L/
UNIVERSITAT BASEL S Computer Science / 15731-01 /2018

Multimedia Retrieval

Chapter 4: Basic Image, Audio, and Video 4.1 Introduction

Retrieval 4.2 Similarity Search
4.3 Metadata Extraction

4.4 Features for Images
4.5 Features for Audio
4.6 Features for Video

Dr. Roger Weber, roger.weber@ubs.com 4.7 Literature and Links

@\ '
\\\x 2‘\ 2z

_/_,
S "Xr\' &v 2 % ". SO
3 we s

- . o .

% S N ‘;- a‘."
UNIVERSITAT Blsja.




4.1 Introduction

With text and web retrieval, the descriptors for documents are the same as for user queries (words,
phrases). Search performance is generally good even though we are just considering term
occurrences. With other media types, it is no longer that simple. A user may want to query with
natural language, but the documents do not contain keywords rather low-level signal information.
This is known as the Semantic Gap.

— Consider the image below. For a machine, it contains pixels each with a color code attached to it.
In some cases, additional meta-information may exist. For a person, it depicts the Spalentor in
Basel. When looking for the Spalentor in images, we need to translate the term “Spalentor”
somehow to the low-level signal information (or vice-versa). But which patterns in the picture let a
machine understand that this is a picture relevant for the query “Spalentor”.

— The semantic gap is the difference between the information extractable in an automated fashion
from the raw image data and the interpretation of that same data by a person.

— Also note that the semantic gap also depends on the person asking the question; for someone
unfamiliar with Basel’s history, the picture is simply an interesting piece of architecture.

What are the characteristic patterns
that let a machine infer that this is the
Spalentor?
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« The same gap applies to audio files. A user is not expressing a query at the signal level (amplitude,
frequencies, etc.) but at a semantic level: “find me a rock ballad” or “funny comedian”.

 Humans interpret signal information in several steps:

1. Perception — we are not measuring the physical quantities but rather obtain a “biased” perception
that helps us to further infer information.

* The eye is responding to three color channels and luminance. The concept of color is merely
an interpretation of our brain, but it is essential to the next steps. Both eyes combined provide a
spatial perspective of the scenery.

« The ear is responding to wave lengths and measures delays between the ears to infer direction
of the sound. The pre-processed signal that reaches the brain is no longer physical quantities.

2. Generic Semantic Inference — the brain interprets the perception and enriches it with semantic
information. The first step is poorly generic and is focused on important aspects (person, animal,
sky, faces). At this stage, information hiding prevents over-stimulation of reasoning.

3. Specific Semantic Inference — with our knowledge, experience, cultural conditioning, and beliefs,
we infer contextual semantics including named objects (Spalentor), events (Soccer match), and
abstract concepts (emotions, spatial, time).

» This step depends on the individual experience and knowledge of a person. You will infer
different semantics for a picture of your mother than someone who does not know her.

* To close the semantic gap, a machine must address each of the three levels. Content-Based
Retrieval systems started with the perceptual level. Recently, deep learning made huge progress on
the generic semantics and on the specific semantics. In between, we have classical retrieval on
metadata obtained either by manual or automated processes. Metadata is matching the semantics
of users much better and is still the dominating search paradigm.
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* A retrieval system must mimic the human’s
interpretation of the low-level signal

The raw media is mapped to low-level descriptors
that summarize information on regions, color,
texture, or points of interest. To be effective, we
need to replicate human’s perception.

Object recognition combines prototypical
descriptors and infers regions/blobs of interest.
Image segmentation yielding a number of objects
but without any classification.

Object labeling associates classes or names to
objects often using machine learning or statistical
approaches. The labels correspond to the generic
semantics of users but may still fail on the specific
interpretation of users.

Semantics result from additional contextual
information either derived from the objects and
their relation or through meta-data and the usage
of a knowledge base. The hardest part is to obtain
the context (which is also not easy for humans).

« Again, the same applies to audio and video data.

Wolf on Road with Snow on
Roadside in Yosemite
National Park, California on
Jan 24, 2004

Raw Media

-

Descriptors

-

Objects
(segmentation)

-

Object Labels
(segmentation)

-

Semantics
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« We distinguish between two feature types going forward

Low level features that are based on the raw signal information and describe perception rather
than semantics. Most of the early Content-Based Retrieval System were focused on low-level
features and search paradigms like Query by Example, Query by Sketch, or Query by
Humming. As a general idea, these systems extract features from both the query and media
objects, and perform a comparison to find best matches (similarity search, nearest neighbor
search). The semantic gap is only closed with regard to perception; higher level gaps remain
open and can challenge the user during the search (like this picture but need an other color for
the car, or: can’t sing correct but the tune is somehow like this).

High level features address generic, specific, and abstract semantic meaning. We can
distinguish between object, spatial, temporal, and event/activity information. Further
information encompasses related concepts/objects, abstract concepts, and context. For
instance, let us consider the following picture of the Taj Mahal:

Generic Object building, water, sky

Instance

Generic Object Class mausoleum, tomb, dome,
minaret

Specific Named Object UNESCO World Heritage
Class Site (since 1983)

Specific Named Object  Taj Mahal
Instance
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— Taj Mahal (contd)

Generic Location outside

Specific Location
Hierarchy

India, Uttar Pradesh, Agra

Generic Event/Activity tourism, attraction

Specific Event Instance  International World Heritage
Expert Meeting on Visual
Integrity in 2006

Generic Time summer, daytime
Specific Time 2006 (photo taken)
Topic Indian Architecture

Related Concepts / Shah Jehan, Mumtaz Mahal,

Objects Islam

Abstract Concept love, death, devotion,
remembrance

Context built in memory of his

favorite wife Mumtaz
Mahal, by Shah Jehan;
completed 1648
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* In summary, to close the semantic gap, we need to extract descriptors at different levels allowing a
user to ask semantic queries. In this chapter, we start with the lower levels. The next chapter
addresses some of the higher levels.

Context

Abstract Concept

Related Concepts / Objects

.. | high-level
Event / Activity Facet 5 foatures

S

Temporal Facet g e

. 2] e

Spatial Facet < -"a—;)

o

Object Facet @

Meta Data Perceptual Features

low-level
features

Raw Signal Information
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4.2 Similarity Search

« Content-based Retrieval Systems operate only with low-level features and hence struggle more with
closing the semantic gap between user queries and the extracted information.

— Extract Meta-Data and perform classic text or web retrieval. This is the dominant method used
by most search engines on the web and multimedia repositories. The signal information is
considered partially, but the focus is on key words and structural information extracted from the
object or its embedding. We will consider meta-data extraction in the next section. The semantic
gap is closed by automatically or manually associating key words to the media object such that
the user can naturally search for objects.

— Query by Example / Query by Sketch (Humming) requires the user to provide (or sketch, sing)
an example of what she looks for. The example or sketch is mapped to perceptual features and
search is performed based on similarity scoring in that feature space. In combination with
relevance feedback, the user is able to adjust her query during the search session. The semantic
gap is closed by queries in the same perceptual space.

by example

—_—

by sketch
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* In the following, we briefly overview the similarity search problem (more details in Chapter 6).

— Similarity search works on the descriptors obtained from the raw media files. We already have
seen the extraction of textual features in the previous chapters. For images, audio and video
files, we will study algorithms that describe a particular perceptual aspect, often in the form of a
multi-dimensional feature vector. Examples:

text documents

feature
extraction

doclID =doc10

dog —» word 10, word 25
cat > word 13

home — word 2, word 27

Images

feature
extraction

v

color
histogram
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video sequences

audio files

phonemes: imnOrd@namfo:rmita:gs...

feature _ :
T text: Im Norden am Vormittag...
acoustical features: D:U]:D
video files

16 kH=

12 kH=

8 KkH=

4 kH=

subtitle: [President] | never had ....
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« The definition of a similarity scoring function depends on the feature design. Hence, there is not a
single measure or best-practice but individual metrics depending on the following aspects

— Segmentation: we can divide a media file into segments. For instance, objects in an image, time
windows in an audio or video file, sequence and shots in a video. Feature extraction either
describes the entire media file (global descriptor) or apply only to segments (local/temporal
descriptor). The similarity functions for local descriptors may include partial match query, while
the function on global descriptors can not do so.

— Invariances: feature design focuses on the extraction of robust descriptors. Robustness denotes
the ability of a descriptor to remain the same (or change only little) given transformations of the
original media file. For example, an image descriptor is scale invariant, if the value does not
change significantly if the image is scaled up or down. Similarly, an audio descriptor is invariant
to background noise, if the extracted information (e.g., speech) is not impacted if background
noise is added or eliminated. Invariances impact the selection of a similarity function, especially if
the similarity definition is based on a different set of invariances than the underlying features.

— Normalization: a common problem of data manipulation is the need to normalize value ranges
before combining them. For instance, if we deal with 10-dimensional feature vectors and use an
Euclidean distance to describe similarity, the ranges of all dimensions should be normalized to
allow for such a combined distance measure. Otherwise, the dimension with the large range will
dominate the ones with small ranges. Normalization also encompasses dimensionality reduction
and correlation analysis. Assume again the 10-dimensional feature vector: if several dimensions
strongly correlate, the Euclidean distance grows faster for changes of these correlated values
(the difference becomes replicated in multiple dimensions) than in uncorrelated dimensions.
Dimensionality reduction (Principal Component Analysis) eliminates correlation. Alternatively, a
special quadratic function can be used to adjust for the correlation.
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« A very common method to measure similarity is through a distance function. Assume we have a
feature space R? with d dimensions. A query Q is mapped into this feature space yielding a feature
vector g € R9. The same mapping leads to feature vectors p; € R¢ for each of the media objects P;.
In case of uncorrelated dimensions, a weighted L;-norm is a good selection to measure distances

— The weights are chosen such that the ranges of all dimensions become comparable. Several
strategies exist to compute the weights. Here are two examples:

1

1
w; = _ w; = —  with g; being the standard deviation of values in dimension j
mlax pi,j — mill’l pi,j O']

— The distance between the query vector g and media vector p; is then:

L,-norm or Manhattan distance: | 6(q,p;) = zwj ‘|a; —vijl
j

L,-norm or Euclidean Distance: | §(q,p,) = \/z w? - (q; — pij)
j

Ly-norm or k-norm: 5(q,p)) = "JZ Wk (2= pi,)°
7

Ls-norm or Maximum norm: 5(q,p;) = max(w; - |q; — pi|)
]
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— For correlated dimensions, we can use a quadratic function with a matrix A € R? that
compensates correlation. In this case, weights are already factored into the correlation matrix:

* Quadratic function: 5(q,p,) = (q —p)TA(q — D))

— The following visualization shows all distance measures. The blue area depicts the neighborhood
areas around the centers of the areas (e.g., a query vector):

A

Euclidean

\

dimension 1

/ Maximum norm

~

uadratic function
Manhattan — Q

»

dimension 2
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— Example for weights: consider the following two dimensions
 In dimension d,, all values are between 0 and 1.
 In dimension d,, all values are between 100 and 200.

If we would apply an unweighted distance function, dimension d, would dominate dimension d;.
In other words, regardless of how close the features are in dimension d;, only the difference in
dimension d, really matters. Similarity is hence based (almost) entirely on dimension d,. With the
weights, we can normalize the different ranges along dimensions. Note that all metrics are based
on differences so that the absolute values do not matter if ranges are similar.

« Searching for the most similar object translates to a search for the object with the smallest distance,
the so-called nearest neighbor. We note the reversed relationship between similarity values and

distances:

— large distances correspond to low similarity values

— small distances correspond to high similarity values

We can express similarity search as a nearest neighbor search:

Nearest Neighbor Problem:

» Given a vector g and a set P of vectors p; and a
distance function 6(q, p;) P;
l

* Find p; € P such that:
Vi,pj €EP:6(q,p;) <5(q,pj)
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« If we want to obtain similarity values from the distances, we need a so-called correspondence
function h. Let g(q, p;) denote a similarity function between query vector g and a media vector p;.
The following properties must hold:

e g(q,p;) is in the range [0,1]

» o(q,p;) = 0 denotes total dissimilarity between query vector g and a media vector p;

» o(q,p;) = 1 denotes maximum similarity between query vector g and a media vector p;
— The correspondence function translates between distances and similarity values as follows

o(q,p;) = h(5(q,py)) 5(q,p)) = h™'(o(q,p))

It must fulfil the following constraints

e h(0) =1

e h(0) =0

e h'(x) <0 (h must be a decreasing function)

— The best method to build a correspondence function is to use the distance distribution ps. We
obtain the mapping by integrating the distribution function up to the given distance and subtract

that value from 1. This guarantees that all constraints hold true:
distribution ps

X

h(x) =1 —f ps(x)dx 08

0

Correspondence
function h
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4.3 Metadata Extraction

« There is a simple way to close the semantic gap: we annotate the media files with keywords and
derive higher-level semantic features similar to the techniques we have seen in text and web
retrieval. In this context, the meta data is a low-level feature in the form of structured or unstructured
text, while the terms extracted and the reasoning on the terms denote the higher level features
(which are not inferred directly from the raw signal).

» However, it costs about $50 to $100 to annotate an image with the necessary level of detail and
guality. With the billions of images and the limited revenue generation from such annotations, this
clearly is not an attractive path. Or would you pay $100°000 for the 1’000 photos from your last
vacation? Clearly not. So we need a cleverer approach to automate annotations as much as
possible. This is not always feasible.

« We can divide meta data roughly into two groups:
Technical Metadata Subject Metadata

Administrative Data Title, Captions

Media Properties Descriptions

Creation Information Relations
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* There are many standards for metadata description like RDF, Dublin Core, Dublin Core Metadata

Initiative and others that define standards how to annotate media files. They all are part of the

semantic web initiatives to provide better connection of information. In the context of web pages, the
meta-tag in the header holds all meta information about the current web page. Its format is: <meta

name=“description” content=“text”>. Nextto description, a number of further meta data

items are possible:

Coame —— Jocontent

description short description of web page

keywords keywords associate with page

abstract short narrative of content

author author of this page

contact contact person for this page

copyright name of owner

dc.language language of page (e.g., using RFC1766 and
ISO 639)

dc.source reference to page from which this page is
derived

dc.creator creator information for page

...12 more Dublin core tags and even more DCMI tags possible
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* In the context of multimedia content, the web offers more information than the simple meta
information in the header section. Similar to what we have seen in web retrieval, links and
embedding in pages offer further sources for meta data

— Link information (example: img-tag and a-tag)

[;qa:‘vﬂ_-'; T s — -

o 3B &\Ihttp:ﬂmmw.NiceF‘ic.cum

picture of white shark

A 4

* The alt-attribute in the img-tag is a good source for a caption. Sometimes the file name yields
additional keywords of interest

« Hypertexts annotate the referenced image (like we did for web pages) with additional
keywords. These annotations contain keywords at different semantic levels. If an image is
frequently referenced, we may find a complete description of the content from various
perspectives and covering a wide range of user specific semantics.

— A good source for keywords is the surrounding area

on the web page. If we look before and after the image Art & Collections

we find title, caption, and relevant keywords for the : image 1

image. The same applies to links (also within the same Ca"m.se.lgstﬁrf;; t

page) to media objects. The surrounding area holds " image 2

many interesting aspects. - parts Vitual Guld

« What means surrounding? and how far does it S - image 3
stretch? This may also lead to false annotations LB
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 Extracting information from the web page (basics)

— The meta information of the web page is a good source for descriptors of an embedded
image. In addition, headings or table headers before the image may contain further relevant
information. The larger the document, the less likely such association may hold true

— The window (in terms of characters in the HTML file) around the embedding holds many text
pieces of potential relevance for the image. The size of the window must be carefully chosen
to avoid wrong associations. Alternatively, we can weigh terms inversely to their distance to
the embedding tag.

<HTML><HEAD>
<TITLE>Linux 1is cool.</TITLE>

</HEAD>

<BODY BACKGROUND="./images/paperll.jpg">

<CENTER><HI1>LINUX</H1>

& : ‘ annotations
<p>
<IMG SRC="./images/tux.gif" Source  Text |

ALT="picture the penguin from linux"> src-attribute  tux.gif
<EM>This penguin, Tux, is the
official mascot of Linux.</EM></CENTER>

alt-attribute picture the penguin from linux

title Linux is cool.
<H2>MY&nbsp; FEELINGS&nbsp; ABOUT&nbsp; LINUX</H2> - LINUX
I'll tell you, Linux has to be,
<p> em This penguin, Tux, is the official
<H2>MY INVOLVEMENT&nbsp;WITH&nbsp; LINUX</H2> mascot of Linux.
ce text LINUX This penguin, Tux, is the
</BODY>/HTML> official mascot of Linux. MY

FEELINGS ABOUT LINUX
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Indian government sidelines Taj Mahal for its

Islamic past

NEW DELHI: The government of the
Indian state of Uttar Pradesh (UP) has
come under fire for omitting the Taj
Mahal from its annual tourism brochure,
released on Oct. 2

The stunning white marble mausoleum,
commissioned by Mughal Emperor Shah
Jahan for his wife Mumtaz Mahal, is
widely considered one of the seven
wonders of the world and attracts
millions of visitors annually. But the
Bharatiya Janata Party (BJP) — the

country's largest political party, which leads the UP government under Hindu nationalist
Chief Minister Yogi Adityanath — has stated that “the Taj Mahal and other minarets do not

reflect Indian culture.”

