distributed in the relevant and the non- d
L relevant documents
With these assumptions, we can derive the similarity values
Beec
P(D;|R) +(P(
P(D;INR) “\(NR

P(R) and P(NR) probabilities that a

randomly selected document is relevant and not relevant P(D;|R) and P(D;|NR) are
the probabilities that D; is among the relevant and not relevant documents

Multimedia Retrieval — 2018 2.3.4 Probabilistic Retrieval Page 2-46

o cauy
- ¢ at
o
4]

Assumptiefi 1.
Dogfments are

Assumption 2:_Lefms Assumption 1: Documents
are independent

are binary vectors

binary vectors

P(D;|[R) = P(diR) =

. P(D;INR) = P(d;INR) =

ge

P(dy|

[[Pyl

j=1

¥
“’.4*
y |

Multimedia Retrieval — 2018

2.3.4 Probabilistic Retrieval

Page 2-47

— We finally use the third assumption that r; = n; if the term t; does not occur in the query

q; = 0, the ratios :l—’ and —L are 1

Assumption 3: non-query
terms do not impact result

oy

(1—n]

jr(L=1)° \

P

Sim(Qr Dl) ~
\7’] dl]—l qJ—l

. , — Ny
vj: Q=g =)
o s

for all

I = \

sim(Q, D;) Wlth ¢, =lo d-n)
- ’ g@ -1
Multimedia Retrieval — 2018 2.3.4 Probabilistic Retrieval Page 2-48

— Computing the ¢; values
document contains the term t;
relevant document contains the term ¢;

r; = P(d;; = 1|R) denotes the probability that a relevant

* Initial step

ﬂ Ccf

Feedback step
ask the user to rate the K retfieved documents
Let L be thé number of documents that the user marked as
relevant let k; be the number of retrieved documents that contain the term ¢;
let [; be the number of
relevant documents that contain the term ¢;

L +/0. ki — L +/0.5 |
T VT KLk Vg =1

We-use-the values 0.5'and 1in the formula above to prevent numerical issues (0-divisions).

Multimedia Retrieval — 2018 2.3.4 Probabilistic Retrieval Page 2-49

« Advantages: probabilistic foundation

ranking based on probability of being relevant
only require query terms for the calculations ’

efficient evaluation method very good performance
support partial match queries a

+ Disadvantages: simple assumptions do not always hold true
term independence generally does notapply

ranking of documents does neither take term frequencies nor the
discrimination power of terms into account.

Multimedia Retrieval — 2018 2.3.4 Probabilistic Retrieval Page 2-50

2.4 Indexing Structures

only depends on query terms

» The term-document matrix is very sparse
existing vocabulary

ranking

documents only use a small subset of the

we keep condensed rows for each term

—

[7)3 (2); Dy (1), D1o(1), D1o(2), D32(2) Dys5(1), Dag(1) .
—p Cat —_—

0 term frequency
%(@—@1)02(1) D5(2), Ds(1), D1o(3) P

CEEIES A

e document frequency Ve
Tiolvee | H— | ere
Multimedia Retrieval — 2018 2.4 Indexing Structures Page 2-51

* Application to standard Boolean model:

> Q ="cat’ AND ‘dog” o - s

(D3, D3, D1o, D15, Dz, Das, Das) Saod)= (D2, Ds, Dy, D
* Q= Mz {D3, D10} ~

- Q = “cat” AND (NOT “dog”) g =
* Scat = {Dz, D3, D10, D19, D32, Das, Dasg} Saog = (D2,
e Q=Scat — Sdog4= {rD3,D10,D32,D45,D48}

— More generally, NOT-clauses are only allowed within AND-clauses

— To accelerate the set operations, we sort the inverted lists by increasing document frequencies

* Retrieval Models with ranking

must retrieve all documents that contain at least one
query term

- Q ="“catdog” (vector space retrieval, probabilistic retrieval)
Q = “cat AND dog” @Q =‘“eat’AND (NOT dog)*~(extended Boolean model)
e S= SCat U Sdog = {DZ! D3! DS! D7! D10, D19r D32r D4—5r D4—8}

Multimedia Retrieval — 2018 2.4 Indexing Structures Page 2-52

The typical implementation stores the inverted lists as individual files. But we can also efficiently

implement inverted lists in a SQL database

Doecument

rdocid doc_name date dateline
1 WSJ870323-0180 3/23/87 Turin, Italy
2 WSJ870323-0161 3/23/87 Du Pont Company, Wilmington, DE

N—
D E—

Index
doc_id term
1 commercial 1
1 vehicle
1 sales company
1 italy dale QUERY
1 february diversified term tf
1 year | february vehicle 1

