"y
UNIVERSITAT BASEL ?%@ Computer Science / 15731-01 /2018

Multimedia Retrieval

Chapter 5: High-level Features with Machine

Learning o
5.1 Motivation

5.2 Machine Learning Basics
5.3 The Learning Proces

5.4 Methods
Dr. Roger Weber, roger.weber@ubs.com 5.5 References

5.1 Motivation

« Signal information is too low level and too noisy to allow for accurate recognition of higher-level
features such as objects, genres, moods, or names. As an example, there are exceedingly many
ways how a chair can be depicted in an image based on raw pixel information. Learning all
combinations of pixels or pixel distributions is not a reasonable approach (also consider clipped

chairs due to other objects in front of them).

» Feature extraction based on machine learning abstracts lower level signal information in a series

of transformations and learning steps as depicted below. The key ingredient of a learning

approach is to eliminate noise, scale, and distortion through robust intermediate features and then
cascade one or many learning algorithms to obtain higher and higher levels of abstractions.

c
=
2

>

SIFT / HOG

fixed

MFCC

fixed

Parse Tree
Syntactic

fixed

K-Means/
pooling

unsupervised

Mixture of
Gaussians

unsupervised

n-grams
(of words)

unsupervised

classifier

supervised

classifier

supervised

classifier

supervised

car

\'d e p\

Multimedia Retrieval — 2018

5.1 Motivation

Page 5-2

. pemo: clarifai

— Clarifai provides APls to recognize ‘models’ in images. Developers can use the APIs to retrieve
tags from existing models or can add and train new models.

— https://www.clarifai.com

General |
English (en) -
chair 0.987
wood Probability that the
—— model / concept is
furntture present in the picture
wooden 8.972
retro 0.963
seat 8.945
family 8.915
“Alexa, turn off my
design il Bedroom S;nos"
antique 0.892
interior design 09.882
“Alexa, turn on my

ool 0.872 Chill Time"

o+ decoration 0.864

B TRY YOUR OWN IMAGE OR VIDEO

empty 0.861

« Demo: Recognition of handwriting
« Demo: Speech Recognition

Multimedia Retrieval — 2018 5.1 Motivation Page 5-3

https://www.clarifai.com/

« Machine learning has greatly improved over the past years because of three factors:

— Deep learning has introduced new layers and methods that removed the limitations of (linear)
multi-layer networks.

— CPUs and especially GPUs have allowed for much deeper and larger networks. What took
months in the 90s can be computed within hours 20 years later

— Availability of frameworks like Tensorflow makes it very simple to build a huge distributed network
to compute large-scale neural nets.

5000 7

- : : e e The biggest improvement over the
4500 - NVIDIA Titan/Tesla: high-performance NVIDIA GPU SP .
GPUs with 5000+ CUDA cores past ten years was the creation of
4000 CUDA, a extreme para_llgl computing
] platform created by Nvidia. In
C ol combination with new neural network
9 oo e algorithms and the advent of
e map/reduce as a generic distributed
$ 2500 computing paradigm, enormous
- g— amounts of data became processable
o 2l
8 _ through the sheer brute force of 1000s
= i
1500 L of connected_machlnes_. (_50|ng fqrward,
1000, we will see highly specialized chips
] (like Google’s TPUs) and cloud
] GeForce 8800 GTX Tesla C207: W . ‘
500 SeForco 7800 GTX S Bwislmg:“ "a Intel OP compute hardware (like HPEs “The
4 oomfie 2 . f .
01 wnarSgEoroeXse00 oot Harpondga C1060Mes Machine’) further accelerating the hunt
2000 2002 2004 2006 2008 2010 2012 2014 in ever larger data lakes.

Release date /\—

SP: single precision (32 hits)
DP: double precision (64 bits)

Multimedia Retrieval — 2018 5.1 Motivation Page 5-4

« Although not every aspect of the human brain is understood, there are a number of key insights that
helped to further developed and refine deep learning. For instance:

— It was believed that the brain adapts in the first months .
of a new born and does not change afterwards. This P
belief was disproved: next to short term and long term
memory adjustments, the brain is also able to functionally
change. Areas of the brain that are used more frequently
become more excitable and become easier to activate.
The brain can shift how and when such areas are getting
activated and with that can provide more neurons for a)
task. It has been shown, with limitations, that different
areas can take over functions after brain damages. For
instance, somebody who loses eye sight with age is able
to accentuate other senses and to use them as compensation of the visual information (no longer
stimulating the visual cortex).