The 32-page booklet recently released by the UP Ministry of Tourism neglects to mention
the UNESCO World Heritage Site at all, instead giving prominence to sites of significance to

H otter than last year

Book Review: A journey in
e face of dea

»

»

Latest News

"All winners’ at inaugural
Miss Wheelchair World

Vad

Chastened Deutsche Bank
plots more moderate course

Emirates airline chief says
first-half performance

the face of death

Lﬂ

Contains many of the

earlier in this chapter

keywords as we discussed

ARTICLES

%§j Mahal a tomb, not a
Hindu temple,
Archaeological Survey of
India tells court

Taj Mahal minaret’s

pinnacle falls off

Taj Mahal ‘not a Hindu
temple’

Philippines to start
extradition process for
doctor linked to New Yorl

I
ctor linked to New York S
Mo plot @ 100 views

Fc lmuh()n Hamilton
closes in on fourth world
itle \1th Japan win

\ Opinion

Trump implements t ;‘
¥

Chapter 2 of Obama's
>

foreign policy
Yossi Mekelberg
One man’s self- =
determination is another =
man’s secession A
=

The new dilemma for

Google and Facebook 9 =/
AN,
— Frar -
How to end Africa’s ®
poverty and hunger )
VN

Visual boundary between
the two columns

An alternative approach uses visual closeness
to annotate objects:

— Instead of defining the neighborhood in the
source code, it is defined by the proximity in
the visual layout of the page (distance as
perceived by reader)

— Implementation:

* Render the page and define core blocks on
the page given the core structural
elements (div, p, table, form, ...)

« Compute distances between these blocks
and the embedded object. The distance
can be any measure like pt or pixel.

« Add penalties to the distance if there is a
(visual) delimiter between the blocks. For
instance, a line separating table cells.
Column boundaries in a multi-column
layout. Other blocks in between.

» Define a neighborhood and add all blocks
intersecting with that neighborhood. Use
the distance as a weigh for the terms found
within a block. Apply further weighting
based on visual attributes such as bold,
italic, header, ...

« Summarize descriptions with bag-of-words
approach and associate it to the image.
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* A more targeted approach is to “scrape” information on media objects, especially if they are highly
standardized and categorized. With images, this is hardly achievable and only for sets of official
catalogues. But for music and videos, this is the most common approach. Consider you want
additional annotations for your music library to be able to find songs by keywords. A good starting

point is MusicBrainz.org which catalogues a large portion of published songs and is entirely public
domain (you can download the entire database).

— Example below: for every song in a media library, we can extract information about the artist,
about albums and releases, and about individual songs and interpretations of it. Using services
like LyricWiki, we can obtain a full description of high-level semantics for our songs. If you
combine several services, you can easily complete the descriptions of your media library.

— Both IMDb and TMDb offer similar services for movies and series. TMDb is a community built
database and free to use (with usage restrictions as per license agreement)

@ Paparazm

e group by Lac

Continue reading at Wikipedia... Wikipedia content provided under the terms of the Creative Commons BY-

license

Release Format Tracks
Official
Digital
Paparazzi Media 2
Digital
Paparazzi Media 5
Paparazzi co 2
Paparazzi S
The Dlgxtal 4
Media
apa

3

7

Date

2009-07-02 =i

2009-07-05 &
2009-07-06 &k

2009-09-08

2009-09-29 =

2009-10-13

ftha d final si
e sony gprt y Gaga'
as well as balanci g SUC and love. Musically, it i
whose lyrics describe tlk following somebo dyt q ab attentio

GB

4GB
3GB
=ys

n
T

=S

ongwriter Lady Gaga from her dbtrd album,
glbylt e

i ue
uptempo r no-pop and dance-pop soni

Country Label

Type: Single
* kA% (see all ratings
Catalog# Barcode e et
remix
€ Discogs

602527121178 Wi Q1025916

= Log in to edit

0602527224169

602527217901

lyrics >

We are the crowd

We're c-comin' out

Got my flash on, it's true
Need that picture of you
It's so magical

We'd be so fantastico

Leather and jeans

Garage glamorous

Not sure what it means

But this photo of us, it don't have a price
Ready for those flashing lights

'Cause you know that baby, |

I'm your biggest fan

I'll follow you until you love me
Papa-paparazzi (ya-ha)

Baby, there's no other superstar
You know that I'll be

Your papa-paparazzi (ya-ha)

Multimedia Retrieval — 2018

4.3 Metadata Extraction

Page 4-21




« MPEG-7 is an ISO standard for multimedia content defined by the Motion Picture Expert Group in
2002. In contrast to MPEG-1, MPEG-2, and MPEG-4, the encoding format MPEG-7 is not about a
new compression algorithm but focuses on meta information and its description

— MPEG-7 defines a language to store meta information to
 describe any multimedia document (images, audio files, video files)
 describe possible descriptors and their relationships to each other
« define descriptors
« encode descriptors and prepare them for later indexing
— The standard does not include:
 the concrete implementations of feature extraction algorithms to not hinder development
« filter and search algorithms to scan through MPEG-7 data

— MPEG-7 bridges content provider and search engines with a standardized representation. It is
the essential semantic glue between feature extraction and search engine. In the following, we
look at the individual elements of the standard and how it fits into our model.

- - -
- ~o

Feature ;” MPEG-7 ) Search
Extraction \.. Description Engine

~ -
-~ -

Standardization
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* Lets first consider how MPEG 7 stores technical meta data.

<MediaInformation>

<MedialIdentification> |

<Identifier IdOrganization='MPEG’ IdName='MPEG/ContentSet’> - !
mpeg7 content:newsl Administrative Data
</Identifier>

</Medialdentification> |

<MediaProfile>

<MediaFormat>
<FileFormat>MPEG-1</FileFormat>
<System>PAL</System>
<Medium>CD</Medium>
<Color>color</Color>
<Sound>mono</Sound>
<FileSize>666.478.608</FileSize>
<Length>00:38</Length>
<AudioChannels>1</AudioChannels>
<AudioCoding>AC-3</AudioCoding>

</MediaFormat>
Media Pr rti

<FrameWidth>352</FrameWidth>

<FrameHeight>288</FrameHeight>

<FrameRate>25</FrameRate>

<CompressionFormat>MPEG-1</CompressionFormat>
</MediaCoding>

<MedialInstance>
<Locator>
<MediaURL>file://D:/Mpeg7 17/newsl.mpg</MediaURL>
</Locator>
</Medialnstance>

</MediaProfile>

</MediaInformation>
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« Continuation of the technical meta data part:

<Creation>

<Creator>
<role>presenter</role>
<Individual>
<GivenName>Ana</GivenName>
<FamilyName>Blanco</FamilyName>
</Individual>
</Creator>

<CreationDate>
1998-06-16
</CreationDate>

<CreationLocation>
<PlaceName xml:lang="es">Piruli</PlaceName>
<Country>es</Country>
<AdministrativeUnit>Madrid</AdministrativeUnit>
</CreationLocation>

<Publisher xsi:type="Organization">

Creation Information

<Name>TVE</Name>
<ContactPerson> .... </ContactPerson>
</Publisher>
</Creation>
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* Now let us consider the subject meta data for the example:

<Title type="original">

<TitleText xml:lang="es">
Telediario (segunda edicidn)
</TitleText> . .
B TS P——— Title, Captions
<MediaURL>file://images/teledario ori.jpg</MediaURL>
</TitleImage>
</Title>

<Title type="alternative">

<TitleText xml:lang="en">
Afternoon news

</TitleText> : .

Titl tion

<TitleImage> e, Captions
<MediaURL>file://images/teledario en.jpg</MediaURL>

</TitleImage>

</Title>

<StructuredAnnotation>

<Who>Fernado Morientes</Who>
<WhatAction CSName='Sports’
CSLocation=’www.eurosport.xxx/cs/soccer/’> scoring goal
</WhatAction>
<When>Spain Sweden soccer match</When>
<TextAnnotation xml:lang='"en-us’>
This was the first goal of this match.
</TextAnnotation>

Relations

</StructuredAnnotation>
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* And the final part of subject meta data:

<Examples SemanticLabel="baldheaded man walking" Length="3"
Confidence="1.0" DescriptorName="ColorHistogram">

<Descriptor>
4617 11986 938 2628 458 1463 5178 2258 444 134 69 456 9300 2810
121 21 14 18 48 107 277 53 47 1926 8281 793 38 11 0 5 201 28 0
112 23 252 122 6 3 433 1517 46 1 1 0 0 0 0 0 0O 00 2 55 13560
3326 678 221 1610 5602 916 32 8 1 21 58 11 1 0 0 2 61 331 179
14 7 2388 6213 51 0 0 0 0 0 0O O O O O 2 337 243 0 0 220 194 0 O
0000O0O0O0OOOO 383 3172 1072 51 20 91 128 0 0 0 0 O 2 4 O
0 0 0 89 757 694 0 0 217 39 0 0 0O 0O OO 0OO0CO0OO0OO0OO0 912 210 0 O
0 000O0O0O0OOOO®O®O®OO0 55

</Descriptor>

Descriptions

<Descriptor>
1764 18807 725 816 553 1784 7133 1325 81 3 8 110 5621 2323 34
11 0 3 12 82 156 26 11 700 3060 63 7 0 0 01 0 01 0 0O 16 95 40
4 016 2001 0000O0O0O0OO0OO0OO0OO0 17 13534 3211 523 126 1123
5181 347 37 00 0 58 210 2 17 261 168 3 0 997 2635 3 0 0 0 O Descriptions
0000002292 3900171 000000O0O0O0O0O00O0 157 861
430 3 0 26 14 00 00OOOO0OO0OOO0OO021 608 2150 081 10000
0O0000O0O0ODOOC373370000000000O0O0O0OO0O0O0D59

</Descriptor>

<Descriptor>
9742 15760 1455 2216 475 1356 4771 2328 714 329 193 420 6954
6087 298 15 15 22 35 119 74 115 24 1253 7629 352 14 5 1 3 85 99
000O0O011 0 6 0 335 717 90 00000O0O0O0O0O0O0 12332 3066
991 157 1048 4836 469 14 1 0 0 160 80 4 0 O O 13 217 101 53 0
3450 6079 12 0 0 0O OO OOOOOOO®GOOO338 640000000

Descriptions

0 00O0O0O0 2439 718 15 0 81 41 00 00O0OO0OOO0ODO0OO0ODO0O0OG6GO0DO0
0 447 43 0 0 00O 0OOOOO0OODODO0OO0DODOD0ODO0DO0DODODOOOOODOO
0 00O
</Descriptor>
</Examples>

Multimedia Retrieval — 2018 4.3 Metadata Extraction Page 4-26




» Discussion: a good summary of the challenges around meta data is given by Cory Doctorow which
he calls the seven insurmountable obstacles between the world as we know it and meta-utopia:

— People lie. Metadata cannot be trusted because there are many unscrupulous content creators
who publish misleading or dishonest metadata in order to draw traffic to their sites.

— People are lazy. Most content publishers are not sufficiently motivated to carefully annotate all
the content that they publish.

— People are stupid. Most content publishers are not intelligent enough to effectively catalog the
content they produce.

— Mission impossible—know thyself. Metadata on the web cannot be trusted because there are
many content creators who inadvertently publish misleading metadata.

— Schemas aren’t neutral. Classification schemes are subjective.
— Metrics influence results. Competing metadata standards bodies will never agree.
— There’s more than one way to describe something. Resource description is subjective.

+ Do we ignore meta data, then? Of course not, but we need to be careful what we are doing with the
information provided. After all, a lot of the meta data can be extremely useful if the quality is right
(see for instance MusicBrainz.org).

— Observational meta data (automatically generated while crawling the web) is useful if it is hard to
game the system (see PageRank as a good example).

— Need to take the trustworthiness of the data provider into account. Google did so by trusting the
users that link to a page more than the author of that page.
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4.4 Features for Images

* We first look at low-level feature extraction from images based on the raw signal information. The
process is divided into four steps:

Step 1: Step 2: Step 3: Step 4:
Image Normalization Image Segmentation Feature Extraction Feature Aggregation

— Image Normalization depends on the data sets and includes a number of pre-processing steps
including noise elimination, normalization of signal information, adjustments and corrections of
the raw data. For example, when analyzing frames in an interlaced video sequence, deinterlacing
Is a typical step to reduce combing effects that interfere with feature extraction

— Image Segmentation partitions the image into sub-areas for which perceptual features are
extracted. We distinguish between global features (for the entire image) and local features (for a
region within the images). If we have local features, the aggregation step (4) is necessary to
obtain a global feature for the image.

— Feature Extraction describes the signal information based on perceptual aspects such as color,
texture, shape, and points of interest. For each category, a number of methods exists with
different invariances (e.g., robustness against scaling, translation, rotation). We do not consider
labeling of images in this chapter (see the next chapter for high-level features)

— Feature Aggregation summarizes perceptual features to construct a final descriptor (or a set of
descriptors). The aggregation often uses statistical approaches like mean values, variances,
covariances, histograms, and distribution functions. With local features, we can further derive
statistical measure across the regions (e.g., self-similarity, mean values, variances, covariances).
In the following we often discuss feature aggregation together with the feature extraction method.
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« Feature Design: before we design features, we need to define the desired invariance properties of
the feature. For instance:

— Translation invariant: (small) shifts of the picture have no significant impact on feature values
— Rotation invariant: rotations of the image have no significant impact on feature values

— Scale invariant: up- or down-sampling does not change the feature value. Note that scale
differences are very common due to different image resolutions. In the absence of a normal sized
scale, it is even more important to demand scale invariance

— Lightning invariant: Adjustments of lightning (daylight, artificial light, brightness adjustments,
gamma corrections) have no significant impact on feature values

— Noise robustness: noise, JPEG artefacts, quantization errors, or limited color gamut have no
significant impact on feature values

We already have discussed global vs local features as a further invariance constraint.
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4.4.1 Visual Perception and Processing

» Let’s first consider how we perceive and process visual
information. Perception of light is the result of illumination of
an object and the amount of illumination that is reflected by A,
the objects in front of us: Light Soirés (L)

— lllumination I(x,y, z) is the amount of lumens per square
meter (=lux). Lumen is a measure of energy per second
modelled along the eye’s sensitivity range of light.

— Reflectance r(x,y, z) is the amount of illumination
reflected by the surface of objects. Reflectance is a function
of wavelength, absorption, and direction of illumination. p— — _

phyll has its reception peaks in
the blue and red spectrum of light.

Typical illuminance and reflectance values are given below: Hence, we observe onlly the reflected

green spectrum of light.

lluminance (lux) | Surfaces illuminated by e

Surface Normal (N)

’/,

Perfect Reflector (R) B\

; Vie;fJer v)

Fragment
Material Reflectance (RmGmBm)

Natural surfaces
0.0001 Moonless, overcast night sky I i
80| R
0.05-0.36 Full moon on a clear night — s
‘ ; . X 70F Ppinetrees I. ]
20-50 Public areas with dark surroundings = [ Dec. tree: 1
[0}
50 Family living room lights %
100 Very dark overcast day 3
320-500 Office lighting %
400 Sunrise or sunset on a clear day.
1000 Overcast day; typical TV studio lighting 0 i
VI S YRS TR (R [yl PR NN VI 1| el | [ Y | ] |
10,000-25,000 Full daylight (not direct sun) 0.5 1.0 1.6 2.0
32,000-100,000 Direct sunlight Wavelength [um]
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* The eye receives light and translates the wavelengths into electro-chemical impulses

— The cornea, pupil, and lens form an adaptive optical system to focus on objects (distance) and
adjust to light exposure (aperture). The lens works like an ordinary camera and projects an
(upside-down) image of the world onto the retina at the back side of the eye.

— The retina consists of three cone types and rods; they are the photoreceptors that transform
incoming light energy into neural impulses. The cones enable color vision, specialize on different
wavelength ranges, and are very frequent in the center of vision (macula and fovea)

* L-cone (long wavelength) peak at 564nm corresponding to the color red
* M-cone (medium wavelength) peak at 534nm corresponding to the color green
« S-cone (short wavelength) peak at 420nm corresponding to color blue

The rods perform better at dimmer light and are located at the periphery of the retina. They focus
on peripheral vision and night vision.

420 nm 498 nm 534 nm 564 nm
Green Red
Blue cones Rods cones cones

Retinal Pigment Epithelium 100 PO .

Cornea

50

Normalized absorbance

*., Medium \ Long

0 -4 - |IIIlIllII]IIII|IIII]‘IIII|IIII|

400 500 600 700

Violet Blue Cyan Green - Red

Wavelength (nm)

Optic Nerve
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— The human eye has about 6 million cones and 120 million rods. The
distribution is roughly 1% S-cones (blue), 39% M-cones (green) and
60% L-cones (red). The picture on the right shows the distribution near
the center of sight (blue cones occur here up to 7%). These ratios can
greatly vary and cause color blindness. Cones are focused around the
fovea (see lower right side), while rods fill the periphery of sight.

