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4.1 Introduction

descriptors for documents same as  user queries
other media types no longer that simple

Semantic Gap

— The semantic gap is the difference between information extractable
and interpretation by a person
semantic gap depends on person

What are the characteristic patterns
that let a machine infer that this is the
Spalentor?
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« The same gap applies to audio files

 Humans interpret signal information in several steps:
1. Perception

* The eye concept of color is
interpretation of brain

* The ear wave lengths
no longer physical quantities
2. Generic Semantic Inference perception and semantic
information
3. Specific Semantic Inference  with knowledge experience cultural conditioning beliefs
depends on individual experience and knowledge

 To close the semantic gap machine must address each of the three levels
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A retrieval system must mimic the human’s
interpretation

— The raw media

g ol Raw Media
e

y
-
|

mapped to low-level descriptors

-

— Obiject recognition

Descriptors

-

— Object labeling

Objects
(segmentation)

— Semantics from additional context e
» "5 Object Labels
qfﬁ&j (segmentation)
« Again, the same applies to audio and video data. ;

Wolf on Road with Snow on

Roadside in Yosemite .
National Park, California on Semantics
Jan 24, 2004
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« We istinguish two feature types
— Low level features raw signal information describe perception

Query by Example, Query by Sketch, or Query by

Humming
semantic gap closed with regard to perception
— High level features generic, specific, and abstract semantic meaning
object, spatial, temporal event/activity

related concepts/objects, abstract concepts, and context

Generic Object building, water, sky

Instance

Generic Object Class mausoleum, tomb, dome,
minaret

Specific Named Object UNESCO World Heritage
Class Site (since 1983)

Specific Named Object  Taj Mahal
Instance
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— Taj Mahal (contd)

Generic Location outside

Specific Location
Hierarchy

India, Uttar Pradesh, Agra

Generic Event/Activity tourism, attraction

Specific Event Instance  International World Heritage
Expert Meeting on Visual
Integrity in 2006

Generic Time summer, daytime
Specific Time 2006 (photo taken)
Topic Indian Architecture

Related Concepts / Shah Jehan, Mumtaz Mahal,

Objects Islam

Abstract Concept love, death, devotion,
remembrance

Context built in memory of his

favorite wife Mumtaz
Mahal, by Shah Jehan;
completed 1648
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to close the semantic gap need to extract descriptors at different levels

Context

Abstract Concept

Related Concepts / Objects

. high-level
Event / Activity Facet 5 et

=

Temporal Facet g I e

. 2] e

Spatial Facet < I -"a—;)

| o

Object Facet @

Meta Data Perceptual Features

low-level
features

Raw Signal Information
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4.2 Similarity Search

« Content-based Retrieval Systems only low-level features
— Extract Meta-Data classic text or web retrieval
semantic
gap closed by associating key words
— Query by Example / Query by Sketch (Humming)
semantic

gap closed by queries in same perceptual space

by example

—_—

by sketch
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similarity search problem
works on descriptors from raw media

text documents Images

feature
extraction

doclID =docl0 ¢
dog —» word 10, word 25 .ﬁ

cat > word 13 “

feature
extraction

v

color
home — word 2, word 27 histogram
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video sequences

audio files

phonemes: imnOrd@namfo:rmita:gs...

feature _ :
T text: Im Norden am Vormittag...
acoustical features: D:U]:D
video files

16 kH=

12 kH=

8 KkH=

4 kH=

subtitle: [President] | never had ....
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* The definition of similarity depends on

— Segmentation: divide media file

global descriptor or
descriptor

— Invariances:
remain the same

— Normalization:
before combining

dominate ones with small ranges

Dimensionality reduction

feature design

local/temporal

robust descriptors
given transformations

normalize value ranges

dimension with large range

eliminates correlation

Multimedia Retrieval — 2018 4.2 Similarity Search

Page 4-11




common method to measure similarity is distance function

weights chosen such that ranges of all dimensions become comparable

1 1
w; = , w; = —  with g; being the standard deviation of values in dimension j
mlax pi,j — mill’l pi,j O']
distance between query vector q media vector p;

L,-norm or Manhattan distance: | 6(q,p;) = zwj ‘|a; —vijl
j

L,-norm or Euclidean Distance: | §(q,p,) = \/z w? - (q; — pij)
j

Ly-norm or k-norm: 5(q,p)) = "jz Wk (2= pi,)°
7

Ls-norm or Maximum norm: 5(q,p;) = max(w; - |q; — pi|)
]
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correlated dimensions can use quadratic function with a matrix A € R¢
weights factored into correlation matrix

* Quadratic function: 5(q,p,) = (q —p)TA(q — D))

blue area depicts neighborhood
around centers

A

Euclidean

\

dimension 1

/ Maximum norm

~

uadratic function
Manhattan = Q

»

dimension 2
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— Example for weights
* In dimension d,, all values are between 0 and 1.
 In dimension d,, all values are between 100 and 200.
unweighted dimension d,

« Searching for most similar translates to search for
nearest neighbor

— large distances correspond to low similarity values
— small distances correspond to high similarity values

Nearest Neighbor Problem:

« Given a vector g and a set P of vectors p; and a
distance function §(q, p;)

* Find p; € P such that:
Vi,pj €EP:6(q,p;) <5(q,pj)

dominate dimension d;

pPi
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« If we want to obtain similarity values
o(q,p;) denote similarity function

e g(q,p;) isin range [0,1]

e o(q,p;) =0 total dissimilarity
e g(q,p;) =1 maximum similarity
— The correspondence function translates between distances and similarity
a(q,p:;) = h(6(q,p) 6(q,p)) = h*(a(q,py)
must fulfil constraints
e h(0) =1
e h(0) =0
e h'(x) <0 (h must be a decreasing function)
— The best method use distance distribution ps
hG) =1 [ psGdx EA -
0 0.04
0.2 / Correspondence o
function h 001
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4.3 Metadata Extraction

* There is a simple way to close semantic gap annotate

meta data is low-level feature
terms denote

» However, it costs about $50 to $100 to annotate an image

« We can divide meta data roughly into two groups

with keywords

higher level features

Technical Metadata Subject Metadata

Administrative Data

Media Properties

Creation Information

Relations

Title, Captions

Descriptions
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many standards for metadata

semantic web initiatives

name=%“description” content=“text”>

Coame —— Jocontent

description
keywords
abstract
author
contact
copyright
dc.language

dc.source

dc.creator

short description of web page
keywords associate with page
short narrative of content
author of this page

contact person for this page
name of owner

language of page (e.g., using RFC1766 and
ISO 639)

reference to page from which this page is
derived

creator information for page

...12 more Dublin core tags and even more DCMI tags possible

RDF, Dublin Core, Dublin Core Metadata

<meta
further meta data
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* In the context of multimedia content

embedding

further sources for meta data

— Link information (example: img-tag and a-tag)

o 3B alhttp:ﬂm-\pw.NiceF'ic.cum

picture of white shark

A 4

links and

o QA [ T e Sy e

* The alt-attribute in the img-tag

 Hypertexts annotate

— A good source

source for

referenced image

Oceanic Research Gronp Stock Plotoss aphy

caption

keywords at different semantic levels

surrounding area

; Art & Collections
Qwer 1500 pictures and descriptions of the
maost famous museum in the world : discover
2= the Louvre on line with its 350 rooms. Y ou will
also find the history, the access, admission

charges, practical information, etc.

Carrousel's Stores
the most luxurious mall in Europe next to the £

Louvre Museum. B0 shops and 12 restaurants |4
are presented with mare than 300 pictures and g
menus for restaurants including practical
infarrnation.

Paris Virtual Guide

All around the Louvre, Paris - City of Lights

B Discover the most beautiful city of the world
with its shopping streets, monuments, parks,
and activities. Thousands of pictures, haute
couture, parisian activities, this is the world's
largest guide about Paris

image 1

image 2

image 3
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» Extracting information (basics)
— The meta information

— The window around embedding

<HTML><HEAD>
<TITLE>Linux 1is cool.</TITLE>

</HEAD>

<BODY BACKGROUND="./images/paperll.jpg">

<CENTER><HI1>LINUX</H1>

o : ‘ ) | annotations

<P>
<IMG SRC="./images/tusx.qgif" source Text |
ALT="picture the penguin from linux"> src-attribute  tux.gif

<EM>This penguin, Tux, is the

official mascot of Linux.</EM></CENTER> altattribute’) piciire’tne penguiniirom fintix

title Linux is cool.
<H2>MY&nbsp; FEELINGS&nbsp; ABOUT&nbsp; LINUX</H2> - LINUX
I'll tell you, Linux has to be, i . . -
<p> em This penguin, Tux, is the official
<H2>MY INVOLVEMENT&nbsp;WITH&nbsp; LINUX</H2> mascot of Linux.
... text LINUX This penguin, Tux, is the
</BODY>/HTML> official mascot of Linux. MY

FEELINGS ABOUT LINUX
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« An alternative approach visual closeness

— Instead
Latest News p rOXi m ity i n

visual layout of the page

Indian government sidelines Taj Mahal for its
Islamic past

"All winners’ at inaugural
Miss Wheelchair World

Pad

Chastened Deutsche Bank s -

plots more moderate course I \- —_ I m p I e m e ntati 0 n

P - Render  page and define core blocks

first-half performance i
’Wter than last year v 14
@ 38 views

}Eioh(f:’:e(\i;a ‘\i 1joume_\' in !
T « Compute distances between blocks
i et and embedded object

ror plot

Published — §

Formula One: Hamilton
closes in on fourth world
itle with Japan win

» Add penalties if
delimiter between blocks

\ Opinion

Raghida Dergham —

NEW DELHI: The government of the
Indian state of Uttar Pradesh (UP) has
come under fire for omitting the Taj
Mahal from its annual tourism brochure,
released on Oct. 2.