— What does this mean? The brain is most likely working with a “universal algorithm” rather than
task dedicated learning patterns. The way we learn a musical tune is similar to learn a
complicated sequence of movements. Even more, it is believed that the algorithms are rather
simple but given the dynamically built connections and the sizes allow for even very complicated
tasks. But as you know, learning rates greatly vary between individually. While some learn
patterns extremely fast, others require months and months of hard training. It is shown that we
learn best with increasing difficulties and if we struggle in the practice. Every learning session will
change your brain, but each one will adapt in different ways.

« Many researchers switch between neuroscience and artificial intelligence and have stimulated both
areas with exchange of ideas.

Multimedia Retrieval — 2018 5.1 Motivation Page 5-5

5.2 Machine Learning Basics

* The Machine Learning Problem

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T, as measured by P,
improves with experience E [Mitchell 1997]

« There is a wide variety of machine learning problems as a combination of what the task is, what
experience is provided and how performance is measured. Subsequently, we look at each individual
component independently to categorize the different flavors of machine learning.

« Often, real-life examples employ a set of different approaches and combine them to achieve the
overall objective of the problem. For instance, in credit card fraud, the first component is to learn
fraudulent transaction based on past transactions and investigations. This knowledge is used to
predict fraud in real-time for new transaction. A second component segments transactions to identify
outliers or anomalies that may lead to new types of fraud that have not been identified/learned yet.
While the first component is an example for supervised learning where the algorithms get labeled
data to learn from, the second component is unsupervised, i.e., we don’t know what we are looking
for and the algorithm must identify the patterns without any human feedback.

« Other examples include cascading several methods: for instance, a first step reduce dimensionality
and eliminates outliers (unsupervised learning), a second step learns that mapping of reduced
features to a set of labels (supervised learning).

 Modern approaches in Deep Learning build excessively deep sequences with neuronal networks to
apply multiple different approaches to extents that require vast amounts of compute power to train
and then to use the network.

Multimedia Retrieval — 2018 Page 5-6

5.2.1 Tasks

« With task, we do not mean the learning process itself. Rather the ability that the machine is
supposed to perform. For instance, if we want a car to drive autonomously, then driving is the task.
Often, machine learning tasks involve a set of input features that the system needs to process into a
“correct” set of output features.

« Classification is the task of mapping the input features to a set of K categories. Typically this
means to find a function f that maps a M-dimensional vector x to a category represented by a
numeric value y, i.e., y = f(x) with f: R™ - {1, ..., K}. A variant of the classification task requires a
probability distribution P(y) over all classes y with P(y) = 1 denoting the class y is certain and
P(y) = 0 denoting the class y is impossible, i.e., P(y) = f(x) with f: RM - [0,1]¥
— Applications include object recognition in images, text categorization, spam filtering, handwriting

and speech recognition, credit scoring, pattern recognition, and many more

fixed acidity _| volatile acidity
#1 8.5 7

0.28 0.56 3.3 10.5
#2 8.1 0.56 0.28 3.11 9.3 5
#3 7.4 0.59 0.08 3.38 9 4
#4 7.9 0.32 0.51 3.04 9.2 6
#5 8.9 0.22 0.48 3.39 9.4 6

« Classification with missing input is similar to classification with the exception that some input
values can be missing. Instead of a single function f, a set of functions is needed to map different
subsets of inputs to a category y (or distribution P(y)), potentially 2™ functions. A better way is to
learn the probability distributions over all relevant features and to marginalize out the missing ones.
All tasks have a generalization with missing inputs.

Multimedia Retrieval — 2018 5.2.1 Tasks Page 5-7

Regression is the task of predicting a numerical value given the input features. The learning
algorithm must find a function f that maps a M-dimensional vector x to a numeric value, i.e. f: R -
R. The difference to classification is the output: instead of a category, a real number is required.
Also, regression does not deliver distribution functions over all possible values.

— Applications: predictions / extrapolations to the future, statistical analysis, algorithmic trading,
expected claim (insurance), risk assessment (financial), cost restrictions, budgeting, data mining,
pricing (and impact on sales), correlation analysis

Clustering divides a set of inputs into groups. Unlike in classification, the groups (and the number
of groups) are not known beforehand and the machine learning algorithm must find them. As the
output is not known at training time, this type of task is called “unsupervised” while the ones before
are “supervised” (we tell the machine what outputs we expect).