— Visual Acuity describes the clarity of vision and how well the eye can
separate small structures. With the standard Snellen chart, a 20/20 vision
denotes that the eye is able, at 20 feet distance, to separate structures
that are 1.75mm apart. This corresponds to roughly one arcminute
(1/60 degree). A 20/40 vision denotes that a person can see things at 20
feet distance as good as a normal person at 40 feet distance. The best
observed vision for humans is 20/10. Visual acuity is limited by the

optical system (and defects like short-sightedness) and the number of
cones and rods per mm?.
2,0 6/3 20/10 05' Sne”en E 1 20/200 =E_ :. { !-_..‘"’
Chart -,
1,33 6/45  20/15 0.75'
1,0 6/6  20/20 1 FP : o Rods
0,8 6/7,5 20/25 125’ 'lrgqa:rI:dS?ols T o Z 3 2070 Blind spot
0,67 6/9 20/30 1.5 drive a car LPED 4 2050
05 612 2040 2 PESEY L
[ ¥ ——
0,4 6/15  20/50 25 . e NSRRI SRR
0,2 6/30 20/100 5' — & 2= Angle from fovea
0,1 6/60  20/200 10’ UL v
0,05 6/120  20/400 2 T i
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— The comparison with animals shows great differences in terms of visual sensing. A cat has a
much lower visual acuity of 20/100 and less cone types (blue at 450nm and yellow at 550nm),
but cats have better night vision (6-8 times) and a broader range of vision (200 degree vs 180
degree). Hence, a cat has a much blurred view compared to humans. Dogs are also dichromatic
(blue/yellow) with a visual acuity of 20/75. Elephants have a 20/200 vision, rodents a 20/800

Human

Cat

On the other side, eagles and bird of prey have a 20/4 vision
(5 times better than the average human). In addition, some birds L vem o wsmo s S
are tetrachromatic and see the word with four independent color
channels. The goldfish and zebrafish also have four different
cone types. The additional cone type is typically in the ultra-
violet range with a peak at about 370nm.

Absorbance
&
|

— Conclusion: our color vision is a sensation but not physics. To
understand how we perceive images, we need to follow the way . : | :
the human eye (and brain) processes light. o
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The first processing starts within the retina (we will see similar concept in deep learning by means of
convolution). The chemical process in the rods and cones release glutamate when its dark, and stop
releasing glutamate when its light (this is unusual for a sensory system). The Bipolar Cells connect
to several rods and cones (but never both together) and perform a simple operation:

— On-Bipolar cells, fire when it is bright
— Off-Bipolar cells, do not fire when it is bright

The next stage, the Ganglion Cells build the first receptive fields combining various bipolar cells. In
a nutshell, they perform edge detection with a center and a surround area.

— On-Center ganglion fires, if center is bright and surrounding is dark
— Off-Center ganglion fires, if center is dark and surrounding is bright

Several additional cell types (horizontal cells, amacrine cells) act as inhibitors to accentuate
contrast. This increased contrast can also lead to falsely under-/oversaturating dark/light
boundaries. Lateral inhibition provides negative feedback to neighbor cells to further strengthen the
contrast between strong and weak signals. This can lead to so-called after-images.

To Optic Nerve

Rod (monochromatic vision)
o A

i L] | T ﬁ’FF
i T (on) — 1
0 LIGHT ON &/ LIGHT ON

* H‘ O; . OFF : If both areas of a cell's receptive field are illuminated
O. E_e'ispt“’e B A1 IR together, there is little reaction from the cell.
1el
: LIGHT ON

The most effective way of maximizing the fir_ing qf an \
on-center or off-center cell is to completely illuminate Different Ganglion Cells at

either the “on area” or the “off area” of its receptive . ) .
field. work for their receptive field

Ganglion Cell

Bipolar Cell Cone (color vision)

Bipolar cells can connect to
many Ganglion Cells
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« The Lateral Geniculate Nucleus (LGN) performs similar Visual fild of left eye Visual fied of right eye
receptive field functions as the ganglion cells but with
massive feedback from the cortex. We first observe a split of o ’ e mage n e
the two visual fields (visual left is processed by the right side '
of the brain, visual right is processed by the left side). dchntne
Secondly, the information of both eyes is combined. The first Optic nerve
two layers focus on rods and the detection of movements oo g
and contrast. The next 4 layers process information from =
cones to perceive color and form (finer details).

 The Primary Visual Cortex (V1) performs detection of O /-
edges, orientation, some of them variant to position, others e Ml oo
invariant to position. Neurons in the visual cortex fire when | i
the defined patterns occur within their receptive fields. In the
lower levels, the patterns are simpler; in higher levels, more
complex patterns are used (e.g., to detect a face). The

stream of information flows along two paths to higher levels.
Primary ‘vrsual

— The Ventral Stream (ventral=underside, belly) specializes o of o vt '
on form recognition and object representation. It is o) v
connected with the long-term memory.

— The Dorsal Stream (dorsal=topside, back) focuses on
motion and object locations, and coordinates eyes, heads,
and arms (e.g., reaching for an object)

« Cortical magnification denotes the fact that the majority of
neurons act on the information in the center of vision
(creating a much denser, magnified view of the center)

Nasal
halves
of
retinas

Temporal half
J of nght retina

SUBDIVISIONS OF
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« The visual perception system is optimized for natural image recognition. Artificial illusions
demonstrate very nicely how the brain processes the perceived environment in many ways:

Shake your head
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4.4.2 Image Normalization (Step 1)

* In image processing, an image is usually described as a discrete function mapping a 2-dimensional

coordinate to an intensity value (gray images) or a color value. We will use the function i(x, y) and
i(x,y) to denote such images:

grayscale images: i(x,v):N? - [0,1]
r(x,y)
color images: i(x,y):N? - [0,1]3 = 9(x,y)
: (N2 > [0 = |7 2
a(x,y)

color channels (red) r(x,v):N? - [0,1]

color channels (green)  g(x,v):N? - [0,1]
color channels (blue) b(x,vy):N? - [0,1]
a-channel (transparency) a(x,y): N2 - [0,1]

with 1<x<N,1<y<M

— Itis custom to start with the upper left pixel (x = 1,y = 1) and to end with the lower right pixel

(x = N,y = M). x denotes the row in the image (vertical axis), while y denotes the column in the
image (horizontal axis).

— Quantization is often applied to avoid fixed point numbers in the image representation.
Quantification is an approximation of the fixed point number as follows:

255

Deep Color (64-bit): f(x,y):N* - [65535] approximating f (x,y) = 6;?;:5)

True Color (32-bit): £(x,y):N? - [0,255] approximating f(x, y) = L&) @
i,1,9 b, a

— Other quantization with indexed colors exist but can be mapped to one of the above.
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* Depending on the data collection, we need to perform a number of image processing steps to
normalize the data sets and to achieve the best results when comparing features afterwards. Some
of the processing steps ensure robustness against noise, rotation, color saturation, or brightness
which are essential for the algorithms to work.

— Rotation — if we need rotation invariant features (texture, shape) but do not have enough
information to normalize direction, we can rotate the image in defined steps of degrees, extract
features, keep all features for the image, but use them as individual representation (no
combination of the features). A typical approach is by 90 degrees (which makes it simple). In
object recognition (faces), more intermediate angles are possible (e.g., 15 degrees)

— Histogram normalization — here, histogram means the distribution of brightness across the
image. In poor sensing condition, the range of values can be very narrow, making it difficult to
distinguish differences. Histogram equalization is the extreme case, where
the range of values is forced to a uniform distribution. The picture on the right | Wi e
shows very nicely the increased contrast and ey
the sharper contours of objects. With the T
original picture, edge detection may not lead
to the expected results. Similar approaches are
histogram shifts (lighter, darker), histogram
spreading, or gamma correction.

— Grayscale transformation — The original color &
Image is transformed to a grayscale image. k
Depending on the source color model, different
formulae define how to calculate the gray value.
Often applied before texture and shape analysis §
as color information is not needed.
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— Scaling — Up- or down-sampling of the image to fit within a defined range of acceptable sizes.
For instance, a neural network might expect the input to fit into the input matrix. A shape or
texture feature is sensitive to different scaling and may yield different results. The usual methods
are bilinear or bicubic interpolation to avoid the creation of artefacts that could negatively impact
the algorithms (in combination with Gaussian filters when down-sampling). If the algorithm is
complex and expensive, down sampling is often applied to reduce the efforts. In such cases, the
results are computed for the down-sampled image only, and then mapped back to the original
Image (see k-means clustering later on for image segmentation).

— Affine Transformation — The generalization of translation, rotation and scaling. The original
coordinates (x, y) are mapped to a new pair (x’,y") as follows:

- % 0

With this matrix representation, we can simplify the concatenation of various operators to obtain
a single matrix again. To improve results, bilinear or bicubic interpolation is needed to estimate
pixel values in the new matrix. Note: the affine transformation above does not necessarily map to
a discrete and positive coordinate systems, and some areas in the new image space may have
unknown values (think about a rotation by 45 degrees mapped to minimum bounding box).

— Noise Reduction / Sensor Adjustments — Sensors, transcoding and digitization can add noise
(think of white and black pixels across the image) that can significantly impact the feature
extraction process. Common methods are mean filter or Gaussian filters as described next. Other
adjustments may include color corrections, distortions, moiré patterns or compression artifacts.

azq azz azs
1

a1 A2 a1,3]
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— Convolution is a mathematical operation that combines two functions to produce a new function.
It is similar to the cross-correlation but considers values “backwards” and integrates them. The
discrete two-dimensional form is given as (x denotes the convolution operation)

(f * 9l y] = 2 Efx— [y —ml - gln][m)

Nn=—oc0 m=—0oo

* In image processing, g is called the Kernel and is typically a very small two-dimensional
quadratic (and often symmetric) function with range [—K, K] X [—K, K] with small values K =
1,2,3,4, ... Applied to an image channel f(x,y) we obtain

(f * 9lxy) = Z fo—ny ml - g[n]fm]

n=—K m=-K

« As a visualization, assume we calculate the convolution of a 3x3 image with a 3x3 kernel for
the center point of the image (x = y = 2). For example:

a b c| 1 2 3
d e f*[4 5 6] 22]=G-D+GR-D+@-3)+F - D+€-5+d-6)+(-7)+({b-8)+(a-9)
g h i 7 8 9

Note that the Kernel is actually flipped horizontally and vertically and then dot-wise multiplied
with each image element. If the Kernel is symmetric, we can just apply the dot-wise
multiplication to compute the convolution. Further note, that the Kernel is moved with its center
across the image to compute a new value for that current pixel. If the Kernel overlaps the
Image, we use 0-padding for pixels beyond the boundary to keep image dimensions.
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« Kernel Examples: (taken from Wikipedia for illustration purposes). When defining a Kernel, it is
important to normalize the output by the sum of all Kernel values, otherwise channel values

may exceed the defined boundaries ([0,1] or, if quantized, [0,255]).

Operation Kernel Image Result

Identity

Edge Detection

Sharpen

Box Blur

1 1

N

0 0 O
0 1 0
0 0 O
-1 -1 -1
-1 8 -1
-1 -1 -1
(0 -1 0]
-1 5 -1
L0 -1 0.
1y
9

1

Here, we need to divide by the
sum of the Kernel values. In all
other examples, that sum is 1.

Multimedia Retrieval — 2018

4.4.2 Image Normalization (Step 1)

Page 4-41




4.4.3 Image Segmentation (Step 2)

» Feature design may include the capturing of location information (much like we did with position
information in text retrieval). Segmentation define areas of interest within the image for which the
features are computed. To obtain overall features for the image, three different ways are possible:

Segmentation
(any method)

a) Feature Sets — for each segment an
individual feature is stored. If one or
more feature match with the query, the
image (with the segment) is returned.

b) Feature Concatenation — the features for

Feature Set

Feature
Extraction

M

22

) (7
Sthe o o
ethod b)

Feature

Concatenation

Statistical
Summary

each segment are combined to form an overall feature for the image. This approach is only
meaningful for pre-defined segmentations but not for object related segmentation with varying

number of segments.

c) Statistical Summary — the features are summarized with statistical operators like mean,
variance, co-variance, or distribution functions. The statistical parameters describe the image.

If the segmentation only yields one segment (global features), all methods become identical.
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* We can segment images with three approaches (actually the first one does nothing)

— Global features require the entire image as input. No segmentation occurs. This approach is
often the standard in absence of a clear segmentation task. We will see later that with temporal
media like audio and video, global features are very rare but quite common for still images.

— Static Segmentation uses a pre-defined scheme to extract areas of interest from the image.
There are two reasons for such a segmentation

« Add coarse location information to the features. Typically,
an image consists of a central area (the object) and four
corner areas (as shown on the right). But any type of
regular and potentially overlapping division is possible. Often,
this method is combined with the concatenation of features
to encode left/right, up/down, or center within the feature.

* Process parts of the query image to detect similar features.
We use a sliding window that moves from upper left to lower
right in defined steps. For each position, features are extracted
and used to find matches. For example, when detection faces
the sliding window technique allows to find many faces together
with their location from a given input picture (see next chapter).

— Object Segmentation extracts areas with embedded objects in
the picture (so-called blobs). These blobs are either analyzed
individually or as a part of the image. Often, feature sets are used
to enable individual retrieval of the blobs. We will study such an
approach in the next chapter (k-means clustering).
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« Example: 9-dimensional color feature with 5 static segments
— Segmentation creates 5 areas for each of which a 9-dimensional feature is extracted

SN T H N

H — concatenate>

—im I,

Y

»
>

— The feature for the image has 45-dimensions and encode localized color information. To be
similar with the above picture, the colors not only have to occur in a similar way but they also
have to be in the same area. On the other side, we loose some invariances, like rotation. An
upside-down version of the picture does not match with itself. On the other side, a blue lake does
not match with the blue sky, a white background (snow) does not match with the white dress
(center), and an object on the left does not match with the same object on the right.

— We will see, that a single feature is often not sufficient to find similar pictures. Rather, we need to
construct several (very similar) features to encode the different choices for variance and
invariance. Segmentation, obviously, can both eliminate location information (for instance feature
sets), enforce location (feature concatenation), or is liberal about the position (statistical summary
and feature set).
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4.4.4 Feature Extraction — Color Information (Step 3 & 4)

We split the third step, feature extraction, into color, texture and shape information. We start with
color in this subsection.

Color perception is an approximation of the eye to describe the distribution of energy along the
wavelength of electromagnetic signals. “Approximation” because the distribution cannot be
described accurately with only 3 values, hence most information is lost. It is possible two construct
two different spectra which are perceived exactly the same.

—_—

Given the emitted or reflected spectrum of

UV | Violet | Blue | Green | Orange |  Red DarkRed | IR
oo b ! ! ! ! ! ! light of an observed point f(1), we perceive 3
Spectrum of (4) values for each cone type (and rod). To
0T Ry compute the intensity, we apply the sensitivity

observed
point

filter of the cones (e.g., ¢,;.q(4)) to the
observed spectrum (multiplication) and
integrate the result over all wavelengths. For
instance, for red this is:

&0

40 t

Relative Response

20

350 400 450 500 550 600 650 F00 750
Wavelength {nm)

red = [ @) eadth
0

On the other side, this approximation allows us to artificially re-create the perception with using only
3 additive components emitting wavelengths that match the sensitivity of the red, green, and blue
cones. These 3 components form the basis of the RGB family which is optimized for human
perception but may not work for the eyes of animals (different sensitivity ranges; for birds with
tetrachromatic perception, the UV range is missing).
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+ Before we can extract features, we need to find a good representation for color that matches human
perception. Consider the four colors below in the sSRGB space. Between two neighboring boxes, the
color distance is 100 units (only one channel changes). Even though the distance is the same, we
perceive the color changes differently. The change from green to yellow (15t and 2"9) is significant,
while the change from red to pink (3 to 4%") is smaller. The reason is the non-linear interpretation of
SRGB space as we process the light emission from the monitor (or from the reflection of the paper).

(155,200,100) (255,200,100) (255,100,100) (255,0,100)

100 unit change 100 unit change 100 unit change

» There are five major color systems (we only look at the first three models subsequently)

— CIE - created by the International Commission on lllumination (CIE) to define a relation between
the physical signal and the perception of a (standard) human observer

— RGB - the dominant system since the definition of SRGB by HP and Microsoft in 1996

— HSL/HSV — which translates the cartesian RGB coordinates to cylindrical coordinates for hue and
saturation, and uses luminance/brightness as third component

— YUV —used in NTSC and PAL signals and basis of many image and compression algorithms
such as JPEG and MPEG (using YCbCr) [not discussed subsequently]

— CMYK — used in printing to subtract color from an initially white canvas. The ink absorbs light and
a combination of different inks produces the desired color [not discussed subsequently]
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« The CIE defined a series of color spaces to better describe perceived colors of human vision. The
mathematical relationships are essential for advanced color management.

— The CIE XYZ space was defined in 1931 as an attempt to describe human perceived colors. In
their experiments, they noted that observers perceive green as brighter than red and blue colors
with the same intensity (physical power). In addition, in low-brightness situations (e.g., at night)
the rods dominate with a monochromatic view but at much finer resolution of brightness changes.

» The definition of X, Y and Z does not follow the typical approach of additive or subtractive
primary colors. Instead, Y describes the luminance while X and Z describe chromaticity
regardless of brightness. Y follows the sensitivity for the M-cones (green), Z the one of the S-
cones (blue), and X is a mix of cone responses.

 To compute X, Y, and Z from spectral data, a standard

(colorimetric) observer was defined based on extensive +0 — (A
experiments. This represents an average human’s 15 _ ﬁfﬁ'
chromatic response within a 2 degree arc inside the

fovea (central vision; cones mostly reside inside this 1.0

area). The color matching functions x(1), y(1) and
z(A) describe the spectral weighting for the observed
spectral radiance or reflection f(4). We obtain the
values for X, Y, and Z as follows (note that the spectrum 400 00 mm 70
is reduced to the range 380nm to 780nm):

780 780 780
X = j £ - x()dA Y = f FQD - y(D)dA Z = j £ - 2(A)dA
380 380 380
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— The three cone types of human vision require 3 components to describe the full color gamut. The
concept of color can be divided into different aspects:

 Brightness — visual perception of the radiating or reflected light and dependent on the
luminance of the observed object. It is, however, not proportional to the luminance itself,
instead it is an interpretation subjective to the observer.