¥j Mahal a tomb, not a Trump implements
Hindu temple, Chapter 2 of Obama's
Archaeological Survey of foreign policy
India tells court

: — Yossi Mekelberg —
The stunning white marble mausoleum, i

commissioned by Mughal Emperor Shah
Jahan for his wife Mumtaz Mahal, is

ket — —— + Define neighborhood and add  blocks
wonders of the world and attracts . -i;ree:_:‘il\)llz;!ml'notaﬂnnlu — John Lloyd — Intersectlng With nelghborhOOd

Taj Mahal minaret’s
] i pinnacle falls off

One man’s self-
determination is another
man’s secession

millions of visitors annually. But the The new dilemma for o
Bharatiya Janata Party (BJP) — the Google and Facebook v —
country's largest political party, which leads the UP government under Hindu nationalist Aq‘
Chief Minister Yogi Adityanath — has stated that “the Taj Mahal and other minarets do not s i
reflect Indian culture.”

How to end Africa’s
The 32-page booklet recently released by the UP Ministry of Tourism neglects to mention poverty and hunger @
the UNESCO World Heritage Site at all, instead giving prominence to sites of significance to - L

SR Visual boundary between « Summarize descriptions with bag-of-words

keywords as we discussed e e EElmnS
earlier in this chapter
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A more targeted approachis “scrape” information on media objects if highly
standardized and categorized
music and videos

MusicBrainz.org
— Example
LyricWiki

— Both IMDb and TMDb

Paparazzi A b We are the crowd
Release group by Lady Gaga a‘;,adl} gﬂ a ', P
- v . 2 A €S We're c-comin' out
[T Aiases Tags  Details | Edit HREMIX Got my flash on, it's true
Wikipedia » \

Need that picture of you
"Paparazzi" is a song by American singer-songwriter Lady Gaga from her debut studio album,
The Fame (2008). It was released as the fifth and final single by Interscope Records. Gaga wrote
and produced the song with Rob Fusari. The song portrays Gaga's struggles in her quest for fame,
as well as balancing success and love. Musically, it is an uptempo techno-pop and dance-pop song
whose lyrics describe a stalker following somebody to grab attention and fame.

It's so magical
We'd be so fantastico

Show more.,, Leather and jeans
Continue reading at Wikipedia... Wikipedia content provided under the terms of the Creative Commons BY-SA Rl\l‘.‘nw ytong formation
license ; ‘ : :""‘- o Garage glamorous
ype: Single
Single _— Not sure what it means
Release Format Tracks Date Country ‘Label Cauiog! Barcode : ) I a But this photo of us, it don't have a price
Official Tags yrICS s «
Olaitar remix Ready for those flashing lights
Paparazzi M'géa 2 2009-07-02 SEGB
edia External links 'Cause you know that baby, |
Paparazzi @l 5 2009-07-05 SiGB € Discogs
Paparazzi  CD 2 2009-07-06 EEGB 602527121178 Wil Q1025916
‘ :
;iparezzu Digital 30050500 MU Editing I'm your biggest fan
g Media =R = Log in to edit . .
Remixes I'll follow you until you love me
Paparazzi: Last updated on 2014-01-07 09:00 UTC .
The: e, (DIERL o 2009-09-20 Myg ~ Interscope 0602527224169 Papa-paparazzi (ya-ha)
Part Deux Baby, there's no other superstar
Paparazzi: o
The cD 7 2009-10-13 =iys 602527217901 You know that I'll be
Remixes
Promotion Your papa-paparazzi (ya-ha)
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 MPEG-7 ISO standard for multimedia content

— MPEG-7 defines language

— The standard does not include
 the concrete implementations
« filter and search algorithms
— MPEG-7 bridges content provider and search engines

- -
- ~o

Feature e MPEG-7 Search
Extraction \.. Description Engine

~ -
-~ -

Standardization
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* Lets first consider how MPEG 7 stores technical meta data.

<MediaInformation>

<MedialIdentification> |

<Identifier IdOrganization='MPEG’ IdName='MPEG/ContentSet’> - !
mpeg7 content:newsl Administrative Data
</Identifier>

</Medialdentification> |

<MediaProfile>

<MediaFormat>
<FileFormat>MPEG-1</FileFormat>
<System>PAL</System>
<Medium>CD</Medium>
<Color>color</Color>
<Sound>mono</Sound>
<FileSize>666.478.608</FileSize>
<Length>00:38</Length>
<AudioChannels>1</AudioChannels>
<AudioCoding>AC-3</AudioCoding>

</MediaFormat>
Media Pr rti

<FrameWidth>352</FrameWidth>

<FrameHeight>288</FrameHeight>

<FrameRate>25</FrameRate>

<CompressionFormat>MPEG-1</CompressionFormat>
</MediaCoding>

<MedialInstance>
<Locator>
<MediaURL>file://D:/Mpeg7 17/newsl.mpg</MediaURL>
</Locator>
</Medialnstance>

</MediaProfile>

</MediaInformation>
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« Continuation of the technical meta data part:

<Creation>

<Creator>
<role>presenter</role>
<Individual>
<GivenName>Ana</GivenName>
<FamilyName>Blanco</FamilyName>
</Individual>
</Creator>

<CreationDate>
1998-06-16
</CreationDate>

<CreationLocation>
<PlaceName xml:lang="es">Piruli</PlaceName>
<Country>es</Country>
<AdministrativeUnit>Madrid</AdministrativeUnit>
</CreationLocation>

<Publisher xsi:type="Organization">

Creation Information

<Name>TVE</Name>
<ContactPerson> .... </ContactPerson>
</Publisher>
</Creation>
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* Now let us consider the subject meta data for the example:

<Title type="original">

<TitleText xml:lang="es">
Telediario (segunda edicidn)
</TitleText> . .
B TS P——— Title, Captions
<MediaURL>file://images/teledario ori.jpg</MediaURL>
</TitleImage>
</Title>

<Title type="alternative">

<TitleText xml:lang="en">
Afternoon news

</TitleText> : .

Titl tion

<TitleImage> e, Captions
<MediaURL>file://images/teledario en.jpg</MediaURL>

</TitleImage>

</Title>

<StructuredAnnotation>

<Who>Fernado Morientes</Who>
<WhatAction CSName='Sports’
CSLocation=’www.eurosport.xxx/cs/soccer/’> scoring goal
</WhatAction>
<When>Spain Sweden soccer match</When>
<TextAnnotation xml:lang='"en-us’>
This was the first goal of this match.
</TextAnnotation>

Relations

</StructuredAnnotation>
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* And the final part of subject meta data:

<Examples SemanticLabel="baldheaded man walking" Length="3"
Confidence="1.0" DescriptorName="ColorHistogram">

<Descriptor>
4617 11986 938 2628 458 1463 5178 2258 444 134 69 456 9300 2810
121 21 14 18 48 107 277 53 47 1926 8281 793 38 11 0 5 201 28 0
112 23 252 122 6 3 433 1517 46 1 1 0 0 0 0 0 0O 00 2 55 13560
3326 678 221 1610 5602 916 32 8 1 21 58 11 1 0 0 2 61 331 179
14 7 2388 6213 51 0 0 0 0 0 0O O O O O 2 337 243 0 0 220 194 0 O
0000O0O0O0OOOO 383 3172 1072 51 20 91 128 0 0 0 0 O 2 4 O
0 0 0 89 757 694 0 0 217 39 0 0 0O 0O OO 0OO0CO0OO0OO0OO0 912 210 0 O
0 000O0O0O0OOOO®O®O®OO0 55

</Descriptor>

Descriptions

<Descriptor>
1764 18807 725 816 553 1784 7133 1325 81 3 8 110 5621 2323 34
11 0 3 12 82 156 26 11 700 3060 63 7 0 0 01 0 01 0 0O 16 95 40
4 016 2001 0000O0O0O0OO0OO0OO0OO0 17 13534 3211 523 126 1123
5181 347 37 00 0 58 210 2 17 261 168 3 0 997 2635 3 0 0 0 O Descriptions
0000002292 3900171 000000O0O0O0O0O00O0 157 861
430 3 0 26 14 00 00OOOO0OO0OOO0OO021 608 2150 081 10000
0O0000O0O0ODOOC373370000000000O0O0O0OO0O0O0D59

</Descriptor>

<Descriptor>
9742 15760 1455 2216 475 1356 4771 2328 714 329 193 420 6954
6087 298 15 15 22 35 119 74 115 24 1253 7629 352 14 5 1 3 85 99
000O0O011 0 6 0 335 717 90 00000O0O0O0O0O0O0 12332 3066
991 157 1048 4836 469 14 1 0 0 160 80 4 0 O O 13 217 101 53 0
3450 6079 12 0 0 0O OO OOOOOOO®GOOO338 640000000

Descriptions

0 00O0O0O0 2439 718 15 0 81 41 00 00O0OO0OOO0ODO0OO0ODO0O0OG6GO0DO0
0 447 43 0 0 00O 0OOOOO0OODODO0OO0DODOD0ODO0DO0DODODOOOOODOO
0 00O
</Descriptor>
</Examples>
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* Discussion: challenges around meta data
seven insurmountable obstacles

People lie

~ People are lazy

People are stupid

— Mission impossibleknow thyself
—gc—heTas aren’t neutral

—\Metricsinfluence results
— (There’s more than one way to describe something>
/\

* Do we ignore meta data, then? no but need to be careful

— Observational meta data

— Need to take trustworthiness into account

Cory Doctorow
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4.4 Features for Images

low-level feature extraction

Step 1: Step 2: Step 3: Step 4:
Image Normalization Image Segmentation Feature Extraction Feature Aggregation

— Image Normalization

— Image Segmentation
global features
local features

— Feature Extraction describes perceptual aspects

different invariances

— Feature Aggregation summarizes perceptual features

feature aggregation together with the feature extraction
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* Feature Design:

— Translation invariant
— Rotation invariant
— Scale invariant

absence of normal size

— Lightning invariant

— Noise robustness
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4.4.1 Visual Perception and Processing

Surface Normal (N)

Perception of light
— Illumination I(x,y, z)