1 according N Ltabl/ sales 1

: - ro -
2 krol president ltaly .
2 president 2 products
2 diversified 1 sales
2 company 1 succeeding, 2.§107
2 succeeding 1 hwehicle
2 dale 1 year
2 products 2 -
Multimedia Retrieval — 2018 2.4 Indexing Structures Page 2-53

» Evaluation of a Boolean Query

— Option 1: no Query table — Option 2: with Query table
Q =,vehicle sales italy” Q =,vehicle sales italy”

DELETE FROM Query;
INSERT INTO Query
VALUES (‘vehicle‘',1) ;
INSERT INTO Query
VALUES (‘sales‘,1);
INSERT INTO Query
VALUES (‘italy‘',1) ;

SELECT a.DocID
FROM Index a,Index b,Index c
WHERE a.Term=‘vehicle‘' AND
b.Term='sales‘' AND
.Term=‘italy‘' AND
.DocID=b.DocID AND
.DocID=c.DocID;

SELECT i.DocID
FROM Index i, Query q
WHERE i.Term=q.Term
GROUP BY i.DocID
HAVING COUNT (i.Term)=
(SELECT COUNT (*) FROM QUERY)

P QO

Multimedia Retrieval — 2018 Page 2-54

« Evaluation with Vector Space Retrieval

— Example: inner vector product
Q =,vehicle sales italy”

DELETE FROM Query;
INSERT INTO Query
VALUES (‘vehicle‘',1) ;
INSERT INTO Query
VALUES (‘sales‘,1);
INSERT INTO Query
VALUES (‘italy‘',1);

SELECT i.DocID, SUM(q.tf * t.idf * i.tf * t.idf)
FROM Query q, Index i, Term t
WHERE q.Term=t.Term AND
i.Term=t.Term
GROUP BY 1i.DocID
ORDER BY 2 DESC;

2.5 Lucene - Open Source Text Search

» Apache hosts several projects to provide easy to use yet powerful text and web retrieval

— Lucene: core retrieval library for both analysis of documents and searching
— Apache Tika: parsers and extractors for various file formats

— Nutch: open source web search engine with scalable, distributed crawlers and a Tomcat web
application to search through the content

— Solr: open source enterprise search engine for a rich set of file formats
— Elasticsearch: an enterprise search server

 In this chapter, we look at: N
— how Lucene analyzes documents Apache “: - -
— how Lucene ranks documents SOI F = %’
— how to use Lucene in own applications

* Note: this is not meant to be a complete %E [uLic /2 [/'? /2

overview of Lucene. Refer to the online
documentation or to books such as
“Lucene in Action” to get more details

1_ __l
e] E .-.-'1
] L0
o010 1001011 I a
10111010110011101

Multimedia Retrieval — 2018 2.5 Lucene - Open Source Text Search Page 2-56

2.5.1 History of Lucene

* Lucene started as a SourceForge project and joined the Apache Jakarta family in 2001

« Main versions introduced (selected versions):

1.01b
2.0
3.0

4.0
5.0
6.0
7.0
7.5

(July 2001): last SourceForge release
(May 2006): clean up of code, removed deprecated methods

(November 2009): cleanup and migration to Java 1.5 (generics, var args)
3.6 is latest build released on July, 2012

(August 2012): speedup of indexing and retrieval

(February 2015): index safety, many adjustments on the API
(April 2016): Java 8, classification, spatial module update
(September 2017): Java 9 and support of Jigsaw modularization
(September 2018): Integration of OpenNLP

* Lucene implementations

— Java (original), C++ (CLucene), .NET (Lucene.NET), C (Lucene4c), Objective-C (LuceneKit),
Python (PyLucene), PHP 5 (Zend), Perl (Plucene), Delphi (MUTIS), JRuby (Ferret), Common
Lisp (Montezuma)

Multimedia Retrieval — 2018 2.5.1 History of Lucene

Page 2-57

2.5.2 Core Data Model of Lucene

* Lucene is a high-performance, full-featured text search library

» The core concepts of Lucene revolve around

Document and Field to encompass the content of documents

Analyzer to parse the content and extract features

IndexWriter which maintains the inverted index including concurrency control
Directory that holds the inverted index structures

Query and QueryParser represent queries and parse input strings, respectively
Term and TermQuery denote unit search expressions

IndexSearcher exposes search methods over the inverted indexes

TopDocs contains the result of a search sorted by scores

Multimedia Retrieval — 2018 2.5.2 Core Data Model of Lucene

Page 2-58

» Lucene’s APl is split into offline analysis functions and online search function. The interaction with
an application is as follows:

& offline online =

1 application ,/ application 1
/
| Lucene / Lucene |
//
/
\Z /
/
Analyze & Analyze &
Index Index
Inverted
List

& offline online =

Multimedia Retrieval — 2018 2.5.2 Core Data Model of Lucene Page 2-59

2.5.3 Indexing Documents with Lucene

1. Select Directory to store Index in
I JJ directory = FSDirectory.open ("./index");

Documents

2. Create Analyzer for Documents

analyzer = new StandardAnalyzer();

3. Create Document-and add Fields
doc = new Document () ;
Maintain Index Code doc.add(new TextField("title", title,
Dtick;lrr:;m Steps 1-5 TextField.TYPE STORED)) ;
doc.add (new TextField("content", content,,
TextField.TYPE_NOT_STORED));
doc.add (new StoredField("id", id));

4. Get Index Writer and add Document
config = new IndexWriterConfig(anaylzer);
writer = new IndexWriter (directory,config);

Field Field Field writer.addDocument (doc) ;

(title) (content) (id)

Analyze & 5. Close Index Writer (optionally optimize)
Index writer.optimize () ;

writer.close();

Document Analyzer

IndexWriter

\hirectorA

Multimedia Retrieval — 2018 2.5.3 Indexing Documents with Lucene Page 2-60

2.5.4 Indexing Documents with Lucene

» Directory
— Lucene provides multiple ways to maintain and persist inverted indexes

— The LockFactory associated with a directory implements basic concurrency control mechanisms.
IndexWriter and IndexSearcher provide concurrency control

» Analyzers
— Lucene and 3" party extensions provide a rich set of pre-defined analyzers with support for various languages

— A Tokenizer parses the fields of documents, removes syntactical elements, and produces a stream of tokens.
— A TokenFilter filters/changes/aggregates elements in the token stream

+ Fields
— Lucene is able to store additional attributes for each document
« Ability to restrict the search on specified meta data items
« Ability to store data that identify the document
— Creation of fields includes many options (newer release subsumes all of them in FieldType)
* Field.Store: YES Or NO

* (deprecated)Field.Index

* (deprecated)Field.TermVector

Multimedia Retrieval — 2018 2.5.4 Indexing Documents with Lucene Page 2-61

2.5.5 Searching Documents with Lucene

1.Select Directory where Index resides

directory = FSDirectory.open ("./index");

Present
Result

2.Create Analyzer as used for Documents

analyzer = new StandardAnalyzer();

3.Create Query (optionally through QueryParser)

Search Code parser = new QueryParser ("content", analyzer);
Query f—_— Steps 1-5 Query query = parser.parse (queryStringFromUser) ;
Construction Presentation
4.Get Index Searcher and Search
searcher = new IndexSearcher (directory);
TopDocs hits = searcher.search (query, NUM RESULTS) ;
5.Present Result
QueryParser TopDocs for (int 1=0; i<hits.scoreDocs.length; i++) {
doc = searcher.doc (hits.scoreDocs[i].doc);
System.out.printf (" %4d %$1.3f %s $s\n'y
i+1,
Analyze & Query hits.scoreDocs[1i].score/hits.getMaxScore(),
Index doc.get ("id"), doc.get("title"));
Analfyzer }
IndexSearcher
y

IDirectoryI

Multimedia Retrieval — 2018 2.5.5 Searching Documents with Lucene Page 2-62

2.5.6 Searching Documents with Lucene

* Query and QueryParser

— Lucene provides multiple ways
term queries, range queries, phrase queries, fuzzy queries
wildcard queries Atomic queries can be
combined by means of Boolean operators.

— QueryParser simplifies the interface with a standard way how users have to enter queries

* Query is a set of clauses optionally prefixed with '+' and '-'
» A clause can be a single term such as 'hello’ a search term for a selected field
'title:hello’, a fuzzy query ‘hello~' wildcard-query 'h?llo’

— Scores are computed through a Similarity object

* TopDocs
— The search method returns the top documents matching the query

— Retrieval of the content of fields of document is through the IndexSearcher
— Only fields that were indexed with Field.Store.YES can be retrieved after a search

* Analyzer
— Use the same analyzer object as for indexing the documents in offline mode

Multimedia Retrieval — 2018 2.5.6 Searching Documents with Lucene Page 2-63

2.5.7 Retrieval Model of Lucene

* Lucene combines Boolean retrieval with vector space retrieval

* Boolean Retrieval Part
— Applications can define arbitrary Boolean expressions on fields content with
e atomic queries such TermQuery, RangeQuery, Or any other Query
- and a Boolean clause constraint whether MUST, MUST NOT, or SHOULD occur