« Chromaticity — objective specification of the color in absence of luminance. It consists of two
independent components, hue and saturation. Chromaticity diagrams depict the visible or
reproducible range of colors. The standard chart is depicted on the right side.

* Hue — describes the degree a color matches the perception of
red, green, blue, and yellow. The hue values are on the boundary
of the chromaticity diagram and is usually measured as a degree
from the neutral white point (e.g., D65). Red corresponds to 0,
yellow to 60, green to 120, and blue to 240.

 Saturation / Chroma / Colorfulness — measure how much the ;
light is distributed across the visual spectrum. Pure or saturated '
colors focus around a single wavelength at high intensity. To
desaturate a color in a subtractive system (watercolor), one can "1 Y
add white, black, gray, or the hue’s complement. In the L ,
chromaticity diagram, saturation is the relative distance to the Wt & 5 o o e W
white point. Relative means in terms of the maximum distance ‘

in that direction. Note that green is much farther away from white than red and blue.

— The CIE then defined a series of color models to better capture the above components of color
perception. We consider in the following the CIE xyY, Lab, and LCH model.

0.9,
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— The CIE xyY space, defined in 1931, was the first attempt to isolate chromaticity from luminance.
The Y value of CIE XYZ was created in such a way that it represents perceived luminance of the
standard observer. The x, y and z components are derived through a normalization

X Y Z

= — = — = ———— /] — —
XYY +2Z Y= X+Y+2Z TX+Y+2Z x=Y

The derived color space consists of x, y, and Y. The x, y values define the chromaticity diagram
as shown in the lower right part of the page (color in absence of luminance). CIE xyY is widely
used to specify color. It encompasses all visible colors of the standard observer. Note that the
pictures of the chromaticity diagram here is depicted in the SRGB space an hence does not show
the full gamut of the space. Given the x, y and Y values, the back transformation is as follows:

Y Y Chromaticity diagram of CIE xyY
color space. Note that this
X=—x Z=— (1 - X — y) 0.9 representation is in SRGB and the
y y ] 520 colors outside the sRGB triangle are
not displayed properly.

The outer curve of the chromaticity diagram, the so called 0,
spectral locus, show wavelengths in nanometer. The CIE xyY ol
space describes color as perceived by the standard observer. 5007
It is not a description of the color of an object as the perceived
color of the object depends on the lightning and can change

depending on the color temperature of the light source. In 0.31
dim lightning, the human eye looses the chromaticity aspect 02}
and is reduced to a monochromatic perception. ‘

0.0 0.1 02 03 04 05 06 07 08
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— CIE xyY spans the entire color gamut that is visible for a human eye, but it is not perceptually
uniform: the perceived difference between two colors with a given distance apart greatly depends
on the location in the color space. The CIE L*a*b* color space is a mathematical approach to
define a perceptually uniform color space. It exceeds the gamut of other color spaces and is
device independent. Hence, it is frequently used to map color from one space to another.

« The L component denotes lightness. It depends on the luminance Y but adjusted to perception
to create a uniform scale (1 unit difference is perceived as the same lightness change). It
typically ranges between 0 and 100, with L = 0 representing black, and L = 100 being white.

« The a* component represents the red/green opponents. Negative values correspond to green,
while positive values correspond to red. The values often range from -128 to 127. a* = 0
denotes a neutral gray.

« The b* component represents the blue/yellow opponents. Negative values correspond to blue,
while positive values correspond to yellow. The values often range from -128 to 127. b* = 0
denotes a neutral gray.

The transformation from X, Y, Z components under illuminant D65 and 0 <Y < 255 is:

. Y 613
L=116'fY_ — 16 Vt ift><—>
" f@© = 29
x v 841-t 4 h )
a* = 500 - <f <_> — 7 (_)) 108 + 29 otherwise
Xn Yo
. X Z X, = 242.364495 Z, = 277.67358
n n Y, = 255.0
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— The CIE LCH differs from CIE L*a*b* by the use of cylindrical coordinates. L. = L' remains, but a*
and b* are replaced by the chroma C (saturation, colorfulness) and hue H. Based on the
definition of the a*- and b*-axis, the center is at the defined white point (e.g., D65). The hue H is
then the angle from the a*-axis (counterclockwise). The chroma C is the distance from the center.

— J* _ — * Pk —— :i arctan(a*, b*) is the arc tangent of b*/a*
L=L C = \/(a*)Z + (b*)Z H = arCtan(a ) b ) taking the quadrant of (a*, b*) into account

» This is not the same as the better known HSL/HSV color models (also use cylindrical
coordinates). These models are a polar coordinate transformation of the RGB color space,
while CIE LCH is a polar coordinate transformation of CIE L*a*b*.

» CIE LCH is still perceptually uniform. However, H is a discontinuous function as the angle
abruptly changes from 2mr to 0. This can cause some issues if the angles are not correctly
“subtracted” from each other.

— The CIE has defined further models like the CIE L*u*v*, CIE RGB, and the CIE UVW which we
omit here.
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« The RGB color space is the standard model in computing since HP and Microsoft cooperatively
defined sRGB as an additive color model for monitors, printers and the Internet. It has been
standardized as IEC 61966-2-1:1999 and is the “default” color model (if the model is not defined).

— SRGB uses the ITU-R BT.709 (or Rec. 709) primaries to define the color gamut (space of
possible colors). The advantage, and mostly the reason for its success, was the direct transfer to

a typical CRT monitor at that time. The primaries are: 09— T o ot
IEEIIEIM on N ., | "ycoos
0.6400 0.3000 0.1500 0.3127 07| BT
y 0.3300 0.6000 0.0600 0.3290 oo}
Y 0.2126 0.7152 0.0722 1.0000 f(-):-.:%-?ll
— For non-negative values, sSRGB colors are bound to the ¥

triangle depicted in the right-hand figure. Note that the color
gamut is not covering all chromaticities, especially a large o

fraction of the green/blue range is missing. e
— The sRGB scales are non-linear (approximately a gamma of 0.1
2.2). To convert from linear RGB to sRGB, the specification 04 150 WL,
. . 0O 01 02 03 04 05 06 07 08
provides functions to map channel values. Let c.z;5 denote x

a channel value (red, green, blue) in the sRGB space, and c;;,,.4 denote a value in linear RGB.
Both with ranges between 0 and 1 (for quantized value, divide/multiply by 2Pt — 1)

CsrGB )
12.92 - Clinear if Clineqr < 0.0031308 12.92 if csrgp < 0.04045
CsrRG L ) Clinear = c + 0.055 2.4
1.055 - szz:ear 0.05 otherwise ( sRGli A ) otherwise
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— The conversion from CIE XYZ to linear RGB is as follows:

Tinear 3.240479 —1.537150 —0.498535][X X 0.412453 0.357580 0.180423]["tinear
Yilinear | = [—0.969256  1.875992 0.041556 [|Y Y| =10.212671 0.715160 0.072169| |Yiinear
biinear 0.055648 —0.204043 1.057311 1LZ Z 0.019334 0.119193 0.950227] [biinear

* Note that the transformation above is a mapping between linear RGB and XYZ. To obtain
SRGB values, a further transformation is needed (see previous page).

« Also note that the RGB space is not covering the entire XYZ space and the visible colors of
human perception. If the mapping leads to values outside of [0,1], the value is mapped to the
closest limit (0 for negative values, and 1 for values > 1).

— RGB values are often quantized to integer ranges. The mapping is simply a multiplication and
division by 2Pt — 1. For true color (32-bit), the multiplier is 255, for  ,
deep color (64-bit), the mult_iplier is 65536. In some cases, o i Sgg"ﬁ”"z‘gm) .
quantization is based on 2Pits reference colors (color palette). {\

A color is then represented by its nearest neighbor in the palette. v

— Next to the sRGB and linear RGB model, various alternatives were

520

defined. In essence, it is simple to construct an RGB space by y
defining the primaries and the white point. Alternative RGB model i
extend the original, rather constrained sRGB to a wider range of 03
color gamut. For instance, Rec. 2020 for ultra-high-definition -

television (UHDTV). It has a much broader color gamut than HDTV
which is based on Rec. 709. Some RGB models even excess the

chromaticity chart to cover more of the green/blue area. 00 01 02 03 04 05 06 07 08
UHDTYV vs HDTV Color Gamuts
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» Artists often start with a relatively bright color and than add a) white to “tint” the color, or b) black to
“shade” the color, or ¢) white and black (gray) to tone the color. To enable such techniques in
computer graphics, HSL and HSV color models are alternative representations of the RGB space
designed to simplify color making. Both use hue (H) and chroma (S) to define chromaticity. The HSL
uses lightness (L) and places fully saturated colors at L = 1/2. It allows both tinting (L — 1) and
shading (L — 0) without change of saturation. HSV uses value (V) and places fully saturated colors
at V = 1. It allows shading (V — 0) without changing saturation, but tinting adjusts saturation.

(2 o ifC=0 M = max(R,G,B)
T mod6 ifM =R m = min(R, G, B)
H' =<B-R i
T.|_2 ifM =G C=M-m
R=Gi4  ifmM=3
[ ¢C T
H=60° H H = 60°-H'
1
0 ifv=0 0 ifL=1
Susy =1 C : SHsL = ¢ therwi
= otherwise 1—|2L — 1| OIETVISE
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* Color Histogram: histograms are a simple way to describe the distribution of colors using a set of
reference colors. The fixed reference colors are the “vocabulary” of the collection. The color of each
pixel is mapped to the nearest reference color, then we count how often the reference colors occur
in the image. To make the feature scale invariant, the counts are normalized by the total number of
pixels. The result can also be interpreted as the probability that a reference color occurs.

— Selection of reference colors

« The most simple way is to quantize the R, G, B values in the linear
RGB space as on the right hand side. With 2 bits, for example, we
obtain 4 uniform ranges along each channel, and a total of 64
reference colors ¢; with 1 < i < 64. We can use any number of
uniform ranges (e.g., 5) to obtain the desired number of colors.

« To improve perceptual matching of color, it is better to use a non-
uniform distribution. For instance, in the HSV color space, we can

divide the color hexagon into areas of perceived similar colors like 290
on the right side. The V-dimension may have more bins to account \
for the increased brightness sensitivities. With 7 chromaticity values 1550
and 9 bins along the V-dimension, we obtain 63 reference colors c;. ;gg
« If the color space itself is uniform, like in L*a*b*, then we can use 330°

uniform ranges. The L*-axis should have more ranges than the a*- and
b*-axis to account for brightness sensitivity.

* We can measure the distance d; ; between reference color ¢; and ¢; to denote similarities
between colors. In cartesian coordinates, this is the Euclidean distance between the centers of
the areas representing the colors. In cylindrical coordinates, like the HSV example above, we
obtain angle differences as min(|la — S|, 2m — |a — B]) and apply a Manhattan distance. In all
cases, value ranges have to be normalized before distance calculations (e.g., to range [0,1])
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— Comparison of histogram (distance measure)

* Let h; and g; denote the normalized histograms of two images ordered by the N reference
colors c; with 0 < h;, g; < 1. Note that even though we use a 3-dimensional color space for
guantization, the histograms are one-dimensional (through enumeration of reference colors).
We also have the distances d; ; = d;; between two reference colors ¢; and ¢;.

« A first naive approach is to compute a Manhattan (or Euclidean) distance between histograms

N N
5Manhattan(h: g) = Zlhi - gil 6Euclidean(hr g) = z(hi - gi)z
i=1 i=1

This distance formulae work quite well, however, they do not take similarity between reference
colors into account. A small shift in lightning or color representation can yield large distances.

« To account for cross-correlation between reference colors, we need to use a quadratic distance
measure and use a matrix A which is based on the distance between reference colors:

. _ ,] Distance normalized by
Squadratic(h; g) = (h - g)TA(h - g) A: ai,j =1- max dkl maximum distance for all

%] pairs of reference colors
)

« If the user provides a sketch as the query, or the user selects a number of colors that should be
present in the picture, histogram intersections (equals to a partial match query) are better
suited. Let g; # 0 denote the user selected colors and g; = 0 the colors without user input.

N min(h;, g;)
5intersection(h’g) - ;nlln(”ll |«lg|)l
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— Variants:

« A simpler variant is the use of luminance or brightness histograms. The chromaticity aspects
are not taken into account. As a first step, brightness or luminance is calculated, for instance,
with L* from CIE L*a*b*. The luminance value is quantized using N uniform ranges. The rest is
identical to the approaches above (including quadratic distances to account for similarities
between brightness/luminance values). The resulting features describes brightness of the
image and is often used for shot detection in videos (different lightning denotes shot boundary)

« Equally, we can only quantize the chromaticity aspects and disregard brightness/luminance.
Candidate color spaces are CIE L*a*b, CIE LCH, HSL, or HSV. The resulting features
describes color distribution and is invariant to lightning (as long as the lightning does not
significantly impact the perception of chromaticity).

— Discussion:

» Histograms are very simple and yield already good results. They are robust against translation,
rotation, noise, and scale; in some cases, also against lightning differences.

» The lack of spatial relation between colors may lead to unexpected results. A blue lake (bottom
of the picture) will match with a blue sky (top of the picture) and a blue car (middle of the
picture). It is simple to construct two images with the same histogram but different content.

« The histogram intersection method is useful to guide a retrieval system to the desired color of
(main) objects. The user can pick a color and the search is extended with a histogram sub-
guery using the intersection method.

» Color histograms tend to have a very high-dimensionality. 64 dimensions is often a minimum
for good retrieval, but more than 1000 dimensions can result. Search in such spaces is costly
and inefficient. Dimensionality reduction may help to deal with both correlation of reference
colors and the reduction of dimensions (see principal component analysis, PCA).
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« Color Moments: statistical moments are another way to describe the distribution of colors in the
selected color space. We can select again any of the color spaces discussed before, but again, to
calculate distances and similarities, the perceptual uniform spaces are better suited. We often use
L*a*b* as the basis color model (over LCH to avoid the more complicated angular differences)

— Single channel moments compute statistical parameters for one channel only (L* , a*, b*). Let c
denote a color channel, N denote the number of rows, and M the number of columns, then the

first four moments are given as:

1 1
Ue =mz c(x,y) Ve =WZ(C(X,)’) — Uc)?
Xy Xy
3 4
o o 1 Z(C(x,y) —uc> P - L Z(c(x,y)—uc>
ol — - Y - =
N-M - Ve N-M — Ve

Mean u. and variance v, describe the peak position and width of the peak in the distribution. The
skewness s, describes whether peak is wider to the left or to the right. And Kurtosis k. denotes
the presence of outliers (far away from mean). With three channels, we obtain 12 feature values
in this way.

— We can add additional covariance values between pairs of channels. Let ¢; be a first channel,
and c, be a second channel. With three channels, we obtain 3 additional covariance value from

the possible pairs of channels:

1
COV¢, ¢, = WZ(Q(% y) — .Ucl) ) (Cz (x,y) — McZ)
X,y
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— When calculating the moments, it is possible to transform the formulas such that only one pass is
necessary to compute all the values (c denotes a color channel):

1
Acn = mz cCx,y)"
X,y

b; = ﬁ; (Ci(x' y) - Cj(x» Y))

Ue = Acq

3
Acz — 3acz - Acy + 2a¢,

3/2
UC

Covci,Cj = bi,j - uuCl' ’ uqu

2 4
Aca — 4‘ac,3 *Acq + 6ac,2 *Acq1 — 3ac,l

ve

Using the CIE L*a*b* color space, we obtain 12 moments and 3 covariances, a total of 15 feature
values. We can combine the values into a vector m (in a defined order) and compare to feature
vectors m; and m; of two images using either Euclidean or Manhattan distance:

15

Omanhattan (mi; mj) = Z |mi,k - mj,kl

k=1

15

5Euclidean (mi: mj) = Z (mi,k - nlj,k)2
k=1

Multimedia Retrieval — 2018

Page 4-59




— Variants: like with histograms, we can construct moments for brightness/luminance only. Co-
variance becomes obsolete and we obtain 4 brightness/luminance moments. We can further
construct moments only for the chromaticity aspect, disregarding brightness/luminance. In this
case we have 8 moments and one covariance values, resulting in a 9 dimensional feature.

— Discussion:

» The value ranges of moments vary significantly. Before we can apply a distance measure, we
need to scale the values into the same range (e.g., [0,1]). Due to the differences in the distance
measure, it is sufficient to just scale the values either by max — min of each component, or the
standard deviation of the values along this dimension (not to be confused with the variance
color moments; the standard deviation is taken from the actual values along each moment).
We can obtain this scaling factors from a large enough sample set and use them as constant
factors when extracting the features.

« Color moments, like histograms, are robust against translation, rotation, noise, and scale; in
some cases, also against lightning differences. The lack of spatial relation between colors may
lead to unexpected results (like with histograms).

* In contrast to histograms, the color moments are independent from each other and we do not
need a cross-correlation matrix for a quadratic distance function. The resulting vectors are also
much shorter (15 if all moments are taken) than the histograms (up to 1000 bins possible). The
compact representation leads to obvious performance gains but no loss in retrieval quality.
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4.4.5 Feature Extraction — Texture Information (Step 3 & 4)

» Texture describe the structure of a surface or part of the image and provides us with information
about the spatial arrangement of colors, changes in this arrangement, and the direction and
frequency of these changes. We can analyze texture in three ways:

— Structural approach: Find sets of primitive so-called texels that are composed to regular and
repeated patterns as per the examples below:

atm&
This approach is limited to artificially generated images and does not work for natural images.

The inverse problem of creating texture on the surface of objects is well supported by today’s
graphic processors (see texels, and Voronoi tessellation).