— Reﬂ eCtan ce T(x, y, Z) Matetial Reflectance (RMGMBT)‘/

-

Chlorophyll has its reception peaks in
the blue and red spectrum of light.
Hence, we observe only the reflected
green spectrum of light.

llluminance (lux) Surfaces illuminated by 10+ - LI T L -L

Natural surfaces
0.0001 Moonless, overcast night sky al ]
80| : o
0.05-0.36 Full moon on a clear night .t LRRisandy;sew,
. . . X 0 pinetrees ]‘| 5
20-50 Public areas with dark surroundings ~ eolC bi
[0}
50 Family living room lights § 50 |- |
100 Very dark overcast day § or
320-500 Office lighting @ %0f j
20 !
400 Sunrise or sunset on a clear day. ol P
1 -
1000 Overcast day; typical TV studio lighting 0 ; /q
{VORR] (SN VIS THOY VO [yl RPN NN VAN [ )0 | [N [RE) |01 |
10,000-25,000 Full daylight (not direct sun) 0.5 1.0 1.5 2.0
32,000-100,000 Direct sunlight Wavelength [um]
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« The eye
cornea, pupil, and lens

optical system

retina consists of three cone types and rods

* L-cone (long wavelength)
* M-cone (medium wavelength)
« S-cone (short wavelength)
rods perform better at dimmer light

Retinal Pigment Epithelium

Cornea Y o -
Macula o
Pupil \ E> ‘: R S — H
8 g ——x
I o == |
Lens i /\‘P \’...:

' Optic Nerve

100 -

50

Normalized absorbance

photoreceptors

color red
color green
color blue

420 nm 498 nm 534 nm 564 nm

Red
cones

Green

Blue cones cones

Medium \ Long

.
.
T | F 3 7T 3 T T T LTI LT CETTILELT]

400 500 600 700

Violet Cyan Green _ Red

Wavelength (nm)

Blue
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1% S-cones (blue) /39% M-cones (green)

60% L-cones (red)

ratios can
greatly vary Cones focused around
fovea rods fill periphery
— Visual Acuity clarity of vision
20/20 vision
best
observed vision for humans
2,0 6/3 20/10 0.5’ Snellen E -
Chart i .,
1,33 6/4,5  20/15 0.75'
1,0 6/6 20/20 1' P P 2 20100 Rods
0,8 6/7,5 20/25 125" 1rgq3::dsiols T o Z 3 2070 Ell Blind spot
0,67 6/9 20/30 1.5 drive a car LPED 4 2050
0,5 6/12  20/40 2' pper> o Cones
[ ¥ T —
0,4 6/15 20/50 25 e IR I P
0,2 6/30 20/100 5' — & 2= Angle from fovea
0,1 6/60  20/200 10’ IR .
0,05 6/120  20/400 2 "
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cat has

comparison with anim
visual acuity éf 20/1025 less cone types (blue at 450nm and yellow at 550nm)
cats have better night visi -8 times)
Dogs are dichromatic
20/200 rodents 20/800

(bluelyellow) with  visual acuity of 20/75 Elephants

bees 20/1200 flies 20/10800
Human
Cat
eagles and bird of prey 20/4 vision
some birds oy O s
are tetrachromatic
goldfish zebrafish four different i
cone types g,
: e
— Conclusion: color visionis sensation not physics

Ultraviolet

Page 4-33
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processing starts within retina
rods and cones release glutamate when its dark and stop
releasing glutamate when its light Bipolar Cells connect

On-Bipolar cells, fire when it is bright
Off-Bipolar cells, do not fire when it is bright

receptive fields
perform edge detection

— On-Center ganglion fires, if center is bright and surrounding is dark
— Off-Center ganglion fires, if center is dark and surrounding is bright

additional cell types act as inhibitors to accentuate
contrast lead to falsely under-/oversaturating dark/light
negative feedback to neighbor cells strengthen

contrast between strong and weak signals
To Optic Nerve Rod (monochromatic vision)

1 i L] T [T OFF R T T T T M I

' Receptive OFF If bot: are;ls ofa Ic:;ll's receptivfe fieldhare i::uminated
. —i—i—i—i—liiiHH-iHiiiH-Hii—Hi’H together, there is little reaction from the cell.
Fleld LIGHT ON ’

The most effective way of maximizing the fi(ing qf an \
on-center or off-center cell is to completely illuminate Different Ganglion Cells at

either the “on area” or the “off area” of its receptive . T
field. work for their receptive field

Gangllon Cell

Bipolar Cell Cone (color vision)

Bipolar cells can connect to
many Ganglion Cells
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Lateral Geniculate Nucleus (LGN)
receptive field functions with
massive feedback from the cortex

information of both eyes is combined
detection of movements

perceive color and form

Primary Visual Cortex (V1)
edges, orientation

detection of
Neurons fire when
defined patterns occur

Ventral Stream (ventral=underside, belly)
form recognition and object representation
connected with long-term memory

Dorsal Stream (dorsal=topside, back)
motion and object locations coordinates eyes, heads,
and arms

« Cortical magnification
neurons act on the information in

majority of
center of vision

Visual field of left eye Visual field of nght eye

Nevar forget that
the mage on the
retng s inyeried

~\ Nasal
Temporaln 4 halves ‘ Temporal haif
of left retina ‘ of right retina
» rehnas 1;
Optic nerve — o
T Opuc chiasma
Optic tract ,)‘":;‘_;. e
7/«.
i
§f’
Geniculo- |\ Lateral

calcarine tract \\\

- ';‘;:'f‘ ﬂ\) \/‘}

Primary vrsual
Basas on rarde W Frotecher M

area (= stnate Coer Ades ane Tonthoet of Muwwan

Aoy % 0 Sa0get Thieme
cortex) Vi Jp 288 2000
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visual perception optimized for natural image recognition Atrtificial illusions
demonstrate how brain processes perceived environment

Shake your head

Multimedia Retrieval — 2018 4.4.1 Visual Perception and Processing Page 4-36




4.4.2 Image Normalization (Step 1)

image is described as discrete function mapping 2-dimensional
coordinate to  intensity value (gray images) or color value.

grayscale images: N2 - [0,1]
r(x,y)
color images: N2 — [0,1]3 = g(x,y)
’ ol b(x,y)

a(x,y)
color channels (red) r(x,v):N? - [0,1]
color channels (green)  g(x,v):N? - [0,1]
color channels (blue) b(x,vy):N? - [0,1]
a-channel (transparency) a(x,y): N2 - [0,1]
with 1<x<N,1<y<M
x denotes the row in the image (vertical axis), y denotes the column in the

image (horizontal axis).

— Quantization is often applied to avoid fixed point numbers in the image representation

True Color (32-bit): f(x,y):N%2 = [0,255] approximating f(x,y) = g’;;') @
A i,r,9,b,a
Deep Color (64-bit): £(x,y):N? - [65535] approximating f(x,y) = &2 -

65535
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need to perform image processing steps to
normalize data sets
ensure robustness against noise, rotation, color saturation, or brightness

— Rotation — not have enough
information to normalize direction rotate Image in defined steps of degrees

o

S distribution of brightness
values can be very narrow
Histogram equalization

forced to a uniform distribution. S

Similar
histogram shifts (lighter, darker), histogram
spreading, = gamma correction.

— Grayscale transformation — color
image transformed to grayscale image.

— Histogram normalization —

HH“HIHM»,
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— Scaling - fi a defined range of acceptable sizes.

shape or
texture feature is sensitive to scaling [d)
bilinear or bicubic interpolation to avoid tefa ts

down sampling to reduce efforts.
mapped back to the original

image
— Affine Transformation — generalization of translation, rotation and scaling
x' ;1 Q12 Q13][x
y'| =91 az2 az3||y
1 0 0 1 111
simplify concatenation of operators to obtain
a single matrix
some areas in new image space may have
unknown values
— Noise Reduction / Sensor Adjustments — add noise

Gaussian filters
color corrections, distortions, moiré patterns or compression artifacts.
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— Convolution is mathematical operation that combines two functions to produce a new function.

(f = g)lx,y]

quadratic (and often symmetric) function with range [—K, K] X [—K, K] with small values K =
1,2,3,4, ...

(f * @lx ] = nll=ml - g[n][m] /{ — 3

=G D+R-D+@-D+F-4+(-5+-6)+(c-7)+(b-8)+(a-9)

—_ r————

Kernel is flipped horizontally and vertically and dot-wise multiplied
If Kernel is symmetric, we can apply dot-wise
multiplication Kernel is moved with its center
across image
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» Kernel Examples:

image Pesult

ldentity

Edge Detection

Sharpen

Box Blur

§ 1 1
1 1 1
1 1 1l

Here, we need to divide by the
sum of the Kernel values. In all
other examples, that sum is 1.
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4.4.3 Image Segmentation (Step 2)

location information
Segmentation define areas of interest

Segmentation

(any method) 1
Feature ,/————E /
Extraction
32) Me”;
©)
a) Feature Sets o Nq\
Metho
A \
/ SN Y
Feature Set Feature Statistical
Concatenation Summary
/V )

b) Feature Concatenation

c) Statistical Summary

If the segmentation only yields one segment (global features), all methods become identical.

Multimedia Retrieval — 2018 4.4.3 Image Segmentation (Step 2) Page 4-42

























































segment images
— Global

— Static Segmentation

coarse location information (

sliding window

— Object Segmentation
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« Example: 9-dimensional color feature with 5 static segments
— Segmentation creates 5 areas for each of which a 9-dimensional feature is extracted

> QJ ]

concatenate

e

single feature is often not sufficient need to

construct several (very similar) features to encode different choices for variance and
invariance
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4.4.4 Feature Extraction — Color Information (Step 3 & 4)

» Color perceptionis  approximation of energy along the
wavelength of electromagnetic signals.