— Applications: human genetic clustering, market segmentation (groups of customers), social
network analysis (communities), image segmentation, anomaly detection, crime analysis

Density estimation (probability mass function estimation) is the construction of an estimate of
an underlying, unknown probability density function given the input features. In the most simple
case, the algorithm must learn a function p: R® - R where p(x) is interpreted as a probability
density function (if x is discrete p is called probability mass function). The most basic form is shown
in the example on the right with histogram 046 e

0.14

based density estimation using two different 1 oml
numbers of bins. o '
— Applications: age at death for countries, £ vos}
modelling of complex patterns, feature e
extraction, simplification of models

0.15 -

P(t)

0.10 |

0.05 F
12 L

0

L
0.04 |

Al

(

0.00 (.00

1 1 1 1 L 1 1 1 1 !
-1 —10 -5 0 5 10 15 —15 —10 -5 0 5 10

Multimedia Retrieval — 2018

Imputation of missing values requires an algorithm to replace (estimate / guess) missing data with
substituted values. For a new example x € R with some missing x;, the algorithm must provide a

prediction for the missing values.

— Applications: incomplete sensing data, demographics (incomplete data over person), medical
analysis (incomplete or expensive test data), restoration of signal (after data loss)

Synthesis and sampling is a type of task where the machine learning algorithm must generate
new examples that are similar to the training data. In video games, for example, large portions of the
immersive landscape are generated automatically
instead of by hand. This also requires some sort of
variance in the output to break “dull” patterns that are
easily recognized as artificial landscape (see example
on the right side). Other examples include speech
synthesis where a written text is emitted as an audio
waveform for the spoken version of the text. The
challenge for the algorithm is the lack of a “correct
answer” and the necessity to include large quantities
of variation in the output.

Anomaly detection requires the algorithm to flag unusual, incorrect, or atypical events or data
points. The output can be a simple {0,1} flag (1 indicating an anomaly) or a probability for an
anomaly. Supervised anomaly detection needs a training set with labels “normal (0)” and “abnormal
(1)”. Unsupervised anomaly detection requires the algorithm to describe the normal behavior (e.g.,
using density estimation) and to detect outliers automatically.

— Applications: credit card fraud, intrusion detection (cyber security), outliers to improve statistics,
change detection, system health monitoring, event detection, fault detection

Multimedia Retrieval — 2018 5.2.1 Tasks Page 5-9

 Machine translation (MT) is the mapping of a sequence of input symbols (source language) to a
sequence of output symbols (target language). In simpler cases, subsequent input symbols
correlate directly to sequences of output symbols. Applied to natural language translation, however,
simple word-by-word translation is not sufficient and the algorithm must find a representation in the
target language that is structurally and semantically correct.

— Google Translate

English Spanish French English - detected ~ A8 English Spanish German ~

Machine translation (MT) is the mapping of a sequence of input symbols (source X Maschinenubersetzung (MT) ist die Abbildung einer Folge von Eingabesymbolen
language) to a sequence of output symbols (target language). In simpler cases, (Quellsprache) auf eine Folge von Ausgangssymbolen (Zielsprache). In einfacheren
subsequent input symbols correlate directly to sequences of output symbols. Applied Fallen korrelieren nachfolgende Eingabesymbole direkt mit Sequenzen von

to natural language translation, however, simple word-by-word translation is not Ausgangssymbolen. Auf die natiirliche Sprachiibersetzung angewendet, ist jedoch
sufficient and the algorithm must find a representation in the target language that is eine einfache Wort-fiir-Wort-Ubersetzung nicht ausreichend und der Algorithmus muss
structurally and semantically correct. eine Reprasentation in der Zielsprache finden, die strukturell und semantisch korrekt

| ist.
[F 4) « : # Suggest an edit

« Transcription asks a machine learning algorithm to observe a unstructured representation of the
data an to transcribe it into a discrete (often textual) form. The most widely known versions are
optical character recognition (OCR) and speech recognition.

 Dimensionality Reduction simplifies the input vectors to a lower-dimensional space. In many
cases, the output is interpreted as topics or concepts that are key to disseminate the input vectors
as good as possible (topic modelling). This allows the machine to more easily find documents that
cover similar topics, i.e., instead of considering hundred thousands of different terms (words), only a
few topics are considered. Dimensionality reduction is often used to reduce the amount of input data
but to keep as much of the core information as possible.