— Statistical approach: Measure the arrangements in the neighborhood of pixels, quantify them,
and create statistical summaries (histograms, moments). We will look at edge detection and
optimized filters to get texture features.

— Fourier approach: Transform the image into the frequency space via Fourier transformation and
extract information about the support for so-called Gabor filters in the frequency space.

» Often, we study texture only in grayscale images. For that purpose, we can compute the Y or L*
components in the CIE color models. Recall, that the original picture first needs to be transformed to
linear RGB before computing the transformation to CIE XYZ and CIE L*a*b* (see sRGB - linear
RGB). In the following, we assume monochromatic images with only a brightness/luminance
channel. Advanced methods may also consider chromaticity information for textures.
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Discontinuity of surface

Edge magnitude and direction (structural approach) orientation (its normal

— Edges in images are caused by several factor as shown on e
the picture on the right hand side. The detection of edges is
the search for gradients with high energy (abrupt change of
neighboring pixels). The standard approach is to apply a P el
Sobel operator (convolution) on a smoothed (Gaussian) s bzcen
version of the image, and to determine g, and g,, values

for a pixel. The kernel matrices are given as:

1[+1 0 -1 1[+1 +2 +1
Gx = § +2 0 -2 Gy = g 0 0 0 Discontinuity of
illumination (e.g., a
+ 1 0 -1 -1 -2 -1 shadow castt by(angobject)

We can omit the factor 1/8 but then the gradient values are 8 times larger (not a problem for the
method shown here). The operators yield a g, and g, for each pixel. We can now compute the

gradient magnitude g,,4(x,y) and the direction of the gradient g4;-(x,y) as follows:

Imag(X,¥) = \] gx(x, )% + gy (x,)? Jair (X, y) j@x(% ), 9y (6 ))

arctan(x, y) is the arc tangent of y/x taking
the quadrant of (x,y) into account

— With the above transformation, we obtain 2 values for each pixel in the image. The first value
describes how large the change is (energy), the second value represents the direction of change
(from darker to lighter). A value of g4, = 0 is a vertical edge (change direction is normal to the
edge) and the lighter pixel is on the right hand side.
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— We now can create simple texture based features.

- Edgeness of image: Proportion of image with g,,,,4(x,y) = 7 for a given threshold 7. This
expresses how many edges we can expect on the picture with high enough energy. Continuous
areas of them image with, for example, the sky or a lake will result in low values, while several
objects or city images with lead to higher values.

) 1 z 1 if gmeg(,y) =7
edgeness N'Mxy 0 otherwise

« Gradient Histograms: same approach as with color histogram. We now have to values per
pixels and quantify the direction and the magnitude. The distance between reference gradients
Is calculated similar as for the HSV color model. Recall that differences in direction are
calculated as min(|la — £]|,2m — |a — B]). We need to normalize energy and direction ranges to
compute the distance d; ; between two reference gradients. This allows us to compute the
matrix A for the quadratic distance measure. Given to histograms h and g, and assuming N
reference gradients, we obtain distances as follows:

=1

N N
Sntannattan(ts @) = ) Ihi = gil Seuctidean(h, 9) = | ) (hi = g,)?
[ = i=1

di,j / Distance normalized by

maximum distance for all

rrlialx dk,l pairs of reference colors

Squadratic(h: g) = (h— g)TA(h -9) A: a;j = 1-

As with color histograms, the same issues with high dimensionality occurs.
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« Gradient Moments: as before, we compute moments for the magnitude and the direction, and a
covariance value for magnitude and direction. Let ¢ denote either magnitude or direction:

1 1
Ue = WZ gc(x,y) Ve = WZ(gc(x, y) — Ue)?
x,y x!y
4
Lot Z (gc(x,y) —uc)3 . 2 (gc(x,y) —uc>
c— cC = ar.
N Mx,y N N Mx,y N

1
COVmag,dir = (gmag (x,y) — .umag) — (Gair(x,y) — Uair)
N-M
X,y

This results in 9 feature values describing the distribution of gradients.

« Laws’ Texture Energy (structural approach)

— Laws texture masks compute 9 values for a pixel in the image to capture various aspects of
texture features. The masks are based on 4 prototype vectors:

= [1 4- 6 4- 1] % Level: (Gaussian) center-weighted local average |
vES =S [—1 —2 O 2 1] % Edge: (gradient) responds to step edges |
[— 1 0 2 0 - 1] % Spot: (Laplace of Gaussian) detects a spot |

VRs = [1 -4 6 —4 1] % Ripple: (Gabor) detects ripples |
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— From these base vectors, we can compute 16 matrices by multiplication of pairs of prototype
vectors. For the instance E5L5, for instance, we obtain the Kernel matrix Ggs; s as follows:

—17 —1 -4 -6 -4 -—1]
-2 -2 -8 -12 -8 -1
Gpsis =VisVs=|0[[1 4 6 4 1]1=[0 0 0 0 O
2 2 8 12 8 2
[ 1 | 1 4 6 4 11

Since E5L5 and L5E5 measure a similar aspects, we collapse them into a single Kernel and use
the average of both matrices. With such reductions, we obtain 9 Kernel matrices:

2 ’ 2 ’ 2 ’ 2 ’ 2 ' 2
U {Gssss, Grsrs, GEsEs )

G = {GESLS + Grses Grsgrs + Grsps Gesss + Gssps Gssps + Grsss Gesgs + Grsgs Gssrs + Grsss }

— With these 9 Kernel matrices, we apply a convolution to obtain 9 texture energy values e;(x, y)
per pixel (with 1 < i <9). From here, we can apply the same approaches as before:

« Histograms: although feasible, we are faced here with 9 values per pixel. If we quantize them
with 4 ranges, we obtain 4° = 262,144 reference energies. This clearly exceeds our
expectations of a computationally meaningful feature, especially, if we consider the necessity of
a quadratic function. Using only 2 ranges yields 2° = 512 reference energies. Acceptable, but
the quantification error is significant.

« Moments: for each energy value, we can calculate 4 moments, and co-variance values for the
36 possible pairs. This yields a 72 dimensional feature vector. If the dimensionality is too high,
we can reduce the number of moments (only first 2 or 3) or omit the co-variances.
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« Gabor Moments (Fourier approach)

— The 2D Fourier transformation maps a (grayscale) image into its frequency space. More formally,
it creates a real and imaginary matrix. For the visualizations, we can compute the log of the sum
of squared components (the log-function helps for visualization of the large differences in
energy). The 2D Fast Fourier Transformation is an accelerated version of the algorithm reducing
computational efforts significantly. However, it is only applicable to image sizes of 2¢ x 2P, The
picture bellow depicts the transformation:

real

component
\ log of
absolute ;@ energy of
\ value "\ frequencies
imaginary

component

FFT

image

— To display the frequencies such that low frequencies are in the middle and high frequencies in
the outer areas, we need to map the quadrants of the matrix as per below:

1|2 4 | 3
=

3|4 21
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— Examples for the frequency map: The pictures below show the grayscale original images,
and the log-scaled frequency map; the brighter a pixel, the more energy for the corresponding
frequency. Low frequencies are in the center, high frequencies in the out areas. The direction
from the center to the frequency denotes the normal of an edge in the image for that frequency.

Mast of the sail creates a high
contrast to the white of the wave.

FFT FFT FFT

This spike corresponds to the
edge of the mast of the sail. The
spike is orthogonal to the mast.
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— In the Fourier space, we apply a bank of so-called Gabor filters that select different ranges of
frequencies and directions. The Gabor filter is multiplied with the Fourier transformation of the
Image (a complex matrix), and the result is mapped back via inverse Fourier transformation (here
the fast implementation iFFT) to the image space. The filtered image now provides information
about the support for the selected frequencies and directions in the original image space. Using
banks with 5 orientations and 3 scales, we have 15 Gabor filters and obtain 15 different filtered
images. We extract statistical moments for each of these filters to obtain a wide range of texture
descriptors. The following pages show the filter banks and its application in the Fourier space.

image

FFT

O\

real
component

imaginary
component

Gabor

Filter

iFFT

filtered
image

Multimedia Retrieval — 2018

4.4.5 Feature Extraction — Texture Information (Step 3 & 4)

Page 4-68




— The Gabor filter is defined as a Gaussian kernel multiplied by a complex sinusoid. In
Neurophysiological experiments, it was shown that the Gabor filters, with the right parameters,
behave similar to the receptive fields in the primary visual cortex. Its definition is as follows

fz +.y2372

gl,@,(p,a,y(x; y) = e 207

. X
l(ZT[—+(p>

e A
S

Gaussian kernel with standard deviation
o and the spatial aspect ration y

Complex sinusoid with phase ¢ and wavelength
A. 1/2is the frequency of the sinusoid.

X =xcosf +ysinf

y =—xsinf +ycos6

Before application to the Gaussian and sinusoid, the coordinates are rotated by 6. With this
definition and varying the parameters, it is possible to construct various filters that are sensitive to
frequencies and direction. Mapping the Filter bank into the Fourier space leads to the following

layout:

Spatial space

Fourier space

A Gabor filter at 26 and
high frequency (= 14)

\ . -t
i/
Center of

Fourier space
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« Example (1)

FFT

Gabor-Filter

resulting image

orientation 2
scale 3

orientation 2
scale 2

orientation 2
scale 1

orientation 4
scale 1
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« Example (2)

FFT

Gabor-Filter

resulting image

orientation 2
scale 3

orientation 2
scale 2

orientation 2
scale 1

orientation 4
scale 1

Multimedia Retrieval — 2018

Page 4-71




« Example (3)

Gabor-Filter

resulting image

orientation 2
scale 3

orientation 2
scale 2

orientation 2
scale 1

orientation 4
scale 1
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— There are two approaches to compute Gabor filtered images:

* Fourier space: compute the Gabor filters in the Fourier space and apply them to the Fourier
transformed image. To enable the use of FFT, the size of the image is scaled to the next higher
2% x 2P dimension with one of the following methods

— Stretching: stretch the image to match the new size. This changes proportions and thus
frequencies and directions in the image.

— Filling: copy the image 1:1 and fill the remaining area with a neutral color.
— Tiling: create a 2-by-2 tile of the same image and crop to the new size.

— Mirroring: create a 2-by-2 tile, but mirror the image at the middle axis. This reduce hard
edges that otherwise become visible as spikes. But it adds wrong directions.

§

(=)

Original Stretching Filling Tiling Mirroring

A further alternative: we use the next smaller 2¢ x 2? dimension and apply the method 4 times
for the 2% x 22 areas in each corner. At the end, we average all feature values across all areas.

\
|:> X " ('\ F%a:t;l(f;erjor
=
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« Image/spatial space: compute a Gabor filter bank and apply it to the image through
convolution. Since the Gabor filter is complex, we take absolute values of the resulting complex
numbers to map back to real numbers. Most image processing libraries (OpenCV, scikit-image)
provide implementations for Gabor kernels.

— Once we have the filtered images (like shown in the right hand columns on the pages before with
the image examples), we can summarize the results with the usual approaches of histograms or
moments. We typically select 3-7 directions (0 < 6 < m) and 2-5 scales (or frequencies; 1/4
usually measured in pixels and ranging from 0.05 to 0.5). With a large number of filters, the
moments are again a better choice to reduce the number of dimensions and avoid the complexity
of quadratic distance functions.

« With moments, we simply treat the absolute values in the filtered image as the raw data points
and compute mean, variance, skewness, and Kurtosis on these values. To further reduce the

number of dimensions, it is possible to select only the first 2 or 3 moments. Let f;(x, y) be the
filtered (complex) image representation after applying the i-th Gabor filter. We obtain:

1 _ 1 _

b= > |G| v = 37 2G| - )
X,y X,y

_ 1 o) = i\ 1 Fan|-u)

The overall feature is simply the concatenation of all moments across all filters.
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4.4.6 Feature Extraction — Shape Information (Step 3 & 4)

» In this section, we consider three approaches to define shape features.

— ldentify key shape related features in the entire image. There are no segments or objects taken
into account, i.e., the features are global for the image.

— Given a segmentation of the image into objects/blobs, describe the shape of this region to
retrieve similar shape from the database. This also works for 2D/3D objects.

— Identify key points of interest in the picture and describe these points to identify similar objects.
This method is used for stitching of panorama images, object recognition, and motion detection.

» Global Features: very similar to the texture features, but we are more interested in the contours
and direction of these contours than the rest of the image. The basic idea is to apply an edge
detector to obtain the outlines of the principle shapes of the image. The Canny edge detector is a
solid reference detector with 5 phases (the first two steps are the same as before with texture):

1. Apply Gaussian filter to smooth the image and to remove noise or compression artifacts

2. Compute gradients with their magnitude and direction (as seen before, Sobel operators)

3. Eliminate values that are not a local maximum in the positive/negative direction of the gradient
4

Ildentify strong edges (magnitude above high threshold) and weak edges (magnitude between
low and high threshold) and eliminate values below low threshold.

5. Track edges and eliminate isolated weak edges. Keep only weak edges if in their immediate
proximity, there is a strong edge.
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— With the edges, we now can summarize the directions of these edges (the magnitudes have
been eliminated in the process) with histograms. The examples on the right side are from an

early prototype by Vailaya (1996), Michigan State University.
Steps of 10 degrees

* The histograms are normalized by the
number of edge pixels and sum up to 1.
M’hwmﬂmﬂml
()

The step size was 10 degrees hence
36 bins for the histograms.

« Comparison between histograms is
based on the usual distance function.
Again, a quadratic distance function is
recommended to account for the similarity
between angles

With appropriate normalization of the
image, we can achieve lightning invariance.
However, it is not rotational invariant.

» To obtain rotational invariance, we need to
determine the principle direction and rotate
the image such that the principle direction
points, for example, upwards. The principle
direction is the weighted sum of the original
gradients, with the magnitude as weights.

(h)

(i)
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— The Angular Radial Partitioning by Chalechale (2003) follows a similar approach to detect
edges but uses a different approach to create histograms. The method has 5 steps

1.

2.
3.
4

o

The method is depicted on the right
side with an example from the paper.

Convert the images to grayscale, e.g., by mapping pixels to the L*-channel
Normalize size of images to obtain comparable numbers
Apply Canny edge detector to find strong edges in the image

Partition the resulting edge-map into M x N radial angular partitions. M is the number of
radial sectors, N the number of slices

Count the number of edge pixels in each partition to obtain a raw histogram

Apply a Fourier transform to the histogram and use absolute values (energy) to obtain the
final feature vector

The feature is robust against
translation and scale due to initial
normalization process. It is robust
to small rotational changes as only
few pixels will change the partition.

The feature is robust against
discrete rotations of the angle of the
slice due to the Fourier transformation.

The feature is robust against
omissions of smaller details and noise
during edge detection.
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— The Histogram of oriented gradients dates back to 1986 but regained interest with the work of
Dalal and Triggs in 2005 to detect pedestrians. The methods has since been extended and is
often used as input into neural networks.

» Step 1: compute gradients, for instance, with Sobel operators on a grayscale version of the
Image. In contrast to other approaches, HOG uses unsigned gradients, i.e., the direction lies in
the range of O to . Values between m and 2rr are rotated by . Some HOG implementation let
users choose between unsigned and signed gradients, but Dalal and Triggs found that this
worked best for pedestrian detection

« Step 2: As shown in the picture below, the image is divided into cells each with 8x8 pixels. For
each of the cell, HOG computes a 9-bin histogram (9 was found to be optimal for their use
case) over the gradient directions of the 64 pixels and weighted by their gradient magnitudes.

« Step 3: gradient magnitudes are variant to illumination and hence require normalization before
we can compare histograms with each. Rather than normalizing the 9-bin histograms at each
cell, HOG combines 4 neighboring cells
and normalizes the concatenated histograms
(now 36 bins) soitsumsupto 1. The 4
neighboring cells (2x2 cells, each with 8x8 pixels)
are moved along the image in steps of 8 pixels.
Each block yields a normalized histogram of 36
bins. These blocks are partially overlapping.

« Step 4: combine histograms to global features or
keep a “bag” of local features for search.

« Optional: The HOG features can be used as
input into machine learning algorithm. Dalal and
Triggs used an SVM to detect pedestrians.

2 3 4 4 3 4 2 2

Multimedia Retrieval — 2018 4.4.6 Feature Extraction — Shape Information (Step 3 & 4) Page 4-78




« Descriptions of blobs/regions/objects: given a set of segments, blobs or objects, we can describe
the regions based on a set of simple spatial metrics. Due to different resolutions and the absence of
a standard size of a pixel (unless provided by the image format), spatial metrics are often in relation
to the entire image. For example:

Area: percentage of pixels within the segment (over the entire image)
Centroid: average of all x-values and of all y-values in the region (in absence of mass values)

Axis of Least Inertia: this is the axis which allows the rotation of the object with least energy. It is
given by the line that minimizes the squared distances to the boundary of the region. This can be
used to normalize regions into a primary direction

Eccentricity: given a bounding box in the principle direction, the ratio of length to width of the box
denotes the eccentricity

Circularity Ratio: how closely the shape resembles a circle. There are different definitions, for
instance, the ratio of the area of the smallest circle containing the region to the area of the region

...and many more

An alternative approach is to normalize the position of the region (principle direction points upwards)
and to measure the overlap with a predefined grid to compute histograms. The histogram values are
the relative area covered by the grid. There are different ways to define the grid, for instance:

The grid is always such that it contains
the region and is a small as possible.