U | Violet | Blue | Green | | Orange | Red  DarkRed | IR Given the emitted or reflected spectrum of

! ! ! ! ! ! ! light of an observed point f (1), we perceive 3
Spectrum of (4) values for each cone type (and rod). To
the light of an compute the intensity, we apply the sensitivity
observed .

point filter of the cones (e.g., ¢,;.q(4)) to the
observed spectrum (multiplication) and

integrate the result over all wavelengths. For
instance, for red this is:

[ee)

100 -

30 |

&0

40 t

Relative Response

20

red = [ @) eadth

350 400 450 500 550 £00 650 700 750 0

Wavelength {nm)

approximation allows us to artificially re-create perception with using only

3 additive components
RGB family
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representation for color that matches human
perception

100) —— s (255

100 unit change 100 unit change 100 unit change

00)

15 00,300) 400 @30,100) __4_9_(_/_,9 (255
| |

» There are five major color systems (we only look at the first three models subsequently)
— CIE

— RGB
— HSL/HSV

- YUV

- CMYK
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CIE XYZ describe human perceived colors

Y describes luminance while X and Z describe chromaticity
regardless of brightness

standard
(colorimetric) observer +0 — *{)
average human’s 15 0
chromatic response within a 2 degree arc inside the
fovea 1.0
color matching functions x(1), y(1) and o

z(A) describe spectral weighting

400 500 B0 700
Afnm
780 780 780
X = J (D) - %(1)dA Y = f £ - ¥()dA 7 = j £ - Z(D)dA
380 380 380
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— The three cone types require 3 components to describe full color gamuit.

Brightness — visual perception

Chromaticity color in absence of luminance

Hue degree a color matches the perception of
red, green, blue, and yellow.

0.9,

Saturation / Chroma / Colorfulness |
distributed across the visual spectrum

P00

| 7
|
00 ‘-——-——'g- 2
00 ol 0.2 0.3 04 0.5 0.6 0.7 08
X
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— The CIE xyY space

isolate chromaticity from luminance.

X Y Z
*TX+r+z YT X+v+z L= Xtv+z TrTY
CIE xyY is widely
used to specify color.
chromaticity diagram here is in the sSRGB space  hence does not show
the full gamut
Y Y o s R s i
X=—x —(1—x—-y) 09 representation is in SRGB and the
y vy colors outside the SRGB triangle are
o not displayed properly.
outer curve 07
spectral locus 06 ]
5001
not a description of the color of an object perceived _\-0'5

color

vvvvvvvvvvvv
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— CIE xyY not perceptually

uniform

CIE L*a*b* color space is a mathematical approach to

define a perceptually uniform color space

« The L component denotes lightness.

* The a* component represents the red/green opponents

« The b* component represents the blue/yellow opponents

The transformation from X, Y, Z components under illuminant D65 and 0 <Y < 255 is:

) Y 613
L=116'fY__16 Mt ift >—
n _ 29
f() =
X Y 841 -t N 4 th .
— 'w
a*=500-f(—)-f(— Tog "9 Otherwise
Xn Y
X Z X, = 242.364495 Z, = 277.67358
b*=200-|f X_ —f Z_
n n Y, = 255.0
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— The CIE LCH differs from CIE L*a*b* by the use of cylindrical coordinates

— J* _ — * Pk —— :i arctan(a*, b*) is the arc tangent of b*/a*
L - L C - \/(a*)z + (b*)Z H - arCtan(a ) b ) taking the quadrant of (a*, b*) into account

* This is not the same as the better known HSL/HSV color models

» CIE LCH is still perceptually uniform. However, H is a discontinuous function as the angle
abruptly changes from 2m to 0.

— The CIE has defined further models like the CIE L*u*v*, CIE RGB, and the CIE UVW which we
omit here.
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The RGB color space is standard model in computing
as an additive color model for monitors, printers and the Internet.

— SRGB uses the ITU-R BT.709 (or Rec. 709) primaries to define the color gamut

The corners of the
triangle denote the
primary colors

Chromaticity m White Point (D65) 08 M

0.6400 0.3000 0.1500 0.3127 o1
y 0.3300 0.6000 0.0600 0.3290 , 6,_’
Y 02126 0.7152 0.0722 1.0000 100 8
0.5
— For SRGB colors are bound to the Y \

triangle depicted in the right-hand figure

— The sRGB scales are non-linear (approximately a gamma of 01
2.2). %80 01 02 03 o 0.8
Let c,rcp denote x
SRGB space, and ;.4 denote linear RGB.
- CsRGB if < 0.04045
12.92 - Clinear if Clineqr < 0.0031308 12.92 W Csrep = V.
CsrRGB — 1 Cii = 2.4
S 1.055-c2* —0.05 otherwise e (CSRGB +5(;'055> otherwise
1.0
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— The conversion from CIE XYZ to linear RGB

Tlinear 3.240479 —1.537150 —0.498535][X X 0.412453 0.357580 0.180423]["tinear
Jlinear | = [—0.969256  1.875992  0.041556 ||V Y| =10.212671 0.715160 0.072169||Yiinear
biinear 0.055648 —0.204043 1.057311 11z Z 0.019334 0.119193 0.950227] [biinear
linear RGB and XYZ
RGB space is not covering the entire XYZ space
— RGB values guantized to integer ranges.

true color (32-bit) 09

520

HDTV (rec.709)
UHDTV (rec.2020) —

yyyyyyyy

deep color (64-bit)

0.8 540

2bits reference colors (color palette)

0.7

500

simple to construct an RGB space by g
defining the primaries and the white point 04

386
0.0 ; X 0.3

X
UHDTYV vs HDTV Color Gamuts

04 05 06 07 08

Multimedia Retrieval — 2018 4.4.4 Feature Extraction — Color Information (Step 3 & 4) Page 4-53




Artists
“shade”

uses lightness (L)
shading (L — 0) without change of saturation. HSV uses value (V)

atlV = 1.

HI

start with bright color and add a) white to “tint” b) black to

c) white and black (gray) to tone

HSL and HSV color models
hue (H) and chroma (S) to define chromaticity HSL

fully saturated colors at L = 1/2. tinting (L —» 1) and
fully saturated colors

shading (V' — 0) without changing saturation, but tinting adjusts saturation.

rg . ifC=0 M = max(R, G, B)
Tmod6 ifM =R m=min(R,G,B) rsj;
B —R , a
T+2 ifM =G C=M-m
R-G L4 ifM = B
| =
. C
15
H=60°-H H=60°-H °
1 120°
V=M LZE(M+m) a
0 ifr=0 0 ifL=1
Susv =1¢ : SHsL = ¢ :
el otherwise
7 otherwise =120 —1] [
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« Color Histogram: describe the distribution of colors using

hmn)?hW

— Selection of reference colors

RGB space
4 uniform ranges along each channel total

reference colors

HSV color space,

divide color hexagon 290

V-dimension have more bins 45°
7 chromaticity values Jeko
and 9 bins along V-dimension 63 reference colors c;. ;gg
L*a*b*, then we can use 330°
uniform ranges L*-axis have more ranges

distance d; ; between reference color ¢; and ¢;  denote similarities

between colors. Euclidean distance
HSV
min(la — B],2m — |a — B]) and Manhattan distance
value ranges normalized
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z/

— Comparison of histogram (distance measure)
» Let h; and g; denote the normalized histograms

%ﬂm

FQJ arm» ﬁf-\-\L( 'd
ration of reference colors).
olors ¢; and ;.

Abkla g

f‘e‘{ Ofa. (GkLtf
one-dimensional (tkrough enu
distances d; ; = d;; between two re

« A first naive approach is to compute a Manhattan (or Euclidean) distance between histograms

Smanhattan(h, 9] (S‘_Q_{/QJ 6Euclidean(hrg
@
¢
q;b! i
* To account for cross-correlation i o8 need to use a quadratic distance
A alrqe

. @ il Distance normalized by

Srsarasc.9) ¢ 1 = o){afh ‘«‘”\/A P a4y | e
sketch selects colors

histogram intersections (equals to a partial match query)

N :
_ 2=y min(hy, g;)
intersection (N, @) = min(|h|, |g])
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— Variants:
* A simpler variant / luminance or brightness@
« Equally quantize chromaticity aspects and disregar@m‘esslluminance.

L)

— Discussion: /
« Histograms are very simple and yield already good results

» The lack of spatial relation between colors may lead to unexpected results/

« The histogram intersection method is useful to guide a retrieval system to the desired CW
(main) objects

« Color histograms tend to have a \@igh-dimensionality l/
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 Color Moments: 9 describe distribution of cglors
1
— Single channel momentsx(c()f‘npute statistical parameters for one channel only (L*=<*5% .

first four moments

1 1
Uc =mz c(x,y) @WE(C(%}’)—M&Z
X,y X,y

e
@ 1 z <C(x,y) - uc>3 @ 1 2 <C(x,y) - #‘@
: ©JN-M
N-M i NoE £ A7
Mean u, variance v, describe peak position and width
skewness s, describes whether peak is wider to the left or to the right. Kurtosis k. denotes

the presence of outliers 12 feature values

— We can add additional covariance values between @irs of channelsz\\
X 957,
1
@:mz(ﬁ(%w —e,)  (c206,9) — ue,) o
X,y
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— When calculating the moments

[ ]

1
ac,n=m2c(x,y)" 1<n<4
Xy

b; = ﬁxzy: (Ci(x' y) - Cj(xr )’))

2 4
Aca — 4‘ac,3 *Acq + 6ac,2 *Acq1 — 3ac,l

k., = 2
Using the CIE E*a*b* ) 12 moments and 3 covariances,
\_/__—— .¥_~
feature

vectors m; and m; of two images /\

15

2
Opanhattan (mirm 6Euclidean(milm' = Z(mi,k o mf,k)
k=1
\
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— Variants: @or brightness/luminan@
N—

moments for the chromaticity aspect
8 moments and one covariance

— Discussion: B +—1 1 o
* The value ranges of moments vary significa@’? ve ‘can aoply a
/ I =xhin of dachs
-, cJ -, ﬁ
o StpndatL doliat® I @