— Application: data mining, latent semantic analysis, principal component analysis, statistical
analysis, data reduction/compression

Multimedia Retrieval — 2018 5.2.1 Tasks Page 5-10

Reasoning is the process of generating conclusions from knowledge using logical techniques such
as deduction and induction. Knowledge-based systems have been used over the past 30 years
including expert-system written in prolog. Facts and rules were used to prove (or disprove) a new
statement within a closed world. Newer approaches use machine learning to prove theorems or
constraint solvers. Cognitive reasoning and cognitive Al have recently boosted performance of chat
bots and speech recognition.

Autonomous Robots work with reinforcement learning, i.e., it is not possible to provide samples
that connect input signals with correct or expected output signals. Rather, robots need to adjust their
behavior based on incentives and penalties provided by the environment. The rise of autonomous
driving has created an entire new set of challenges on reinforcement learning: machine ethics. While
this sounds like science fiction, there are many scenarios where robots must make decisions that
programmers cannot foresee or hard code. As an example, if the car is inevitably hitting an animal
or a person on the street, should the machine try a risky evasive move endangering its passengers
or accept the potential death of the animal or person (including potential damages)

— While the field is relatively young, recent
progress was accelerated by deep learning
techniques. Tesla states that its autopilot is
10 times safer than the average driver.

— Laws for and acceptance of robots in society
are in its infancy. People are still worried
about safety and mostly the fact of having
the car hacked

— Further obstacles are insurance issues
(who pays for a mistake of a robot)

Multimedia Retrieval — 2018 5.2.1 Tasks Page 5-11

5.2.2 Performance

« To evaluate (and improve) a machine learning algorithm, we need to provide a quantitative measure
for the “accuracy” of carrying out the task T. We already looked at different type of performance
measures in Chapter 1 (Evaluation of Performance). A short summary:

Binary classification (0-1 decisions) uses a confusion matrix to assess the performance, and
provides numeric summary values to optimize for a desired optimum for the task. Typical
measures include precision, accuracy and so on.

Multi-class classification (one out of a set of classes) requires a generalized confusion matrix
resulting in a table with pair-wise “confusion”. Accuracy still works fine; in addition, we can
summarize performance of a single class against all other classes.

Binary classification with scores and thresholds is a simple extension of the confusion
matrix. With increasing threshold values, we obtain a method to optimize the threshold
(adjustment of a hyper-parameter), and the Receiver Operating Characteristic Curve (ROC
Curve). The area under the ROC curve is a simple method to assess performance.

Multi-class Classification with Probabilities measures the performance based on the
probabilities on the class labels of an object. Typically, this is based on cross-entropy with the
log-loss measure being a simpler version of it.

With Regression tasks, we measure the performance as the mean squared error (MSE)
between the actual values and the predicted ones.

As we will see, machine learning algorithms not only use these measures to evaluate
performance but also employ them to find an optimal set of parameters to minimize the error/loss
function. In addition, it can also be used to control so-called hyper-parameters (as we see later).

Multimedia Retrieval — 2018 Page 5-12

5.2.3 Experience

« Supervised Learning algorithms observe a data set with features and a target for each instance of
the data set. The goal is to learn a general rule that maps features to targets and that can be applied
to predict the outcome of newly presented data items. The term “supervised” originates from the
view that the target is provided by an instructor or teacher. As an example, classification tasks
presents for each example, described as a set of feature, a target in the form of a label (or set of
labels). The “teacher” instructs the algorithm how sets of features are correctly mapped to labels

and the algorithm should learn the mapping rule.

feature 2

Classification

target: label in the
form of a shape

y

feature 1

target

Regression

v

feature

— As discussed in the “Performance” section, the teacher also provides an error measure that
enables the machine learning algorithm to assess accuracy during training sessions.

— Even though targets are given, the algorithm must be able to deal with noise in the output values
due to human errors (wrong labelling) or sensor errors (defects, distortion)

Multimedia Retrieval — 2018

5.2.3 Experience

Page 5-13

« Semi-Supervised Learning is a special case of supervised learning. The algorithm is presented
with features and targets, however, some features or targets are missing (incomplete observation) in
the training data. Depending on the task, the algorithm must either complete the missing features or

predict targets for newly presented data sets.