With the circular structures, the center
Is the center of gravity, and the radius is
the largest distance of a point to the
center of gravity.
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— Ludwig-Maximilians University Munich (Berchtold, 1997) studied methods to compare and
index 2D and 3D objects. But the methods are similarly applicable to recognized segments in an
image. The example on the right side shows 2 complex molecule structure normalized in
direction. The partitioning methods extract 4 different histograms, each with 120-122 bins. This is
the description of the structure
and can be used in combination
with a distance measure to find
similar objects in the database

* To make the feature scale
invariant, the histogram bins
are normalized to sum up to 1.

« Some of the features are
rotation invariant (like the first
partitioning). With the initial
normalization to a principle
direction, rotation invariance
is given for all partitioning
scheme.

» The feature is translation
invariant due to the use of
the center of gravity.
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+ Key Points of Interests: There are many approaches but we consider here only the Scale
Invariant Feature Transform (SIFT). Due to the complexity of the approach, we summarize the
main steps to identify key points of interest and consider how to describe these points to find
matches. SIFT extracts features in a very robust way, so that they match again even after significant
viewpoint changes. SIFT is used for object recognition, image stitching, motion tracking, and many
other use cases, The images below depict the same mountain from slightly different perspective.
SIFT is able to match the two highlighted key points despite rotation and scale differences.

— The algorithms works roughly in 4 steps
1. Identify scale-space extrema using band-pass filters (difference of Gaussians, DOG)
2. Keypoint localization with scale; these are the resulting points of interest
3. Orientation assignment (primary direction of the region around a keypoint for normalization)
4. Keypoint descriptors that can be used for similarity search
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— Step 1: We create a pyramid of images using
Gaussian filters at different standard deviations o and
scales. SIFT calls the different scales “octaves” as
shown on the right side. Each octave is down sampled
to a % of the previous octave. For each octave, the
Image is progressively blurred (Gaussian filters with
increasing o).
 In each octave, neighboring images are subtracted

to create the difference of Gaussians (DOG) which
act like edge detectors for a defined frequency band

« The DOG image pyramid contains potential edges
and point of interests. They are the local minima
and maxima in the DOG.

L e

el — >
e | £ z
octave) >

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

First octave

S (didn't fit)

Third octave

«<—Second octave
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— Step 2: We detect the local minima and maxima in the DOG pyramid
with a one pixel neighborhood. As shown in the picture on the right,
where “x” marks the current pixel, we have 8 neighbors in the same
plane and 9 neighbors from each the plane above and below. If the pixel
IS @ maxima or minima in this neighborhood, mark it as such. Otherwise
dismiss the pixel.

 Starting with 5 Gaussian blurred images in each octave, we created
4 DOG images which now create 2 extrema images at each octave.

» To thin out the number of keypoints, we dismiss all pixels whose value
in the DOG is smaller than a threshold (these are points in the “flat”). We further dismiss all
edges by considering their gradients. An edge has big gradient orthogonal to the edge, and a
small gradient along the edge. But we are interested in corner points with two big gradients.

« The output of step 2 is a set of keypoints with location and scale.

— Step 3: To construct a rotation invariant feature, we need to calculate a major orientation for the
keypoint. SIFT accumulates a local histogram of gradient directions from the neighborhood of the
keypoint. The area of the neighborhood window is proportional to the scale. A gradient direction
is added to the histogram with its magnitude as the weight. Finally, the histogram bin with the
highest value corresponds to the dominant direction (if there are ties, use all directions).

« SIFT uses the dominant direction to normalize feature gathering as shown in the next step. If
several directions are found, it constructs features for all directions. The normalization allows
us to compare keypoints found from different viewpoints with a simple metric.

« The dominant direction of the keypoint is not necessarily its gradient direction.
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— Step 4: Using the keypoint as the center, SIFT lies a 4x4 grid in the dominant direction over the
iImage with the size of the grid being dependent on the scale of the keypoint. For each grid cell, a
finer 4x4 mesh defines its neighborhood and a histogram with 8 directions captures the directions
within the cell. For each point in this finer mesh, we calculate the gradient orientation and the
magnitude. We use the magnitude and a Gaussian weight (based on the distance to the
keypoint) to add the direction to the histogram. For each cell of the bigger 4x4 grid we obtain a
histogram with 8 values, resulting in a total of 128 feature values.

— The SIFT features are invariant to scale, translation and rotation by construction. It follows the
idea of the receptive fields in the primary visual cortex to capture local features based on
directions. The features are very distinct for the objects and even small objects can yield many
descriptors. Although rather complex in construction, features can be obtained close to real-time.
SIFT features are widely used for object recognition, motion detection, image alignment and
stitching. OpenCV has a SIFT implementation, scikit-image supports similar approaches (daisy,
harris). As with HOG, SIFT descriptors can be used as input for machine learning.

U => Feature vector (128)
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4.5 Features for Audio

» There are two definitions for sound: the first one is based on physics and describes vibrations that
propagate in the form of audible pressure waves through a medium (gas, liquid, solid). The second
is based on the perception through the hearing mechanism, that is, as a sensation.

* Physics of Sound: soundwaves are generated by a source, for instance vibrations of a speaker,
and traverse a media as wave with a specific wavelength A (or frequency f), pressure p (amplitude
or intensity, measured in decibel), speed v, and direction x. Note that sounds only travel if a medium
exist but not in vacuum. The particles of the medium locally vibrate but do not travel with the wave.

— The human ear perceives frequencies between 20Hz and 20kHz, corresponding to sound waves
of length 17m and 17mm in air at standard conditions, respectively. The relationship between
wavelength and frequency is given by the speed of the wave: 1 f = v.

— The speed of sound waves depend on the medium: in air under standard conditions, sound
travels with v = 331 + 0.6 - T m/s with T the temperature in Celsius. In water, sound travels much
faster at speeds of about v = 1482 m/s. In solids, speeds are even higher ranging from v = 4000
m/s in wood up to v = 12,000 m/s in diamonds.

— Sound travels in concentric waves that can be reflected, refracted (when passing from one
medium to another), and attenuated (gradual loss of intensity as the wave travels). With the
physic properties, it is possible to locate the source of the sound (or most recent reflection point).

— Sound pressure is the difference between the local pressure in the medium and the pressure of
the wave. It is often expressed as decibel: L, = 20 - logyo(p/pres) With p the sound pressure and
pres the reference pressure (20 uPa in air). The factor 20 (and not 10) is because we compare
squares of pressures; with the logarithm, this adds and extra factor of 2. The logarithmic scale is
necessary due to the wide dynamic range of perception. 0 dB is the auditory threshold and
sounds above 120 dB may cause permanent hearing loss.
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» Perception of Sound: historically, the term sound referred exclusively to the auditory perception
(“that which is heard”). Nowadays, the term is used both for the physical effect as well as the
sensation of that effect. The perception is bound to a range of frequencies. The human ear can
perceive frequencies between 20Hz to 20kHz. A cat perceives frequencies between 500Hz and
79kHz. The higher range is useful to detect high frequency mice communication (at 40kHz). Bats
have a range from 1kHz up to 200kHz and use the ultrasonic sounds for echolocation of prey. The
elements of sound perception are:

Pitch: is the perceived (primary) frequency of sound. It is a perceptual property that allows us to
judge music as “higher” or “lower”. Pitch requires a sufficiently stable and clear frequency to
distinguish it from noise. It is closely related to frequency but not identical.

Duration: is the perceived time window of a sound, from the moment it is first noticed until it
diminished. This is related to the physical duration of the wave signal, but compensates breaks of
the signal. For instance, a broken radio signal can still be perceived as a continuous message.

” 113

Loudness: is the perceived level (“loud”, “soft”) of a signal. The auditory system stimulates over
short time periods (~200ms): a very short sound is thus perceived softer than a longer sound with
the same physical properties. Loudness perception varies with the mix of frequencies.

Timbre: is the perceived spectrum of frequencies over time. Sound sources (like guitar, rock
falling, wind) have very characteristic timbres that are useful to distinguish them from each other.
Timbre is a characteristic description of how sound changes over time (like a fingerprint).

Sonic Texture: describes the interaction of different sound sources like in an orchestra or when
sitting in a train. The texture of a quiet market place is very distinct from the one of busy party.

Spatial Location: denotes the cognitive placement of the sound in the environment (not
necessarily the true source) including the direction and distance. The combination of spatial
location and timbre enables the focused attention to a single source (e.g., partner at a party).
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* Audio signals are expressed as an amplitude signal over time. To capture the continuous signal and
create a discrete digital representation, the signal is sampled with a fixed frequency f;. The Nyquist—
Shannon sampling theorem states that the sampling rate limits the highest frequency f,,,4, that can
be resolved to half of the sampling rate (f,,,.x = fs/2). As the human perception ranges between
20Hz and 20kHz, sampling rates of CDs was defined at 44.1kHz and the one for DVD at 48kHz.

« To model human perception, it is necessary to transform the raw amplitude signal into a frequency
space. Unlike with images, we cannot apply a Fourier transformation across the entire signal as this
would average frequencies across the entire time scale and does not allow for an analysis of
frequency changes over time. Instead, the Short-Term Fourier Transform (STFT) applies a window
function and computes a local Fourier transformation around a time point and a given window size.
In the discrete form the STFT of the raw amplitude signal x(t) is given as:

(00]

A
X(t,w) = Z x(n) -wn —t) - e ton 3 W(t M A ............ ' x(t)
n=-—0oo Q .. llunl l Im. 0 bl N i
i 10 1 O e B i
With a window size of N samples, the discrete 5
frequency w ranges between 0 and f,,,4x = f5/2 ‘ ‘ ‘ ‘
at steps of f;/N Hz. The absolute values of FFT FFT FFT seeeeeeeeene: > FFT

the complex value X(t, w) denote the magnitude
of the frequency w at time point t

— The picture on the right depicts the STFT
with the red windowing function w(t) as it is
applied over time. The spectrogram is then
the squared magnitudes |X(t, w)|? over time.
One can use different windowing functions.

Frequency
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» Feature design requires further segmentation of the signal to capture statistics for changes over
small time chunks (compare with timbre). In the picture above, the audios signal is first split into
frames on which also the STFT is applied. The frames overlap with each other to avoid boundary
effects. For each frame, we obtain a single feature vector. The second split of the audio signal
creates overlapping segments encompassing several subsequent frames. The segment features are
then a statistical summary over the features of its frames. The segments are the smallest unit for
retrieval, and a single audio file is described by hundreds or thousands of segments.

— Frame size: let the sampling frequency be f;, = 48 kHz. With a frame size of 40ms, the number of
samplesis N = 1920. Hence, the frequency resolution of STFT is % = 20.83 Hz. This is hardly

sufficient to distinguish two musical pitches at the middle octave, but not for the first and second
octave (each octave doubles the frequency). To improve frequency resolution, we could increase
the window size (reducing sampling rate would result to audible artefacts). But then, we loose
precision along the time axis as a broader range blurs the spectrum. In short, STFT requires us
to compromise either on frequency resolution or time resolution. Alternative approaches with
wavelets have solved this issue and provide both good time and frequency resolution.

— Segment size: depends on the task at hand. For timbre detection (guitar, rock falling, wind) a
shorter segment can be used. For spoken text, alternative segmentation approaches can be
used. The 4s in the picture is a good starting point for generic audio analysis.

Multimedia Retrieval — 2018 Page 4-88




4.5.1 Auditory Perception and Processing

« The ear translates incoming pressure changes into electro-chemical impulses

— The outer ear is the visible part of the organ. Sound waves are reflected and attenuated, and
additional information is gained to help the brain identify the spatial location. The sound waves
enter the auditory canal which amplifies sounds around 3kHz up to 100 times. This is an
important range for voice recognition (e.g., to distinguish ‘s’ from ). Sound travels through the
ear canal and hits the eardrum (tympanic membrane).

— Waves from the eardrum travel through the middle ear (also filled with air) and a series of very
small bones: hammer (malleus), anvil (incus), and stirrup (stapes). These bones act as a lever
and amplify the signal at the oval window (vestibular window). Amplification is necessary as the
cochlea is filled with liquid. A reflex in the middle ear prevents damage from very loud sounds.

— The inner ear consists of the cochlea and the Stapes
vestibular system. The latter is responsible for latached o
balance and motion detection and works similar
to the cochlea. Along the cochlea runs the organ
of Corti (spiral corti) with the hair cells. The outer
hair cells amplify the signal and improve frequency
selectivity. The inner hair cells are mechanical o
gates that close very rapidly under pressure (gate e AR
open means “no sound”). The base of the cochlea Cochiea

(closest to middle ear) captures high frequency

sounds while the top captures low frequency sounds. Tympanic Eustachian Tube

Semicircular
Canals

Incus
Malleus

outer ear * At §
L =
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Vestibular
Nerve
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The non-linear amplification of quiet sounds enlarges Membrane Round
the range of sound detection. Chemical processes adapt

. . . Chittka L, Brockmann - Perception S —The Final Frontier,
to a constant signal focusing attention to changes. A PLoS Bioloay Vol 3, No. 4. 6137 loi-10.137 1 iournal.pbio. 0030137
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— The electro-chemical impulses created by the inner hair cells
releases neurotransmitters at the base of the cell that are
captured by nerve fibers. There are 30°000 auditory fibers in
each of the two cochlear nerves. Each fiber represents a
particular frequency at a particular loudness level. Similarly,

the vestibular nerve transmits balance and motion information.

There are two pathways to the brain: the primary auditory
pathway (discussed below) and the reticular pathway. The
latter combines all sensory information in the brain to decide
which sensory event requires highest priority by the brain.
The primary path is as follows:

* The cochlear nuclear complex is the first “processing
unit” decoding frequency, intensity, and duration.

* The superior colliculus (mesencephalum) infers spectral
cues from frequency bands for sound location.

 The medical geniculate body (thalamus) integrates auditory

data to prepare for a motor response (e.g., vocal response)

 Finally, the auditory cortex performs the basic and higher
functions of hearing. Neurons are organized along
frequencies. Frequency maps help to identify the source
of the sound (e.g., wind). Further, it performs sound links
to eliminate distortions due to reflection of waves. The

auditory complex is essential to process temporal sequences

of sound which are elementary for speech recognition and
temporally complex sounds such as music.
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4.5.2 Generic Acoustical Features

» The first set of features describe audio files from an acoustical perspective along the domains
— Time Domain — considering the raw signal in the time space (amplitude signal)

— Frequency Domain — transforming raw signal with STFT and analyzing frequencies and their
energies at the given time point (see window technique)

— Perceptual Domain — modelling the perceptual interpretation of the human ear

* Featurein the Time domain (frame): we consider the amplitude signal in the time domain using a
single frame F; (see segmentation). For instance, with f, = 48 kHz and a frame size of 40ms, the
number of samples is N = 1920, and the hop distance between subsequent frame is 20ms.

— Short-Time Energy (STE): measures the raw energy as a sum of squares, normalized by the
frame length. With audio signals, power is usually measured as decibel (which is one-tenth of a
bel, a unit introduced by the first telephony system). An increase of 10 dB denotes a power
change of a factor of 10. The metric is logarithmic: L, = 101log,,(P/P,). With that, STE for an
amplitude signal x(t) within a frame F; (hence: 1 <t < N) is defined as:

N
1
Y — _ 2
Esrg (i) = 10logy (N;x(t) >
— Zero-Crossing Rate (ZCR): counts, how often the sign of the amplitude signal over the duration
of the frame F; (e.g., from positive to negative values) changes:

N
1
ZCR(i) = mZ|sgn(x(t)) — sgn(x(t — 1))
t=2
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— Entropy of Energy (EoE): measures abrupt changes in the energy of the audio signal within a
frame F;. To this end, the frame is divided into L sub-frames of equal length spanning the entire
frame. For each sub-frame §;, the energy is measured and normalized by the total energy of the
frame to obtain a sequence of “probabilities” that sum up to 1. The entropy of these “probabilities”

Is the Entropy of Energy. Choose L and Ng,;, suchthat N = L - Ng,;:

. . . Py x(t)
Heox (D) = = ) e(i,1) - logy e(i, ] e(i,) = ZEe
r=1 X (t)

=1

* Feature in the Time domain (segment): The following features summarize statistics across a
segment S; with M frames. Consider, for instance, a segment length of 4s, a frame size of 40ms and
a frame hop distance of 20ms, then the number of frames is M = 199 (or M = 200 depending on
how to treat the last frame that partially is in the segment and partially outside the segment).
— Low Short-Time Energy Ratio (LSTER): denotes the percentage of frames in the segment
whose STE is below a third of the average STE across the segment S;. Speech signals have a

higher variation due to pauses between syllables.

1 1 1 E . uste(J) 1 u
".stEr(J) = Mz sre(i) < 3 tste(J) = Mz Esrg (1)
i=1 i=1

0 otherwise
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— High Zero-Crossing Rate Ratio (HZCRR): speech signals have much more zero-crossings than
a typical music signal, and the variations is much higher (due to breaks between syllables). The

HZCRR over a segment §; is defined as:

Tuzcrr () = MZ {1 HRE) <

0 otherwise

tzcr(J)

M
1
Hzer() = 77 ) ZCR()

0.5 0.4

LSTER HZCRR

(a) speech signal (a) speech signal
(b) music signal (a) (b) music signal
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— Moments over STE and ZCR: compute moments over STE and ZCR values across the
segment §;. This describes the distribution of values within the segment. The following formulas

describe STE moments; ZCR moments are obtained similarly. Note that these are biased
versions of the moments (which are close to unbiased moments if M > 100):

M M
1 1
uste(j) = MZ'ESTE(i)l vsre(J) = MZ('ESTE(i)l - #STEU))Z

|Esre (D] — uste(j) |Esre (D] — uste(j)
sste(j) = MZ < vSTE(]) ) ksre(j) = MZ ( USTE(]) )

— Histograms: partition the value space of a feature and compute how often values fall into a
partition across the frames of segment §;. The normalized numbers yield a histogram over the

feature values. This method is seldom used as it produces to large features than moments.
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* Feature in the Frequency Domain (frame): we consider the Fourier transformed signal in the
frequency domain using a single frame F; (see segmentation). For instance, with f; = 48 kHz and a
frame size of 40ms, the number of samples is N = 1920, and the hop distance between subsequent
frame is 20ms. The Fourier transformed values X (i, w) denotes the frequency spectrum of frame F;
with 0 < w < /2 and with steps Aw = f;/N = 25 Hz. Also note that in the discrete notation of the
Fourier transformed, i.e., X(i, k) with 0 < k < N/2, only the first half of the values are needed as the
second half is symmetrical (as we had real values only in the time domain). In the following, we
often use the discrete form X(i, k) = X(i, w(k)) with w(k) =k - f;/N.