« Color moments, like histograms, are robust against translation, rotation, noise, an@
'_/’\ /

—

* In contrast to histograms, the color moments are independent from each other
A CrOSS=correkation matrix -
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4.4.5 Feature Extraction — Texture Information (Step 3 & 4)

» Texture describe the structure of a surface

spatial arrangement of colors, changes in this arrangement, and the direction and
frequency of these changes

— Structural approach primitive so-called texels t
Thi ch is limited 10 artfcay@ : :
inverse problem well supported by today’s
graphic processors
— Statistical approach arrangements in the neighborhood of pixels

statistical summaries (histograms, moments)

— Fourier approach frequency space via Fourier transformation
/\/‘ .
Gabor filters

» Often, we study texture only in grayscale images.
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Discontinuity of surface

« Edge magnitude and direction (structural approach) ST (5 T

vector changes)

Discontinuity of surface
| color of material properties

— Edges =
gradients with high energy
Discontinuity of depth of
. . vision (e.g. foreground
Sobel operator (convolution) on a smoothed (Gaussian) e grann)

Discontinuity of
illumination (e.g., a
shadow cast by an object)

T%\)(m a9

yield a g, and g,, for each pixel

gradient magnitude g,q4(x,y) direction of the gradient g;;(x,y)
Imag (X, y) = \/ 9x (%, ¥)* + gy (x,y)? Jair(,y) Wx(m ¥), 9y (x, y))

arctan(x, y) is the arc tangent of y/x taking
the quadrant of (x,y) into account

— With the above transformation obtain 2 values for each pixel
energy direction
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— We now can create simple texture based features.

« Edgeness of image:
ow many edges with high energy

sky or a lake will result in low values
if Gmag(x,y) =1
0 otherwise

» Gradient Histograms Iy
ntify the direction and the magnitude

f edgeness

normalize energy and direction ranges to
compute the distance d; ; between two reference gradients

N
5Manhattan (h» g) 6Euclidean (h: Z(hi - gi)z
i=1

//Déance normalized by

maximum distance for all
pairs of reference colors

Squadratic (h: g) - (h - g)TA(h - g)

As with color histograms, the same issues with high dimensionality occurs.
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* Gradient Moments

{\
1 1 2
He = WZ 9c(x,y) Ve = WZ(gc(x, Y) — He)
x,y/ x!y
Lot Z (gc(x,;v) — uc)3 . 2 (gc(x, V) — #c)T
c — c — .
N-MI\ NMo\
1
COVmag,dir = WZ(gmag (x,y) — .umag) = (Gair (. y) — Ugir)
X, —
This results in 9 feature values describing the distribution of gradients.

« Laws’ Texture Energy (structural approach)

— Laws texture masks compute 9 values for a pixel
The masks are based on 4 prototype vectors:

vLS B [1 4- 6 4- 1] % Level: (Gaussian) center-weighted local average |
[ 1 —2 O 2 1] % Edge: (gradient) responds to step edges |
[ 1 0 2 0 - 1] % Spot: (Laplace of Gaussian) detects a spot |

Vps=[1 -4 6 —4 1] % Ripple: (Gabor) detects ripples |
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— From these base vectors, we compute 16 matrices

—17 —1 —4 -6 -4 -1]
-2 -2 -8 -12 -8 -1
Gpsis =VisVs=|0[[1 4 6 4 1]1=[0 0 0 0 0
2 2 8 12 8 2
| 1. |1 4 6 4 1.

Since E5L5 and L5E5 measure a similar aspects, we collapse them

_ |Gesis + Gusps Gisgs + Grsis Ggsss + Gssps Gssis + Gusss Gesgs + Grsps Gssgs + Gesss
G - ) ) ) ) )
2 2 2 2 2 2
U {Gssss, Grsrs, Grses )

— With these 9 Kernel matrices, we apply convolution to obtain 9 texture energy values e;(x,y)
per pixel (with 1 <i <9)

« Histograms
4° = 262,144 reference energies

 Moments: calculate 4 moments, and co-variance values for the
36 possible pairs yields a 72 dimensional feature vector
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« Gabor Moments (Fourier approach)
— The 2D Fourier transformation maps a (grayscale) image into its frequency space

real

component
\ log of
absolute ;/Io_g\ energy of
\ value "\ frequencies
imaginary

component

FFT

image

— To display the frequencies such that low frequencies are in the middle and high frequencies in
the outer areas, we need to map the quadrants of the matrix as per below:

1|2 4 | 3
=

3|4 21
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— Examples for the frequency map:

Mast of the sail creates a high
contrast to the white of the wave.

FFT FFT FFT

This spike corresponds to the
edge of the mast of the sail. The
spike is orthogonal to the mast.
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— In the Fourier space, we apply a bank of so-called Gabor filters that select different ranges of

frequencies and directions

image

FFT

real
component

imaginary
component

Gabor

Filter

iFFT

filtered
image
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behave

_f2+)/2372
— 2
gl,@,(p,a,y(xr Y) =e€ 20

Gaussian kernel with standard deviation
g and the spatial aspectras

vy

X sinusoid with phase ¢ and wavelength

A. 1/2is the frequency of the sinusoid.

frequencies and direction

— The Gabor filter is defined as a Gaussian kernel multiplied by a complex sinusoid

e primary visual cortex

X =xcosf +ysinf

y =—xsinf +ycos6

Before application to the Gaussian and sinusoid, the coordinates are rotated by 6.

sensitive to

Spatial space

Fourier space

A Gabor filter at 26 and
high frequency (= 14)

Center of

Fourier space
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« Example (1)

orientation 2

rientation 2
scale 1

orientation 4
scale 1

Gabor-Filter resulting image

Multimedia Retrieval — 2018 Page 4-70













































































































« Example (2)

FFT

Gabor-Filter

resulting image

orientation 2
scale 3

orientation 2
scale 2

orientation 2
scale 1

orientation 4
scale 1
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« Example (3)

Gabor-Filter

resulting image

orientation 2
scale 3

orientation 2
scale 2

orientation 2
scale 1

orientation 4
scale 1
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— There are two approaches to compute Gabor filtered images:

* Fourier space: compute the Gabor filters in the Fourier space and apply them to the Fourier

transformed image

FFT

image is scaled to

next higher

22 x 2P dimension
— Stretching

— Filling
— Tiling
— Mirroring

@%
@%

Tiling

S

S

S=

Original
A further alternative: we use the next smaller 2¢ x 2? dimension and

=

Stretching

Filling

S

«%
=

Mirroring

|

A I\

é

apply the method 4 times

average all feature values

WY
; Texture
|:> % 0 ('\ Felature for
mage
@ G
X
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« Image/spatial space: compute a Gabor filter bank and apply it to the image through
convolution
(OpenCV, scikit-image)
provide implementations for Gabor kernels.
— Once we have the filtered images

select 3-7 directions and 2-5 scales
moments are better choice to reduce the number of dimensions
« With moments absolute values in the filtered image

and compute mean, variance, skewness, and Kurtosis on these values.

1 3 1 )
b= > |G| v = 37 2G| - )
X,y X,y
__1 eyl - _ 1 eyl —m\'
S"_N-szy:< Nz ) ki_N-M%( N

The overall feature is simply the concatenation of all moments across all filters.
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4.4.6 Feature Extraction — Shape Information (Step 3 & 4)

» In this section, we consider three approaches to define shape features.
— ldentify key shape related features

— Given segmentation describe the shape

— ldentify key points of interest

* Global Features: similar to the texture features, but more interested in the contours
apply an edge
detector to obtain outlines The Canny edge detector
1. Apply Gaussian filter
2. Compute gradients with magnitude and direction
3. Eliminate values that are not local maximum
4. ldentify strong edges

and eliminate values below low threshold.
5. Track edges and eliminate isolated weak edges
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— With the edges, we summarize directions of edges

The histograms are normalized

Steps of 10 degrees

[I7I1

Comparison between histograms is
based on the usual distance function

°
_I
=
D
—r
D
QD
—
C
-
@
(7).
—
=
QD
>
(i
Q
[
@]
-
QD
>
o
()]
(@)
3
D
5.
<
QO
=,
QD
-
—

AU,

lightning invariance.
not rotational invariant.

To obtain rotational invariance
principle direction and rotate

(h)

(i)
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— The Angular Radial Partitioning by Chalechale (2003)

has 5 steps
1. Convert the images to grayscale
2. Normalize size of images to obtain comparable numbers
3. Apply Canny edge detector to find strong edges
4. Partition edge-map into M X N radial angular partitions
5. Count the number of edge pixels in each partition to obtain histogram

6. Apply a Fourier transform to the histogram and use absolute values (energy)
The method depicted on the right

» The feature is robust against
translation and scale
robust
to small rotational changes

» The feature is robust against
discrete rotations

» The feature is robust against
omissions of smaller details and noise
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— The Histogram of oriented gradients

* Stepdl: compute gradiénts:

PeSishees LHOG useg unsighﬂed gradients'f;
» Step 2: M A image divided into cells each with 8x8 pixels
computes a 9-bin histogram
» Step 3: gradient magnitudes are variant to illumination and require normalization

HOG combines 4 neighboring cells
and normalizes histograms
now 36 bins)

5 N /mm/w/mM

oy
Y g\) a ”L e (
T
» Step 4: combine histograms to global features |
€ nl--eaneny
A

keep “bag” of local features
used a.S ||7|7Q 91 4 110 12,13371)0,, i

input into machi?i;a\ rning algorithm - TR "’
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(2 3 4 49’4 2 2
Ws 1 17 13 7@3 1
f11 21 23 27 22 17 4§

23 99 165135 85 32 26 2

| ‘9£\‘55;‘33 136 144 152 57 28| |
| | ; | |

98 196 76 38 26 60 170 51

165 60 60 27 77 85 43 136

71 13 34 23 108 27 48 110
Gradient Magnitude

flso 36 5 10 0 64 90 73 |\
Naz o o 170 78 27 169 166 |||
87 136 173 39 102 163 152 176 | | |
Lll76 13 1 168 159 22 125 143
| 12‘7’0; 14150 145 144 145 143 ||
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« Descriptions of blobs/regions/objects: blobs or objects

spatial metrics often in relation
to entire image

— Area: percentage of pixels within segment
— Centroid: average of  x-values and y-values in region