— Missing targets: The training set consists of complete features but some objects do not have
targets (or labels). Incomplete targets often result if the labeling process is expensive or labor
intensive. Consider a data set for credit card fraud detection with billions of transactions.
Naturally, credit card firms investigate only a small subset of “suspicious” transactions and label

them based on the outcome of an investigation (“fraud

no fraud”). The vast amount is not

labeled. To learn from such data sets, algorithms make one of the following assumptions:

1) Smoothness: points in close proximity share the
same label, i.e., the distribution function is continuous

2) Cluster: data tends to form clusters and all objects
in the same cluster share the same label

3) Manifold: often, features are high-dimensional but
there are only a few labels. Hence, the data is more
likely to lie on a low dimensional manifold.

Semi-supervised learning takes ideas both from
supervised learning and from unsupervised learning.

 Induction: if only a few labels are missing, a

feature 2

A

Classification

target: label in the
missing target form of a shape
A #

A A 58
A 8 8
DDDD
O DD
3 O g 8

y

feature 1

good strategy is to learn the distribution from the labeled data items with a supervised learning
method. We can then go back and predict the missing labels. However, this does not work well
if most objects have no label as the training set is not sufficient to capture the true distribution
of labels. Evidently, such training ignores most of the data (information loss).

Multimedia Retrieval — 2018

Page 5-14

« Transduction: to consider all data points, transductive
algorithms identify clusters in the data set and apply
the same label to all objects in the cluster. A simple
approach is the partitioning transduction:

1. Start with a single cluster with all objects

2. While a cluster has two objects with different labels
Partition the cluster to resolve the conflict

3. For all clusters
Assign the same label to all objects in the cluster

There are other variants to develop the clusters.

feature 2

Classification

A target: label in the

missing target form of a shape
Ay s 3
A g

v

feature 1

— Missing features: The training set has complete targets, but some objects lack some of the
features. For newly presented data, potentially with missing features, the algorithm must predict
the target. A good example is disease prediction where the target (“healthy”, “has disease”) must
be predicted from a set of test results. Laboratory tests are expensive so naturally not all features
are available. The approach to do so depends on the selected method:

» Naive Bayes (more details later in the deck) is a simple technique for constructing classifiers
based on conditional probabilities. Let there be K classes €, and M features x;. The best class
k* is then given by k* = argmax P(Cy) [1; P(x;|Ci). The probabilities P(C) and P(x;|C,) are

k

learned from the training data (ignoring missing features x;). To predict the class for a new
object with missing features, we simply ignore them in the Naive Bayes optimization.

+ If we have learned the distribution function over all features, we can simply “integrate” or
“average” over the missing features, i.e., we assume that the missing features follow the
distribution of the training set and we approximate them with an expected value.

Multimedia Retrieval — 2018

Page 5-15

« Unsupervised Learning algorithms observe a data set without targets and infer a function that
captures the inherent structure and/or distribution of the data. In other words, we want to identify
interesting facts in the data and derive new knowledge about its structure. In contrast to supervised
learning, there is no instructor or teacher that provides targets or assess the performance of the

outcome. The algorithm must learn without any guidance. Zasifesilan
— Clustering: the most common task for unsupervised A outlier / anomaly
learning is to identify groups of objects that “belong” el m &
together (with regard to a distance function). The number & ® o 8
of clusters is often not known and must be learned too. 2 % o 8
— Outlier/Anomaly detection: the algorithm must learn the 2 “ By
“normal” behavior through any means and identify % s; % b
outliers that significantly differ from the other objects. 8 B 8 ® 8
Note that the training data may also contain outliers. Tu ontg"F 2 pe
— Density function: describe the data set through an feature 1

“appropriate” denSity function. A Simple case would be a Gausoiau ApMIVAITIAGUUIT Allu a DITPIG
learning of the mean value and the variance. More complex cases may choose from a set of
different distribution functions and optimize to the “best fit”

— Dimensionality reduction: high-dimensional features often disguise an inherent simple
characteristic of the data. Principle component analysis extracts “core concepts” along principal
directions in the feature space that provide a simpler (but still accurate) view on the data.

— Self-organizing maps (SOM): a SOM produces a discrete (often 2-dimensional) presentation of
the data in a mesh of nodes, thereby mapping high-dimensional data to a low-dimensional view.
It uses a competitive learning approach.