— Spectral Centroid (SC): denotes the gravity center of the spectrum, i.e., the weighted average
frequency in the spectrum of the frame F; with the magnitude as weights, i.e., the magnitude is
the absolute values of the (complex) X (i, k). For convenience, let K = N/2 — 1. Hence:

Tk=o (k) - 1X(, k)|
Ik<=0|X(i' k)l

SC(@) =

The centroid describes the “sharpness” of the signal in the frame. High values correspond to
signals skewed at higher frequencies.

— Spectral Roll-off (w,): denotes the frequency w, such that the sum of magnitudes with
frequencies smaller than w, is C = 85% of the total sum of magnitudes. Hence, we look for a
value 0 < r < K as follows (other values for 0 < C < 1 are possible)

w, = w(r) with r smallest value that fulfills: Y% _,|X (i, k)| < C- XX_,1X(, k)|

Related to the spectral centroid, it measures how skewed the spectrum is towards higher
frequencies which are dominant in speech.

Multimedia Retrieval — 2018 Page 4-94




— Band-Level Energy (BLE): refers to the sum of energy within a specified frequency range. The
range is captured through a weighting function w(k) in the Fourier domain with 0 < k < K. The
feature value is measured in decibel to match hearing perception:

K
BLE(i) = 10log;, <ZIX(L', k)|? - W(k))

k=0

— Spectral Flux (SF): describe the squared differences of normalized magnitudes from the
previous frame. It provides information of the local spectral rate of change. A high value indicates
a sudden change of magnitudes and thus a significant change of perception (only for i > 1):

K 2
S k@Rl IXG= Ll
5 “)‘,;< o i W= |

— Spectral Bandwidth (SB): denotes the normalized magnitude weighted deviation from the
spectral centroid. It describes the expected distance of frequencies from the spectral centroid:

LI G R (0) — SC@)
B0 = \/ KX R

* Feature in the Frequency Domain (segment): to summarize a segment, we can use again
moments and histograms over the frame values for the various features above.
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* Feature in the Perceptual Domain (frame): the human ear and the interpretation of sound wave
differs significantly from the raw physical measures. For instance, loudness is a measure of the
energy in the sound wave. The human perception, however, amplifies frequencies differently,
especially the ones between 2 and 5 kHz which are important for speech recognition. The following
measures take perception into account.

— Loudness: perception of the sound pressure level depends
on the frequency as shown on the figure on the upper right side.
Each red curve denotes how much energy is required such that
an average listener perceives the pure tone as equally loud. As
discussed before, the energy drops significantly between 2 and
5 kHz due to amplifications in the ear. To model this perception
the international standard IEC 61672:2003 defined different
weighting function as shown by the figure on the lower right
side. The A-weighting curve is the most frequently used despite
that it is only “valid” for low-level sounds. In addition, the human
auditory system averages loudness over a 600-1000ms interval.
The loudness at the F; is hence the average over the previous
1000ms of the signal and not just the values in the frame. Let
O be the number of frames over the last 1000ms. For instance,
with a hop size of 20ms, 0 = 50. Loudness is measure in
decibel, again, to match perception of increased loudness:

0-1 K
10 1
L@ =5 ) logig (EE AGO - 1X(E —o, k)|2>
0=0 k=1

—
-l

Sound Pressure Level (dB SP

Gain dB
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— Mel Frequency Cepstral Coefficients (MFCC): represents the spectrum of the power spectrum
over Mel frequency bands. The Mel frequency bands approximate the human auditory system.
The method works in 4 steps:

1. Fourier Transform: compute the Fourier transform over the frame F;. Here, we do not use a
windowing function as with the STFT. Let N be the number of samples in the frame F; and f;
be the sampling rate (e.g., N = 1920, f; = 48 kHz)

N—-1
1 Kk
X600 =~ z x(j) - e 2"N w(k) = k- L
j=0

2. Mel-Frequency Spectrum: the spectrum is computed over Mel frequency bands. Let B be the
number of bands, and let f;,,,. and f,,, denote the lower and upper range of frequencies.
Typically, we have B = 26, fiower = 300 Hz, and f,,per = 8000 Hz. First, we create the
bands. The conversion from frequencies to mels and vice versa is as follows:

freq(m) — 700‘(3%—1) mel(f) = 1125~ln(1+%)

The bands are triangle shaped windowing functions in the frequency space. Three
frequencies define the start point, the middle point, and the end point. Two bands overlap
with each other: the start point of a band is given by the middle point of the previous band.
The frequencies are computed in the Mel space to Bandwidth

match human perception. Given B bands, we need = cemerfreueny —_

B + 2 frequencies givenby (0 <b<B+1) :

0.5+ H'H]l MIITIEE L X ) ‘
l - l o3+ Ly ey ¥y ¥ vV VoV VY y \ ‘.v‘,,i )
fc(b) = freq (mel(flower) + b ) T (fupper) o (flower)> ( i SO0 1006 1500 2001 501 1000 1501 1000

B+1
Frequency [Hz]
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With the frequencies f.(b), we can define now the windowing function d (b, k) over the
Fourier coefficients X(t, k) for a given time point t. The shape has a triangle form:

( 0 if w(k) < f.(b—1)

k)—f.(b—1) .
;)Eb§ —]]:Eb - 13 if fe(b—1) < w(k) < fe(b)

-fb+1)
;’Ebﬁ_]{gbili if £.(b) < w(k) < fo(b+ 1)

\ 0 if w(k) > £.(b + 1)

d(b, k) =«

This finally allows us to compute the Mel-frequency spectrum with a simple sum over the
magnitude values of the Fourier coefficients weighted by each of the B bands. This leads to
B values M(t,b) for1 < b < B:

N/2-1

M(t,b) = Z d(b, k) - |X(t, k)|

k=0

3. Cepstral Coefficients: the cepstrum can be interpreted as a spectrum of a spectrum. The
newer variant of MFCC computes the coefficients of a discrete cosine transformation and
uses the first half of the coefficients. If we started with B = 26, we now obtain 13 cepstral
values c(t,b) with 1 < b < B/2:

b(2j — 1)7t>

B
c(t,b)=ZM(t,j)-cos< >R with1<b < B/2
j=1
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4. Derivatives: the actual MFCC features are a combination of the cepstral values c(t, b) and
the first and second order derivatives. The derivatives describe the dynamic nature of spoken

text. With 13 cepstral coefficients, we obtain 39 feature values:

Ac(t,b) =c(t+1,b) —c(t—1,b)
AAc(t,b) = Ac(t +1,b) — Ac(t —1,b)

MFCC(t) = [c(t, 1),...,c(t,B/2),Ac(t, 1), ...,Ac(t,B/2),AAc(t, 1), ..., AAc(t, B/2)]

MFCC are the standard features for speech recognition. The feature values are used either in
Hidden Markov Models or neural network to learn phonemes. A typical approach is to use the
cepstral coefficients of a large spoken text body, to cluster the values into [ clusters with a k-
means clustering approach (see next chapter), and to use the clusters to quantize the vector and
to create [ states. The machine learning method then derives a mapping form a series of state
transitions to a phonem. The phonem stream is then further processed to create words.

* Itis also possible to search directly on the phonem stream. The query words, with the help of a
dictionary, are mapped to phonems, and search is over phonems as terms. The advantage is
that we do not have to train the system to recognize (countless) names. If further allows for
fuzzy retrieval and is helpful if some of the phonems are not correctly recognized. On the other
side, we do not have a transcript for the presentation of the answers.

* Feature in the Perceptual Domain (segment): we can compute moments or histograms of the
perceptual features across frames in a segment as before. The standard deviation of the 2"d MFCC
coefficient c(t, 2), for instance, is very discriminative to distinguish speech from music.
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4.5.3 Music Features (Pitch Contour)

« Chroma based features closely relate to the twelve different pitch classes from music {C, C#, D, D4#,
E ,F, F#t, G, G4, A, A, B}. Each pitch class, e.g., C, stands for all possible pitches at all octaves. All
pitches relate to each other by octave. If two pitches of the same class lie an octave apart, their
frequency has the ratio of 1:2 (or 2:1), i.e., with each higher octave the frequency doubles. Another
important concept of music theory are the partials, overtone, fundamental, and harmonics

— Each pitched instrument produces a combination of sine waves, the so-called partials. The
combination with its own frequencies and changes of amplitude over time define the
characteristic timbre of the instrument. The human auditory system is extremely advanced to
recognize timbres and to distinguish instruments (but also voices) from many audio sources.

— The fundamental is the partial with the lowest frequency corresponding to the perceived pitch.
Harmonics are a set of frequencies that are positive integer multiples of the fundamental
frequency. Although an instrument may have harmonic and inharmonic partials, the design of an
instrument is often such that all partials come close to harmonic frequencies.

— Overtone refers to all partials excluding the fundamental. The relative strength of the overtones
define the characteristic timbre of an instrument as it changes over time.

The pitch standard A440 (also known as A4 of Stuttgart pitch) defines the A of the middle C at f;, =
440 Hz and serves as a tuning standard for musical instruments. If we number the pitch classes
(also called semitones) withn = 0 (C), ..., n = 11 (B), we can express the frequency of the
semitones in the octave o with —1 < 0 < 9 as follows (MIDI number would be 12(o + 1)+n; A4 has
number 69):

120+n-57 120+n-57
faarao(0,n) = fyq -2 12 =440-2 12
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Table of note frequencies (standard piano key frequencies)

Octa
\[e}

ve > o=-1 o=1 o=2 o=3 o=4 0=5 o=17
teN
C

8.176 16.352 32.703 65.406 130.81 261.63 523.25 1046.5 2093.0 4186.0 8372.0
gi?; 8.662 17.324 34.648 69.296 138.59 277.18 554.37 1108.7 2217.5 4434.9 8869.8
@ E 2) 9.177 18.354 36.708 73.416 146.83 293.66 587.33 1174.7 2349.3 4698.6 9397.3
Eb / D#

(n = 3) 9.723 19.445 38.891 77.782 155.56 311.13 622.25 12445 2489.0 4978.0 9956.1
@ E 4) 10.301 20.602 41.203 82.407 164.81 329.63 659.26 1318.5 2637.0 5274.0 10548.1
@ E 5) 10.914 21.827 43.654 87.307 174.61 349.23 698.46 1396.9 2793.8 5587.7  11175.3
l(:f /=C2l)’ 11.563 23.125 46.249 92.499 185.00 369.99 739.99 1480.0 2960.0 5919.9  11839.8
@ S 7) 12.250 24.500 48.999 97.999 196.00 392.00 783.99 1568.0 3136.0 62719  12543.9
Ab / G#

(n = 8) 12.979 25.957 51.913 103.83 207.65 415.30 830.61 1661.2 3322.4 6644.9

@ i 9) 13.750 27.500 55.000 110.00 220.00 440.00 880.00 1760.0 3520.0 7040.0

Bb / A#

(n = 10) 14.568 29.135 58.270 116.54 233.08 466.16 932.33 1864.7 3729.3 7458.6

e 311) 15.434 30.868 61.735 123.47 246.94 493.88 987.77 1975.5 3951.1 7902.1

Source: https://en.wikipedia.org/wiki/Scientific_pitch notation
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« Extracting pitch information from audio files requires the extraction of the fundamentals. A first,
simple approach, is to map all frequencies from the STFT to a chroma value corresponding to the
pitch class numbering as introduced above. We use again the A440 standard with f,.., = 440. Let
w(k) = k- f;/N be the frequency mapping of the k-th Fourier coefficient with sampling rate f, and
with N samples. Then, the chroma value (pitch class p(k) and octave o(k)), are given as:

1 k- f.
mod 12 o(k) = {E <9.5 + 12log, <N Y f))

p(k) = {9.5 + 1210g2< k Js >
N - fref
— We can obtain a chroma related histogram by summing over the power spectrum using above
mappings to obtain the pitch class and octave. A histogram vector for frame F; is then:
K

1 .Z{|X(i,k)|2 ifo=o0(k)Ap =p(k)

K _olX (i, k)|? 0 otherwise

hchroma(ir o, p) =
k=0

— However, this does not allow to obtain the main pitch contour (or pitches if polyphonic) but simply
provides a mapping to chroma values. We can estimate the fundamental f;, in a time window if
we search for the frequency which maximizes the sum of magnitudes over all its harmonics, i.e.:

. fs
5 | e +27 ky+27
fo = N'm;?X<n;g(k,m) - 1X@, km)l) gtkm) = ey ¥ 320

fs
km 3 + 320

g(k,m) is an empirically obtained function to weight the contributions of the different harmonics.
The number M is the number of considered harmonics and depends on the maximum frequency
available in the spectrum.
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— With the fundamental f,, we obtain the pitch class p(f,) and the octave o(f;) of the time window.
To extract several fundamentals from the frame, we repeat the following steps:

1. Compute the magnitude spectrum |[X© (i, k)|
2. lterate t = 0,1,..as long as Yx_o|X O, k)| > €
— Compute f, on the magnitude spectrum |X® (i, k)|

— Adjust the magnitude spectrum, i.e., subtract the magnitudes of the harmonics of the
computed fundamental f; to obtain [X D (i, k)|

« Alternatively, we can compute the fundamental frequency f, in the time domain. To this end, we
compute the autocorrelation of the audio signal at different time shifts At. Let N be the size of a
frame and f; be the sampling rate. To limit the search, we enforce the condition 1/f,,;,, = At =
1/ fimax TOr a minimum and maximum frequency range for the fundamental: f,,,;n < fo < frnax-
Furthermore, time shifts are integer multiples of the sampling period: At = m/f; with f./fmin = m =
fs/fmax- The autocorrelation for the frame F; and the lag m is then defined as follows:

N

R(i,m) = z x(i,t) - x(i,t —m)

t=m

To obtain the fundamental, we search for the lag m, that maximizes the autocorrelation and
compute the frequency from this lag:

= Js. my = argmax R(i,m)
my fs/fmin2m2fs/ fmax

fo
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* Another music related feature is the tempo or beats per minute (bpm) of a play. In classical music,
the tempo is often defined with ranges like Largo (40-60 bpm), Larghetto (60-66 bpm), Adagio (66-
76 bpm), Andante (76-108 bpm), Moderato (108-120 bpm), Allegro (120-168 bpm), Presto (168-200
bpm), and Prestissimo (200+ bpm) and can vary over the play. Pop music has often a constant beat
over the course of the song and bpms vary between 60 and 160, with 120 bpm being the most
frequent choice for tempo.