— Axis of Least Inertia: axis which allows rotation with least energy
line that minimizes squared distances to boundary
primary direction

— Eccentricity: ratio of length to width of the box
— Circularity Ratio: how closely resembles circle
An alternative approach normalize position of region

predefined grid to compute histograms

Q@/
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— Ludwig-Maximilians University Munich (Berchtold, 1997) studied methods to compare and

index 2D and 3D objects

feature scale
invariant
normalized to sum up to 1.

rotation invariant

Initial
normalization to a principle
direction

* The feature is translation

120 shells

20 shells, 6 sectors

i1

— >

6 shells, 20 sectors

|
Dardibdieeantin |

Invariant | ‘ 122 sectors
0
—_
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« Key Points of Interests: Scale
Invariant Feature Transform (SIFT).

robust way, match again after significant
viewpoint changes

— The algorithms works roughly in 4 steps
1. Identify scale-space extrema using band-pass filters
2. Keypoint localization with scale;
3. Orientation assignment
4. Keypoint descriptors
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— Step 1: pyramid of images using
Gaussian filters

Each octave is down sampled
to a ¥ of previous octave
progressively blurred

* In each octave
difference of Gaussians (DOG)
edge detectors

pyramid contains
point of interests. They are the local minima
and maxima in the DOG.

ﬁ)&s—yﬁ

Scale
(next
octave)

\J

Scale
(first
octave)

First octave
< (didn’t fit)

Rifference of
Gaussian Gaussian (DOG)

»

Third octave

«<—Second octave
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— Step 2: detect local minima and maxima

pixel | Scle s

725
TXKEZF

IS maxima or minima in neighborhood

4 DOG images cre@trema images at eac@

N—
~—" dismiss pixels whose value
smaller than threshold “flat’ dismiss all
edges by gradients

interested in corner points with two big gradients.

\/ —
« The output of step 2 is a set of keypoints with location and scale. "

— Step 3: rotation invariant feature need major orientation U

-2

local histogram of gradient directions

histogram bin with the
highest value dominant direction (if there are ties, use all directions).

dominant direction to normalize feature

dominant direction of keypoint is not its gradient direction.
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— Step 4: keypoint as center 4x4 grid in the dominant direction
size of grid dependent on scale

finer 4x4 mesh histogram with 8 directions captures directions
==

bigger 4x4 grid
total of 128 feature values.

— The SIFT features invariant to scale, translation and rotation
receptive fields in the primary visual cortex
very distinct for objects
close to real-time.

SIFT features are widely used for object recognition
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4.5 Features for Audio

 There are two definitions for sound

Tt

* Physics of Sound
wavelength A (or frequency f), pressure p
speed v, and direction x.

— The human ear perceives frequencies between 20Hz and 20kHz

— The speed of sound waves depend on the medium
v=3314+06-T m/s In water, sound travels much
faster at speeds of about v = 1482 m/s.
v = 12,000 m/s in diamonds

— Sound travels in concentric waves

possible to locate the source of the sound

— Sound pressure difference between local pressure and pressure of
wave decibel: L, = 20 - log1o(p/Dref) W

OdBis auditory threshold
above 120 dB cause permanent hearing loss.
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« Perception of Sound: historically, the term sound referred exclusively to the auditory perception
(“that which is heard”)

human ear
perceive frequencies between 20Hz to 20kHz  cat perceives frequencies between 500Hz and
79kHz Bats
range from 1kHz up to 200kHz echolocation of prey
— perceived (primary) frequency of sound
— (Duration ) perceived time window of sound
related to physical duration of wave signal, but compensates breaks
— |Loudness perceived level (“loud”, “soft”) of a signal stimulates over

—| Timbre perceived spectrum of frequencies over time
very characteristic timbres to distinguish

interaction of different sound sources like in an orchestra

Spatial Location cognitive placement of the sound in the environment
combination of spatial

location and timbre enables the focused attention to a single source
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* Audio signals amplitude signal over time
signal is sampled with  fixed frequency f;

fmax = fs/2
CDs at 44.1kHz DVD at 48kHz.

« To model human perception transform into frequency
space

Short-Term Fourier Transform (STFT) applies window
function and computes local Fourier transformation

X(t,w) = i“w(n —t). e ton P L- ‘ S) A x(t)
n=— : M“’WA“V"M'M‘ nﬁlflﬁnl, ‘LH : lllm. "”‘|§(‘ - !‘I'f 4 ‘M‘lln:‘. IRl A

L ||H

1

window size of N samples ; ‘
between 0 and f,,,,, = f5/2 ‘ ‘

at steps of f;/N Hz

— The picture on the right

Frequency

spectrogram
squared magnitudes |X(t, w)|?
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. | S— n u - -
Segmentation N
> length=4s )
hop=100ms : v 7.
Audio
e L
R Framing N\ 4 Feature | Statistical features =
- Iehn(?;r;g?nrzs y Extraction | Computation
* Feature design segmentation of signal to capture statistics over
time
frames overlap with each other
overlapping segments encompassing several subsequent frames
— Frame size fs = 48 kHz 40ms,
N = 1920 frequency resolution 5 % = 20.83 Hz
improve frequency resolution, we increase
window size But we loose
precision along time axis STFT
compromise on frequency resolution or time resolution
— Segment size
4s IS a good starting point for generic audio analysis.
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4.5.1 Auditory Perception and Processing
pressure changes into electro-chemical impulses
acation

* The ear translates
The outer ear visible part
amplifies sounds around 3kHz up to 100
distinguish™e

— Waves from the eardrum travel through the middle ear
hammer (malleus), anvil (incus), and stirrup (stapes)

amplify the signal at the oval window
cochlea and
Stapes
(attached to
oval window) -
Semicircular
Canals

Vestibular
Nerve

Incus

The inner ear consists of

vestibular system
Along the cochlea runs the organ

of Corti (spiral corti) with the hair cells

outer ear

N [~

Malleus
Cochlear

middle ear 3@
" ~.— Coc:lrevae

Tympanic
Cavity

COChIea External
Auditory Canal

Eustachian Tube

base of

(closest to middle ear) captures high frequency
top captures low frequency sounds

Tympanic
Membrane Round
Window

Chittka L, Brockmann - Perception Space—The Final Frontier,
A PLoS Biology Vol. 3, No. 4, e137 doi:10.1371/journal.pbio.0030137

sounds while
Page 4-89
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— The electro-chemical impulses
\_N
are
captured by nerve fibers 30’000 auditory fibers

-~

particular frequency at a particular loudness level
vestibular nerve transmits balance and motion information

Section
mesencephalum

The primary path is as follows:

» The cochlear nuclear complex first “processing
unit”

* The superior colliculus (mesencephalum) spectral ¢ ionor
cues from frequency bands for sound location. brain stem

 The medical geniculate body (thalamus) integrates auditory
data to prepare for a motor response

* Finally, the auditory cortex

Neurons organized along o
. . . A J
frequencies maps identify source / S=—t—7" Superior
of  sound (e.g., wind) sound links Ra g Rt
ype 1 formation

neuron

Process temporal seqguences

of sound
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4.5.2 Generic Acoustical Features

* The first set of features acoustical
—/ Time Domain
Frequency Domain

Perceptual Domain

eature in the Timedomain @frame)}
fs = 48 kHz 40ms,

N = 1920 20ms.

— Short-Time Energy (STE) raw energy as sum of squares
R—/ .
measured as decibel

Lp = 10log,¢(P/Py)

Esrg (i) = 1010810(

— Zero-Crossing Rate (ZCR) how often sign of amplitude signal
changes:

N
1
ZCR() = 5 Wlsgn(x(®)) = sgnCx(t — D) ,\M\
t=2
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— Entropy of Energy (EoOE) abrupt changes in energy
L sub-frames of equal length

energy

L

Heoe (D) == ) e(i,1) -logz e(i,

=1
 Feature in the Time domain
segment §; with M frames

— Low Short-Time Energy Ratio (LSTER)
whose STE below a third of the average STE

tste ()
3

M
L1 -
rL.ster(J) = Mz {1 Esre(l) <
i=1 (0 i

normalized by total energy
entropy of these “probabilities”

(I1+1)-N -1
TSP

e(i,D)=

statistics across

percentage of frames

M
1
uste(j) = Mz Esre (i)
i=1
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— High Zero-Crossing Rate Ratio (HZCRR) speech more zero-crossings than

music

BﬂZCR )
Tuzcrr () = MZ - ARG )B

i=1 |0 otherwise

M
1
Hzer() = 77 ) ZCR()

LSTER HZCRR

z b

= 0. =

3 (a) speech signal = 0 (a) speech signal
«© g g <) . .