— Example: +information —multimedia retrieval search

TermQuery gl =

TermQuery g2
TermQuery g3
TermQuery g4
BooleanQuery
query.add (gl,
query.add (g2
query.add (g3,
query.add (g4

new TermQuery (new Term("content","information"))
= new TermQuery (new Term("content","retrieval"));
= new TermQuery (new Term("content","search"));
= new TermQuery (new Term("content","multimedia")):;

query = new BooleanQuery () ;

BooleanClause

, BooleanClause

BooleanClause

, BooleanClause

.Occur .MUST) ;
.Occur.SHOULD) ;
.Occur.SHOULD) ;
.Occur.MUST NOT) ;

— FuzzyQuery and WildcardQuery translate into a MultiTermQuery over a set of terms

« FuzzyQuery (‘hello~0.5") expands to a search over all terms in the index that have a
normalized similarity of 0.5 and larger (value btw 0 and 1)

« WildcardQuery ('h?llo") expands to a search over all terms that match the pattern

Multimedia Retrieval — 2018

2.5.7 Retrieval Model of Lucene Page 2-64

* Boolean Retrieval Part (contd)
- IndexSearcher uses the inverted lists in the directory to retrieve all documents

* Ranking uses an extended version of the cosine measure

— The conceptual scoring formula is:

Vig)-V(d)
IVl

 coord_factor(q, d): score factor based on how many query terms are found in the document

score(q, d) = coord_factor(q, d) - query_boost(q) - -doc_len_norm(d) - doc_boost(d)

e query_boost(q): boost factor for individual query terms
e V(q),V(d): vector representation

e doc_len_norm(d): documents are normalized by the length
of a field

e doc_boost(d): application specified boost factor

— To simplify computation, Lucene's implementation is as follows
« guery norm and query boost are combined as they are known at search start time
« document norm and document (filed) boost values are stored in the index for each term

Multimedia Retrieval — 2018 2.5.7 Retrieval Model of Lucene Page 2-65

* Ranking in Lucene (contd)
— The formula defined by TFIDFSimilarity is:

score(q,d) = coord(d, q) - queryNorm(q) - Z (tf (¢, d) - idf (£)? - boost(t) - norm(t,d))

ting

. COOT‘d(d, q) _ overlap

max _overlap

1
boost(q)?-Y; in q(idf(t)-boost(t))z)

e queryNorm(q) = (

o tf(t,d) =/frequency of tind

numbDocs)

e idf() =1+ log(

docFrequency+1

e boost(t)

1
number of terms in field

e norm(t,d) = boost(d) -

) 1_[fieldf in d anmeds as t DOOSt(f)

Multimedia Retrieval — 2018 2.5.7 Retrieval Model of Lucene

Page 2-66

2.6 Literature and Links

General Books on Text Retrieval

— Gerard Salton and Michael J. McGill. Information Retrieval - Grundlegendes fir Informationswissenschattler,
McGraw-Hill Book Company, 1983.

— W.B. Frakes and R. Baeza-Yates. Information Retrieval, Data Structures and Algorithms, Prentice Hall, 1992.

— Karen Sparck Jones and Peter Willet. Readings in Information Retrieval. Morgan Kaufmann Publishers Inc.,
1997.

— David A. Grossmann and Ophir Frieder. Information Retrieval: Algorithms and Heuristics, Kluwer Academic
Publishers, 1998 (1st edition), 2004 (2" edition).

— Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval, ACM Press Books, 1999 (18t
edition), 2011 (2"d edition).

— Sandor Dominich. Mathematical Foundations of Information Retrieval, Kluwer Academic Publishers, 2001.

— Christopher Manning, Prabhakar Raghavan, Hinrich Schitze. Introduction to Information Retrieval, Cambridge
University Press, 2008

— Stefan Buttcher, Charles Clarke, Gordon Cormack. Information Retrieval - Implementing and Evaluating Search
Engines. MIT Press 2010.

— Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python. O'Reilly Media, 2009.
Free online version: http://www.nltk.org/book/

Thesaurus & Ontologies for selected Languages
— EuroWordNet: http://www.illc.uva.nl/EuroWordNet/
— GermanNet: http://lwww.sfs.uni-tuebingen.de/Isd/
— WordNet: http://www.cogsci.princeton.edu/~wn/

Implementations
— Natural Language Toolkit (NLTK), http://www.nltk.org
— Apache Lucene, https://lucene.apache.org

Multimedia Retrieval — 2018 2.6 Literature and Links Page 2-67

http://www.nltk.org/book/
http://www.nltk.org/
https://lucene.apache.org/