— Beat tracking is the search for regular onsets of energy at the beat intervals. With 100 bpm, we
should observe an increase of energy at intervals of around 10ms (depending on the accuracy of
the musician) indicating the beats. But it is not that straightforward as the example below shows:

Lmear-frequency Spectrogram

E 4 s ]  Seded.
- 1 e WS
= 210 i;‘ . :..'f
= e T:ﬁ‘
N e el P e e O
40 Mel-frequency Spectrogram
'8 i [ "‘U)l‘ [ I T I I —""‘I‘ "Ym
8 .1, Ik "
() ‘: e . i ‘.“ ' ‘-.-.‘"" .: ‘- ) ol : " "“‘.A‘ | {1 .‘q ¥
= = n';; s ..{: .'_l- I.‘ = --‘ : n:u . ; ‘.-. . n J.é "
WA " - “-‘" : - ey 14 Bl S s i
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Onset strength envelope
[ [ [ I [ [ I
20
o
0 f---FWEE = Y- 4o A AL AN _L_L ’ i A8 "
_10 Il 1 1 Il 1 1 Il 1 1
0 1 2 3 4 5 6 7 8 9 10
time / sec

Vertical lines denote the
beat as found by the
method of D. Ellis.
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Onsets often at beat intervals,
but also in between and with
varying intensities

Source: D. Ellis, Beat
Tracking by Dynamic
Programming, 2007.
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— Onset envelope calculation: the onset is defined as the (positive) slope on the energy over the
spectrum at a given point in time. Using STFT and mel bands, we obtain the mel spectrum
| Xme1 (i, b)| as a weighted function from the frequency spectrum. The weighting is such that the
areas underneath the triangular mel bands become equal. This firstly improves resolution of the
lower frequencies and emphasizes them over the higher frequencies (basically a weighting by the
inverse of the band width). The onset is then similar to the spectral flux, but we only consider
positive slopes (hence onsets) and convert to decibels. Let B be the number of mel bans and F;
be the current frame, then the onset o(i) is as follows:

B

10g10 | Xmel(ir b)l )
o(i) = E max (O, . -1
= log1o | Xme: (i — 1, )|

— We can estimate the global tempo through autocorrelation over the onset o(i) using a window
function w(i) (for instance using a Hann function). In other words, the we are looking for a time
shift At such that peaks in the onset function coincide. The time shift that maximizes
autocorrelation corresponds to the global tempo. We can compute the tempo per frame to obtain
a tempogram, i.e., autocorrelations for the frame F;, the lag [ and the window function w():

w

il 1) = ZW(i) -0(i) - o(i + J)

j=1
The tempo is given by the lag [, with the highest autocorrelation and we can convert to beats per
minutes with At = [,/f; and hence the tempo is % = 60{—5 bpm. Often, we find other peaks at

0

{0.331,, 0.51,, 21y, 3lp} which mark secondary tempos if their autocorrelation is large enough. In
addition, we can favor beats around, for instance, 120bpms if we know the genre (e.g., pop).
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Example for tempo estimation within a time frame:

Onset Strength Envelope (part)
4 T T T T T

2 ! | ! ! L L
8 8.5 9 9.5 10 10.5 11 11.5 12

. time /s
Raw Autocorrelation
400 T T T T T T T

200 -

Weighting function prefers

200 beats around 120bpm which
100} - is a lag of 0.5 seconds. Here
the primary tempo is about
0 168, and the secondary at 84.
-1 00 | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5
— Secondary Tempo Period lag /s

— Primary Tempo Period

— Beat tracking is then the identification of the time points {t;} at which the onsets occur (as a
human listener would tap to the music) and such that time intervals match the tempo (with some
small deviations). These time points optimize the following objective function with F(t; — t;_1,1p)
being a penalty function for deviations from ideal tempo and a a weighting to balance onset
values and penalty values:

T T

2
Cted) = mge| Yot +a) PO =t lo) F(AL L) = - <logA—l>

i=1 lO
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4.5.4 Search for Tunes (Search by Humming)

« With music, the tune is an important piece of information. Acoustical features like beat, tempo, or
pitches are not sufficient for music related search. A tune, played a different pitch levels still appears
similar. A tune at a slower tempo still appears similar. Hence, we need a better way to describe a
tune and to find variations of it:

— musipedia.org is a website offering different type of tune related searches including contour
search and search by humming. The idea of contour search is to describe the relative changes of
the tune. For each new pitch, we note:

» D (down) if the preceding pitch was higher (tune goes down)
« U (up) if the preceding pitch was lower (tune goes down)
« S (same) / R (repeat) if the preceding pith is the same (tune stays flat)

This transforms the stream of pitches to a stream with three terms (D, U, S). In this simple case,
the duration of a pitch and pauses between pitches are ignored.

— To search for music, one can hum the tune and the recording interface translates the humming
into a sequence of terms following the above notation. The search becomes a simple string
search in a database of songs.

— There are many variations for contour search, i.e., taking duration or the step size between notes
into account. Again, this translate into a contour but with additional terms. On the other side, as
duration is not normalized, users may have more difficulties to hum the correct melody. The
same with pitch differences: not everyone is pitch perfect but often we can remember the
contour. Such interfaces are often for the more professional users.
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4.6 Features for Video

» Video retrieval is a combination of image, audio, and text (subtitles) retrieval. But beyond these
basic stream related capabilities, there are a number of additional concepts which we consider in
this section:

— Segmentation (shot detection, scenes)

— Motion Detection

There are many more topics in video retrieval but we limit this section to the topics above.
* Video segments are modeled at four different levels:

— Frame: an individual image in the video defining the shortest visual change rate (e.g., 25 frames
per second). Although the audio channel has a much higher resolution, the visual channel is
often used as finest granularity.

— Shot: a set of frames recorded in a single shooting (without stopping camera but including
camera and object movements). May last a few seconds up to several minutes or even hours. A
shot encompasses all image, audio and subtitle information and often is the smallest unit for
search (frames are often too fine granular for that purpose)

— Scene: a set of shots that share common semantics. In a movie, this could be a discussion
between two story characters with alternating viewpoints (the shots) depending on who is talking.
A scene is often coherent and consistent in terms of time and location.

— Episode: a set of scenes forming the episode. A movie has often just a single episode, a series
may consist of dozens or even hundreds of episodes. Episode segmentation is often at the
physical distribution layer (i.e., different files or disks or media); but an episode can also span
across several physical carriers.
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4.6.1 Shot Detection

» A shot consists of frames from a single camera shooting. Shot boundaries change the perspective
within a scene, or change time and location of the setting if they also mark a new scene. A common
characteristic is the rapid change of image information depending on how the shot transition is
rendered:

— Hard cuts: there is no cross-over between two subsequent shots and a clear (hard) delineation
between the last frame and the first frame of the shots. A hard cut is marked by an abrupt
change in the image stream.

— Soft cuts: the two shots are intertwined with each other changing from one shot to the other over
the course of multiple frames. Fade in/out, swipes, and other visual effects mark the change of
two shots. In contrast to hard cuts, there is no frame that marks the end or the start but a
sequence of shared frames for the visual transition effect.

Hard cuts are often used for camera changes within the same scene like in a discussion between
two people changing the viewpoint from one speaker to the other. Soft cuts often occur to visually
mark the end of a scene and to direct the attention of the viewer to time and/or location change.

* Indicators of shot boundaries can be found in the video stream. An encoder uses an I-frame if the
changes between subsequent frames is too large for a differential (prediction) approach. However, |-
frames are also frequently used to allow for quick navigation within the video and occur at frequent
intervals. They are hence not often useful for shot detection but can help to reduce some of the
efforts.
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« Shot Detection (hard cuts)

— A hard cut is an abrupt change of the image stream. In principal, we need a similarity function
between two subsequent frames and a threshold that lets us detect a shot (if similarity is below
that threshold). Often, we compute distance between subsequent frames rather than similarity

values. In this case, a threshold is needed such that distances larger than the threshold indicate
a shot boundary.

» Pixel based comparison: a naive approach is to consider the changes per pixel along the
time scale and compute a distance between subsequent frames f(x,y,i) and f(x,y,i + 1) as
follows (f () is vector function returning red, green, blue channels):

naive@ = ) If3,0) = f(x,y,i = D)
XYy

The problem with this approach is that it is not very robust against camera movements and
object movements. A small shift of the camera may lead to very large distances.

« Histogram / Moments Comparison: to have (small) translation, rotation, and scale
invariance, moment and histogram features are better suited. In addition, we often consider
only the luminance values as frames from two different shots have quite different luminance
distributions. The standard approach is histogram over luminance values. Let h(i) denote the
histogram (or feature vector) for a frame. We then obtain a better distance measure (we can
either use Manhattan distance or a quadratic function):

dy () = |h(D) — h(i — 1| do(i) = h(i)TARG — 1)
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— To learn the best threshold, we already considered the ROC curve in chapter 1 as an excellent
tool. Let f,,(x) denote the distribution of distances between two frames belonging to the same
shot, and f,(x) denote the distribution of distances between two frames from different shots. A
threshold T is defined such that:

e d,,(i) < T denotes that frame i belongs to the same shot (no shot boundary; negative case)
e d,,(i) = T denotes that frame i belongs to a new shot (shot boundary; positive case)
We now can compute the false/true positive/negative rates as defined in chapter 1:

(o) T

TPR(T) = j £,(x) dx FNR(T) = ] £,0(0) dx
T —o0o0
T (0e]

TNR(T) = ] £, (x) dx FPR(T) = j fa(x) dx
—0o0 T

The best threshold T depends on our objective function, but
typically we would select T such that accuracy is the highest.
The ROC table provides a simple tool to compute T.

Threshold

fn(x) fp(x)

TNR FPR

\

1
0 \ FNR TPR
0 02

04 06 08 1
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« Shot Detection (soft cuts)

— The detection method above works well for hard cuts but it struggles with visual effects between
shots. For instance, a slow fade-out, fade-in effect does not change subsequent images enough
to trigger the threshold; but after some time, the image has changed significantly.

— Afirst alternative is to model the different transition effects. A fade-out, fade-in is simple to detect
(all black screen). Swipes (horizontal or vertical) are splitting the image into two parts (one part
from the old shot, one part for the new shot) and gradually change the ratio between the parts.
But it takes a lot of coding to model all the visual effects, and new effects can not be detected.

— Twin Thresholding is a generic approach to identify visual transitions from one shot to another.
It works with two thresholds: threshold T, detects (hard) changes between two frames similar to
hard cuts. A new threshold T, is much lower and more sensitive. If the difference exceeds this
threshold, it marks the potential begin of a soft cut. The current frame is kept as the reference
image and we keep this reference for the next frames until a) the difference to the reference
frame exceeds T, (soft cut detected), or b) the difference falls below T, again (no cut after all). In
both cases, we release the reference frame and use the current frame as a new reference.

4 potential potential

distances - start of a 1© @it start of a
cut soft cut after all soft cut

time
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4.6.2 Motion Detection

 Motion detection has several use cases:

— Motion compensation in video encoding helps to encode frames with previous frames and the
relative motion of blocks. This reduces the number of bits required to encode a frame

— Surveillance cameras detect and track motion of objects. Often cameras are stationary are
objects move in front of the camera.

— Optical flows analyze relative movements of camera (observer) and objects in the scene. In the
area of robaotics, optical flows allow to estimate movements and the 3D structure of a scene.

« Detecting Moving Objects: The basic assumption is that the camera is stationary and moving
objects are the important pieces. We want to identify movements (to trigger an alarm) and the
motion vectors of these objects (to track them). The model is fairly straightforward

T4 Current =® .| Motions
<J Frame \_p/ (objects)

A

y

Vs

Background
Model

A

. Update ™ _
~Backgroung”
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— Simple Background Subtraction: the background image is a static, arbitrarily selected image.
We assume that the background image does not contain any moveable objects. Pixels are label
with “white” if they belong to an object moving, or “black” if they are background.

A

« Good starting point to extract shape of an object. However, sensitive to illumination changes
(weather, position of sun). If the background image changes over time (permanent change of
scene), a negative ghost image remains.

* Very sensitive to any movement in the picture even if unimportant (for instance, leaves of a tree
moving with the wind, reflections of sunlight)

« Only works if the camera is absolutely static (also no zoom or tilt).

Images by Robert Collins
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— Simple Frame Differencing: instead of a static background image, we build differences between
subsequent frames. This allows to adjust to changes over time.

* Robust to scene changes over time; very quick to adapt to lightning changes or even camera
motion (incl. zoom and tilt).

» Objects that stop are no longer recognized. If they start again, they leave a negative ghost

« Only changes in the direction of movements are detected. If an edge of an object moves has
the same orientation, that edge is not visible. As seen above, only a partial silhouette is
captured: the front and the back, but not the top and the bottom part.

Images by Robert Collins
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— Three Frame Differencing: with the simple frame differencing, we compared subsequent
frames. If we enlarge the temporal distance between two frames to compare, we find more
complete silhouettes but also two copies of the objects (its starting point and its current point). To
eliminate copies, the three frame differencing compares with a frame in the past (say t — 15) and
a frame in the future (say t + 15). The intersection of the two images leads to the current location
of the moving object. Note: this means a delay in the identification of the objects current position.

» Choice of good frame-rate and temporal distance between images depend on size and speed
of objects. With the example above, the current position is the intersection of the two difference
images (one for the past, one for the future).

Images by Robert Collins
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— Motion History Images: we compute differences between subsequent images to obtain motion
images which are then combined with a linear decay over time. The motion history images
provide an impression from where the object is coming.

A

« We obtain the current motion histogram from the previous one by subtracting a chosen value y
(negative values are zeroed) and combining it (max function) with the current motion image.
The decay parameter y adds gray values to the motion history denoting how long ago the
motion was detected (the darker the earlier). The larger y is, the shorter the history of object
motions. The motion history images summarizes how much motion occurred over a given time

period. We can use it to summarize motion aspects into a feature vector (using histograms or
moments like for other features). Images by Robert Collins
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— Shadow Elimination: the pixelwise difference methods detect moving objects together with the
shadows they cast (see example below). This leads to poor localization, the impression of
additional motion, and hence should be avoided. We can distinguish a shadow from the actual
object by comparing the color chromaticity of the pixels. A shadow will only change illumination of
the background color but chromaticity remains similar. We can adjust the methods with and
improved differencing method of two frames:

* Instead of building differences between pixels of two images, we first map the images to a
chromaticity sub-space (e.g., a*b* or HS) ignoring the luminance aspects. The thresholding
eliminates shadows but keeps objects (if they are sufficiently different in terms of color than the
background).

differencing method: |Broma (% V) — Lcnroma (6, v, )| > T
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* Optical Flow: the previous methods only work for stationary cameras (also no zoom or tilt). To
detect motion in arbitrary videos, other methods are required. The most prominent approach is
known as the Lucas-Kanade algorithm.

— The basic assumption is brightness constancy, i.e., no abrupt changes in brightness of a pixel
across subsequent frames. We are considering a pixel and its motion path over time. Let
I1(x(t),y(t),t) denote the brightness of a pixel with its path [x(t), y(t)] as a function over time.
Brightness constancy than means:

I1(x(t),y(t),t) = const for small changes of t

— Let us track the pixel from the frame at time t to the subsequent frame at t + At with At the time
difference between two frames (0.04s with 25 frames per second). The pixel has moved to a new
location x(t + At) = x(t) + u and y(t + At) = y(t) + v. We us a Taylor expansion in the following
equation to linearize the equation and to solve for u and v:

[(x(t),y(t),t) = I(x(t + At),y(t + At), t + At) = I(x(t) +u,y(t) + v, t + At)

ol ol ol
I At) = — _ _
(x(t) +u,y() +v,t+At) = [(x(t), y(t),t) + Gxu + E)yv + atAt
" al N al N al "
“oaxt oyt T ot

— The partial derivatives are the brightness gradients in x,y and t dimension. We can compute %

and g—; with a Sobel operator to obtain I, (x,y) and I,,(x, y) at time t. The term %At is the
difference I:(x, y) of brightness between subsequent frames at time t and t + At.
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— We obtain the final equation for our motion estimate:
L(x,y) - u+L,(xy) v=—I(xYy) attime t

Given that we can observe the partial derivatives Iy, I, and I, we have to solve the above linear
equation for u and v to obtain the motion vector for the pixel at (x, y) and time t. As we see, we
have only one equation but two unknowns. Hence, there are many possible solutions. If (u, v) is
a solution, then (u + u’,v + v') is a solution if (u’,v") is perpendicular to (Ix(x, y), L (x, y)). In

other words, we can not measure the motion along an edge but only perpendicular to edges. This
Is known as the aperture problem:

Actual motion (Rectangle is moving right and down)

Window of
observer

Observed motion (only perpendicular component to edge detected)

— — > Other Examples:
https://en.wikipedia.org/wiki/Motion_perception

http://farm5.static.flickr.com/4044/4172972319
7c070bdcbb_o.qif
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— Lucas-Kanade solved the aperture problem by considering a 5x5 window around the current pixel
assuming that motion in such a small window is approximately the same. This then leads to 25

equations for the two unknowns:

L(x+ay+b)y-u+l,(x+ay+b)-v=-I(x+ay+Db)

[L(x—2,y—2) L(x—2,y—2)]

L (9;, ) L, (;;, )

L(x+2,y+2) L(x+2y+2)

A

(—1:(x — 2,y = 2)]

_It(x' y)

—L;(x+2,y+2)]

b

forall: =2 <a,b<2

— Since there are more equations than unknowns, there is no exact answer. Instead, we minimize

IAd — b||? by solving its gradient for zero which leads to

(ATA) d= ATb

Z LI, z I, 1L,

Z LI, 2 I, —Z LI,

The summations are over all pixels in the 5x5 window around the current point. To solve the
equation, AT A should be invertible, should not have too small eigenvalues, and the ratio between
the two eigenvalues should not be too large. Hence, this works best for corner points (or key
points or Harris points) but not for edge points and for points in the flat.

Multimedia Retrieval — 2018

Page 4-123




— The basic method works only well for small displacements. For large displacements, we can use
a Gaussian pyramid of the image and estimate flows at each scale:

compute motion

!

compute motion

compute motion

compute motion

A
v

A
v

A
v

A

Image at time ¢t + At

Image at timé t
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— Optical Flow: Examples (various sources)

Combination of
differencing method
and optical flow
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* Frameworks and Libraries

— OpenCV (https://opencv.org) is an advanced computer vision library original written for C/C++.
But there are also bindings for Python, Java, and other languages.

— scikit-image (http://scikit-image.org) is an advanced computer vision library written in Python. It
provides all basic image manipulation operations as well as advanced feature extraction
algorithms (however, not SIFT but alternative approaches to SIFT)

— Librosa (http://librosa.github.io/librosa/) is a Python library for advances audi and music analysis.
It provides base algorithms to create music retrieval systems.

— scikit-video (http://www.scikit-video.orq) is a Python library for video processing
* Interesting courses at other universities

— Multimedia Content Analysis,National Chung Cheng University, Taiwan,
https://www.cs.ccu.edu.tw/~wtchu/courses/2014f MCA/lectures.html#00

— Computer Vision, University of Washington, USA,
https://courses.cs.washington.edu/courses/cse455/

— Music Information Retrieval, Vienna University of Technology, Austria,
http://www.ifs.tuwien.ac.at/mir/

— Music Information Retrieval, New York University, USA,
http://www.nyu.edu/classes/bello/MIR.html

— Music Signal Processing, Columbia University, USA
https://www.ee.columbia.edu/~dpwe/e4896/index.html

— Computer Vision, Penn State University, USA, http://www.cse.psu.edu/~rtc12/CSE486/
— Computer Vision, University of lllinois, USA, https://courses.engr.illinois.edu/cs543/sp2012/

— Computational Photography, University of lllinois, USA,
https://courses.engr.illinois.edu/cs498dh/fa2011/
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