< 0. (b) music signal 2 (b) music signal
& £y

Lu, Zang, Content Analysis for Audio

l Classification Segmentation, 2002
005 0.1 ONWB 0,Z 0.25 0.3 0.35

00 0.1 MS 0.6 0'7
— Moments over STE and ZCR
segment §;

|Esre (D] — uste(j)

UsTE (I)

smw—MZ< 'f

Histogram
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« Feature in the Frequency Domain (frame)

Fourier transformed signal

X(i, w) denotes frequency spectrum of frame F;

with 0 < w < f;/2 and with steps Aw = f;/N = 25 Hz

X, k)=X({,wk) with w(k) =k - f;/N.
— Spectral Centrgi_c_l_(ég gravity cen m
Ll Pt the Macnitede—rs TaT

K=N/2-1

et < kot 0D

R G )| X
The centroid describes “sharpness” of signal CF ¢ o
XS/
— Spectral Roll-off (w;) frequency w, such that sum of magrjitudes with
frequencies smaller % of total sum of magnitudes

w, = w(r) with r smallest value that fulfills: Y% _,|X (i, k)| < C- XX_,1X(, k)|

Related to spectral centroid skewed
frequencies

towards higher
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— Band-Level Energy (BLE) sum of energy within a frequency range

weighting function w(k) < a
L)(/L)

Q__b
K — - - >
BLE(i)=1010g10<Z|X(i,k)|2‘W(k)> ] —
k=0 ]
. J*\/ﬁ L

— Spectral Flux (SF) squared differences of normalized magnitudes from
previous frame

K
$F(D) Z X (i, k)| mn)

L \ZK_ ol X (0, ) Wn

— Spectral Bandwidth (SB) normalized magnitude weighted deviation
expected distance of frequencies from spectral centroid

LI G R (0) — SC@)
HO= J K IXG 1]

* Feature in the Frequency Domai
moments and histograms over the f

: fo summarize a segment, we can use again
e values/for the various features above.
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* Feature in the Perceptual Domain (frame)
differs significantly from physical measures

— Loudness depends
on frequency

IEC 61672:2003 defined

A-weighting
“valid” for low-level sounds
averages loudness over a 600-1000ms

0-1 K
10 1 | ;
L() = 72 logy i A - [X(i = 0, )]
0=0 k=1

interpretation of sound wave

130

120 {est imaied)§
110 IR
=100

90
80
70
60
50
40
30
20
10
0
-10

Sound Pressure Level (dB SP

(threshold)

10 100 1000 10k 100k

Equal-loudness contours (red) (from IS0 226:2003 revision)
Original ISO standard shown (blue) for 40-phons

+20

Gain dB
| '

-30 {not defined]"‘-__
(B) E
-40
o LY .
10 100 1000 10k 100k

A-weighting (blue), B (yellow), C (red), and D-weighting (blk)
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— Mel Frequency Cepstral Coefficients (MFCC)
over Mel frequency bands

1. Fourier Transform

L

N-—
X(t,k) = %z x(j) - e

)

2. Mel-Frequency Spectrum

bands approximate

spectrum of the power spectrum
human auditory system

— .5
w(lk) =k N

Mel frequency bands

fupper = 8000 Hz

B =26 figuer=2300 Hz

freq(m) = 700 - (e% ~1)
The bands are triangle
with each other

0<b<B+1)

mel(fupper)—mel(flower)
B+1

fc(b) = freq (mel(flower) +b-

mel(f) = 1125 -In (1 + =)

o5 [[IHHHLEET X T X X

bands overlap

Bandwidth

- -

Center frequency \

O AL

0 =+ JIITIIEIsY ey y y y

Multimedia Retrieval — 2018 4.5.2 Generic Acoustical Features

Page 4-97
























W@ the frequencies f.(b)

ﬂ triangle form:
( 0 if w(k) < f.(b—1)

k)—f.(b—1) .
;)Eb§ —]{Eb - 1% if fe(b—1) < w(k) < fe(b)

w(k) — f.(b+ 1)
fe(b) = fe(b + 1)

d(b, k) =«
if fo(b) <w(k)<f.(b+1)

\ o\ if w(k) > £.(b+ 1)
Mel-frequency spectrum sum over
magnitude values weighted by each bands

vé

M(t, b) = Z d(b, %) - 1X(t, k)|

3. Cepstral Coefficients spectrum of a spectrum
discrete cosine transformation

13 cepstral

values c(t, b)

2B
/

B .
c(t,b) =ZM(t,j)-cos<w> with1<b < B/2
=1
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4. Derivatives:
derivatives describe dynamic nature of spoken

text 39 feature

A DS L) —cC=Lh)
AAc(t,b) = Ac(t +1,b) — Ac(t —1,b)

\_/———-
MFCC(t) = [c(t, 1),...,c(t,B/2),Ac(t, 1), ...,Ac(t,B/2),AAc(t, 1), ..., AAc(t, B/2)]

MFCC standard features for speech recognition
cepstral coefficients cluster into [ clusters

guantize vector
to create [ states mapping form a series of state

transitions to  phonem /D
« It is also possible to search directly on the phonem stream @ ‘/

Lel'n

* Feature in the Perceptual Domain (segment) moments or histograms
standard deviation of 2"d MFCC
coefﬁcien very discriminative to distinguish speech from music. ~—
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4.5.3 Music Features (Pitch Contour)

« Chroma based features twelve different pitch classes from music {C, C#, D, D#,
E ,F, F#, G, G4, A, A#, B} pitch class all possible pitches at all octaves
frequency ratio of 1:2 (or 2:1) octave
— Each instrument combination of sine waves partials

changes of amplitude over time
timbre of instrument
— The fundamental partial with lowest frequency
C—— - .
Harmonics positive integer multiples of fundamental
frequency ANUHRaERoNic partEis, the desigl

— Overtone refers to all partials excluding the fundamental

The pitch standard A440 A of the middle C
tuning standard for musical instruments

n=20(C), ..., n=11(B)
octave o with —1 <0 <9 Q

120+n-57 120+n-57
faarao(0,n) = fyq -2 12 =440-2 12
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Table of note frequencies (standard piano key frequencies)

Octa
\[e}

ve > o=-1 o=1 o=2 o=3 o=4 0=5 o=17
teN
C

8.176 16.352 32.703 65.406 130.81 261.63 523.25 1046.5 2093.0 4186.0 8372.0
gi?; 8.662 17.324 34.648 69.296 138.59 277.18 554.37 1108.7 2217.5 4434.9 8869.8
@ E 2) 9.177 18.354 36.708 73.416 146.83 293.66 587.33 1174.7 2349.3 4698.6 9397.3
Eb / D#

(n = 3) 9.723 19.445 38.891 77.782 155.56 311.13 622.25 12445 2489.0 4978.0 9956.1
@ E 4) 10.301 20.602 41.203 82.407 164.81 329.63 659.26 1318.5 2637.0 5274.0 10548.1
@ E 5) 10.914 21.827 43.654 87.307 174.61 349.23 698.46 1396.9 2793.8 5587.7  11175.3
l(:f /=C2l)’ 11.563 23.125 46.249 92.499 185.00 369.99 739.99 1480.0 2960.0 5919.9  11839.8
@ S 7) 12.250 24.500 48.999 97.999 196.00 392.00 783.99 1568.0 3136.0 62719  12543.9
Ab / G#

(n = 8) 12.979 25.957 51.913 103.83 207.65 415.30 830.61 1661.2 3322.4 6644.9

@ i 9) 13.750 27.500 55.000 110.00 220.00 440.00 880.00 1760.0 3520.0 7040.0

Bb / A#

(n = 10) 14.568 29.135 58.270 116.54 233.08 466.16 932.33 1864.7 3729.3 7458.6

e 311) 15.434 30.868 61.735 123.47 246.94 493.88 987.77 1975.5 3951.1 7902.1

Source: https://en.wikipedia.org/wiki/Scientific_pitch notation
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https://en.wikipedia.org/wiki/Scientific_pitch_notation

« Extracting pitch information requires extraction of fundamentals

k-th Fourier sampling rate f; and
with N samples pitch class p(k) and octave o(k)

25 1 :
p(k) = \9.5 + 12log, (‘ mod 12 o(k) = \— (9_5 + 121log, ( )‘

— We can obtain a chroma related histogram

K
1 Z {|X(i, K> ifo=o0(k)Ap=pk)

h ,0,p) = . i
chroma( p) Ik{zolx(l’ k)|? 0 otherwise

k=0

— However not main pitch contour
estimate the fundamental f

frequency which maximizes the sum of magnitudes over all its harmonics

S fs
Js ?nr; ; w(k) + 27 kﬁ+27
fo =% -'hax g(k,m) - |1X(i, km)| g(k,m) = _
v <’;1 ) (km) +320  pn L 4 320
g(k,m) empirically obtained function to weight different harmonics
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— With fundamental f, pitch class p(f,) and octave o(fy)
To extract several fundamentals :

1. Compute the magnitude spectrum |[X© (i, k)|
2. lterate t = 0,1,..as long as Yx_o|X O, k)| > €
— Compute f, on the magnitude spectrum |X® (i, k)|

— Adjust the magnitude spectrum subtract the magnitudes of the harmonics
|X(t+1) (l, k)|

« Alternatively compute fundamental frequency f, in time domain
autocorrelation time shifts At
1/fmin = At >

1/fmax fmin < fO < fmax-
time shifts are integer multiples of the sampling period At = m/f;

N

R(i,m) = z x(i,t) - x(i,t —m)

t=m

To obtain the fundamental, we search for the lag m, that maximizes the autocorrelation and
compute the frequency from this lag:

= £ my = argmax R(i,m)
mo fs/fmin2m2fs/fmax

fo
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 Another music related feature

bpm), and Prestissimo (200+ bpm)

— Beat tracking

tempo

Largo (40-60 bpm), Larghetto (60-66 bpm), Adagio (66-
76 bpm), Andante (76-108 bpm), Moderato (108-120 bpm), Allegro (120-168 bpm), Presto (168-200

Pop music

120 bpm

search for regular onsets of energy at the beat intervals

N 4
T ] P\
X e
o B o
D o=
U / Mel-frequency Spectrogram
- 40 T T T 'l T T N T e b LB |
c - "”‘ '} \Tr}
= ; ‘ It !
F) ':"" . ‘I;I » d-..“ qﬂ -' FV'" .‘ ‘ 'l o4\ ' T "“Nlﬁ | “'. "'I |'
= 20 | - - ) b — ﬂ o, " o 8 " 1y o & ““‘N,
:::: % oAb s ” - -- ha- " d .-.
- "—.‘ N M -
0 P et ] o L th"P”ﬂ!h” 'Umhmag mg“ho
Onset strength envelope
] T ‘ ‘
20
10f W\/\J\}
_10 ‘ | | |
3 4 5 6 7 8 9 10
time / sec

Vertical lines denote the
beat as found by the
method of D. Ellis.

Onsets often at beat intervals,
but also in between and with
varying intensities

level / dB

Source: D. Ellis, Beat
Tracking by Dynamic
Programming, 2007.
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— Onset envelope calculation (positive) slope on the energy
mel spectrum
| Xime1 (i, b)| weighted function from the frequency spectrum

similar to the spectral flux only consider
positive slopes (hence onsets)

B

; 10810 | Xmei (i, D)| > @A
o(i) = max | 0, _ -1 j/
0=), ( 0810 | Xme (i — 1,5)]

b=1
— We can estimate global tempo through autocorrelation over onset o(i)
time
shift At such that peaks in onset function coincide

tempo per frame
tempogram

a(i,l)
The tempo is lag 1, with highest autocorrelation

{0.331,, 0.51,, 21y, 3lp} which mark secondary tempos
favor beats around 120bpms
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Example for tempo estimation within a time frame:

Onset Strength Envelope (part)

9 9.5 10 10.5 11
Raw Autocorrelation

400

200 -

200

100 (

Weighting functian prefers
beats aroyfid 120bp .-\ hich
is a lag of 0"55econds. Here

the primary tempo is about
168, and the secondary at 84.

-100
0

Beat tracking

1 1.5 2 25 3
— Secondary Tempo Period

— Primary Tempo Period

identification of

time points optimize

penalty function for deviations

and penalty

T

T

c((ed) = max| Y olf -t + az F(fs (6 = ti-) o)

i=1

33 |ag/s4 400 é/ép\/\

time points {t;}

objective function
a weighting to balance onset

AL
F(ALly) = — | log—

o
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4.5.4 Search for Tunes (Search by Humming)

* With music tune is  important
tune, played a different pitch levels appears

similar  tune at a slower tempo appears similar

musipedia.org contour
arch and search by humming
« D (down) if the preceding pitch was higher (tune goes down) / \
« U (up) if the preceding pitch was lower (tune goes ) \ /Z —=
« S (same) / R (repeat) if the preceding pit<h is the same (tune stays flat) \
This transforms pitches to a stream with three terms (D, U, S)
— To search hum the tune
search simple string
search

— There are many variations for contour search
additional terms
duration is not normalized
pitch differences
for professional users.
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4.6 Features for Video

* Video retrieval combination of image, audio, and text (subtitles) retrieval

— Segmentation (shot detection, scenes)
— Motion Detection f

* Video segments are modeled at four different levels:

— Frame image shortest visual change rate
visual channel is
finest granularity.

— set of frames recorded in a single shooting

shot encompasses all image, audio and subtitle information smallest unit for
search

@ set of shots that share common semantics

scene is coherent and consistent in terms of time and location
— Episode set of scenes forming the episode  movie single episode, a series
consist of dozens or even hundreds of episodes segmentation often at

physical distribution layer episode can span
across physical carriers
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4.6.1 Shot Detection

* A shot consists of frames from a single camera shooting

— Hard cuts clear (hard) delineation
between last frame and first frame of shots -
— Soft cuts two shots are intertwined changing over

the course of multiple frames

Hard cuts used for camera changes within same scene

mark end of a scene
* |ndicators of shot boundaries can be found in the video stream

Soft cuts often occur to visually
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« Shot Detection (hard cuts)
— A hard cut abrupt change

* Pixel based comparison

fO
—
dnaive(i)= (x,y,i)—f(x,y,i—l)l
The problem

« Histogram / Moments Comparison
invariance
only luminance values

histogram

du (D)} |h() — h(i — 1)

vector function returning red, green, blue

not robust against movements

translation, rotation, and scale

h(i) denote the

do(i) = h()TARG — 1)
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— To learn the best threshold

e d,,(i) < T denotes that frame i belongs to the same shot ( negative case)
e d,,(i) = T denotes that frame i belongs to a new shot ( positive case)
We now can compute the false/true positive/negative rates as defined in chapter 1:
0 T
TPR(T) = f £,(x) dx FNR(T) = j £,0(0) dx
T —00
T 0
TNR(T) = j £, (x) dx FPR(T) = f fa(x) dx
—00 T

The best threshold T depends on our objective function

TNR FPR

FNR TPR
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Shot Detection (soft cuts)

— Twin Thresholding

The detection

shots

A first alternative is to model the different transition effects

distances

A

two thresholds

potential
start of a
soft cut

potential

a hard
cut

start of a no cut
soft cut after all

generic approach to identify visual transitions

time

struggles with visual effects between
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4.6.2 Motion Detection

 Motion detection has several use cases:
— Motion compensation in video encoding

— Surveillance cameras detect and track motion of objects
— Optical flows analyze relative movements of camera (observer) and objects in the scene

» Detecting Moving Objects assumption camera is stationary moving
objects are important

4
|

Frame 7 | (objects)

A

Current =m | Motions ﬁ ﬂ

Vs

Background
Model

A

. Update ™ _
~Backgroung”
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— Simple Background Subtraction

» Good starting point sensitive to illumination changes

negative ghost image remains
* Very sensitive to any movement

» Only works if the camera is absolutely static (also no zoom or tilt).

Images by Robert Collins
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— Simple Frame Differencing

* Robust to scene changes over time

» Objects that stop are no longer recognized leave negative ghost
* Only changes in the direction of movements are detected

Images by Robert Collins
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— Three Frame Differencing

w I(x,y@ >T

10 y() - 1665 +13)1 > <

* Choice of good frame-rate and temporal distance depend on size and speed
of objects.

Images by Robert Collins
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— Motion History Images
decay over time

d0) I(x,@)—l(x,y@l > T

B=I(t-1)

* We obtain the current motion histogram

decay parameter y adds gray values to motion history

summarize motion aspects into a feature vector

Images by Robert Collins
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— Shadow Elimination difference methods detect moving objects with

shadows poor localization
additional motion distinguish  shadow

color chromaticity shadow change illumination
* Instead map to a

chromaticity sub-space (e.g., a*b* or HS)

differencing method: |Broma (% V) — Lcnroma (6, v, )| > T
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* Optical Flow
detect motion in arbitrary videos
Lucas-Kanade algorithm.

— The assumption is brightness constancy
' pixel and its motion path over time

ICx(),y(0), 1) / path [x(¢), y(¢)]

I1(x(t),y(t),t) = const | for small changes of t

— Let us track time t to

location x(t + At) = x(t) @ y(t + At) = y(t)(F v.

new

I(x(t) y(t),t) = I(x(t + At),y(t + Ab), t + At) = I (t) + v
0l 0
1Ge(E) + 1, y(8) + v, £ + A) = 1(x (D), y(D), £) O@ @
| 0~ ol +61 +61At
ax " oy T ot
— The partial derivatives gradients in x, y and t dimension
Sobel operator to obtain I,.(x,y) and I, (x, y) %At
difference I:(x,y) between subsequent frames at time t and t + At.
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— We obtain the final.equation for our motion estimate:

Ly) utL,(xy) v=—I(xy) attime t

one equation but two unknowns. Hence, there are many possible solutions. If (u,v) is
a solution, then (u + u’,v + v') is a solution if (u’,v") is perpendicular to (Ix(x, y), L (x, y))

aperture problem:

Actual motion (Rectangle is moving right and down)

Window of
observer

Observed motion (only perpendicular component to edge detected)

— — > Other Examples:
https://en.Wwikipedia.org/wiki/Motion_perception

http://farm5.static.flickr.com/4044/4172972319
7c070bdcbb_o.qif
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— Lucas-Kanade 5x5 window around current pixel

L,(x+ay+b) @+1y(x+a,y+b) @: —L(x+ay+b) forali—2<ab<?2

. u
7>, |- G s
727+2) 2 <)
X ) | L ) |
v : \ A ‘
A d = b
~1'Since.. * more equations than unknowns no exact answer Instead minimize
IAd — b||*

_ @/ o

(ATA) d= ATb —
‘lelx Elxly_ [u]:_—ZIxIt_ /JY o/t —= C y
_lely ZIny_ ’ _—Zlylt_ y /w

The sum ot 5x5 window y

not have too small eigenvalues
eige 0o large corner points®
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— The basic method works only well for small displacements..For large displacements, we can use
a Gaussian pyramid of the image and estimate flows at each scale:

compute motion

!

compute motion

compute motion

compute motion

A
v

A
v

A
v

Image at timé t Image at time t + At
| [

. ,
& [ g

A
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— Optical Flow: Examples (various sources)

Combination of
differencing method
and optical flow
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* Frameworks and Libraries

— OpenCV (https://opencv.org) is an advanced computer vision library original written for C/C++.
But-there are also bindings for Python, Java, and other languages.

— scikit-image (http://scikit-image.org) is an advanced computer vision library written in Python. It
provides all basic image manipulation operations as well as advanced feature extraction
algorithms (however, not SIFT but alternative approaches to SIFT)

— Librosa (http://librosa.github.io/librosa/) is a Python library for advances audi and music analysis.
It-provides base algorithms to create music retrieval systems.

— scikit-video (http://www.scikit-video.orq) is a Python library for video processing
* Interesting courses at other universities

— Multimedia Content Analysis,National Chung Cheng University, Taiwan,
https://www.cs.ccu.edu.tw/~wtchu/courses/2014f MCA/lectures.html#00

— Computer Vision, University of Washington, USA,
https://courses.cs.washington.edu/courses/cse455/

— Music Information Retrieval, Vienna University of Technology, Austria,
http://www.ifs.tuwien.ac.at/mir/

— Music Information Retrieval, New York University, USA,
http://www.nyu.edu/classes/bello/MIR.html

— Music Signal Processing, Columbia University, USA
https://www.ee.columbia.edu/~dpwe/e4896/index.html

— Computer Vision, Penn State University, USA, http://www.cse.psu.edu/~rtc12/CSE486/
— Computer Vision, University of lllinois, USA, https://courses.engr.illinois.edu/cs543/sp2012/

— Computational Photography, University of lllinois, USA,
https://courses.engr.illinois.edu/cs498dh/fa2011/
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