Multimedia Retrieval — 2018 Page 5-16

* Reinforcement learning evaluates possible actions in an environment so as to maximize the
cumulative award. The problem is very general and broad and studied in various fields such as
game theory, control theory, operations research, simulations, and genetic algorithms.
Reinforcement learning is different to supervised learning as correct input/output correlations are not
known. The focus is on finding a balance between exploration (of unknown situations) and
exploitation (of current knowledge).

— Areinforcement agent typically interacts with its environment in discrete time steps. At each time
t, the machine observes the environment including potential rewards. It then chooses and action
from the set of available actions and performs it against the environment receiving rewards for
the transition. The objective is to maximize the cumulative rewards.

reward l
Reinforcement .
—» Sensor ———»» ; Action
state Learning policy
Agent

Multimedia Retrieval — 2018 5.2.3 Experience Page 5-17

— A policy is a series of actions. Instead of optimizing for individual actions, reinforcement learning
algorithms define policies and choose the best policy for immediate and cumulative rewards.
Exploration is the process of developing (or composing) new policies, while exploitation is the
application of the best known policy. Exploration can lead to algorithms that are no longer
understood by the human developers. AlphaGo, Google’s Go program that has beaten the world
champion, can not be explained anymore, i.e., it is not clear how the computer decides and what
the winning strategy is.

— Reinforcement learning is an efficient approach if the environment behaves non-deterministic or
even chaotic due to incomplete or erroneous observations. It is the only viable option if we lack
an accurate error (or success) measure. Driving autonomously in a city is a good example for the
chaotic and non-deterministic nature of such tasks. Though it is possible to describe broadly what
success means (“arrive safely at the target within n minutes”), it is not possible to provide
accurate measures at every point in time.

Multimedia Retrieval — 2018 5.2.3 Experience Page 5-18

5.3 The Learning Proces

« Machine learning algorithm learn from data. It is critical that we feed the “right” data into this process
for the task that we want it to solve. “Right” is not only referring to good data quality, complete data,
but also the extraction of meaningful features. A number of challenges arises in this context:

— Feature selection, i.e., ability to capture essential information to learn a task

— Data cleansing, i.e., ability to remove the negative impact of outliers or of noise

— Normalization, i.e., ability to address correlation between features and to normalize scales
— Curse of dimensionality, i.e., inability to learn underlying structure due to sparse data space
— Opverfitting, i.e., inability to generalize well from training data to new data sets

— Underfitting, i.e., inability of the algorithm to capture the true data structure

« Data preparation is a 3-step approach which we do not further discuss in this section. With data we
always include features and targets (if they are available)

1) Select Data
2) Preprocess Data
3) Transform Data

« We need to pay attention how we divide the data sets into training sets, validations sets, and test
sets. The latter aspects is essential to adjust hyper-parameter of the algorithm including capacity
and to measure its ability to correctly generalize. In the following, we focus on the overall learning
process and address the above overfitting and underfitting issues.

Multimedia Retrieval — 2018 Page 5-19

Features Targets

Train model
with training
set only

Training
Set ©

1
Split training ! e
and validation I
data sets

Split training
and test data
sets

| > Validation

v

lj/

—» Validate

Validate model, adjust
hyper parameters, and
repeat steps 2, 3, 4

_—

N

————————— > Test Set —» Assess —Q—V.

y

Assess model with test
set and compare with
other methods

/-

4

Results

« To understand how well a machine learning algorithms can generalize to new data sets, it is
essential that training sets and test sets are distinct. Otherwise, we can construct a memorizing
algorithm that simply stores all features and targets. Assessments of such an algorithm will produce
the best possible results, but the algorithm will perform poorly on new data.

* Most algorithms have models with so-called hyper parameters that drive their inherent capacity or
structure. For example, we can vary the degree of a polynomial regression model to adjust to a
larger variety of functions. In a neural network, the capacity is provided by the number of neurons
and connections. In a nutshell, models with small capacity struggle to fit the training data and to
capture its distribution; models with high capacity tend to overfit the training data and poorly
generalize to new data sets. The usage of validation sets (again, distinct from the training sets)

allows algorithms to optimize their hyper-parameters.

Multimedia Retrieval — 2018 5.3 The Learning Proces

Page 5-20

« Overfitting and underfitting are common problems in machine learning. Overfitting occurs when
the model is excessively complex to match the training data as accurately as possible. Often, such a
model has too many parameters relative to the number of training items. But even worse, the model
is likely to overreact to minor changes leading to poor predictive performance (see figure on the right
hand side as an example). Underfitting, on the other side, occurs when the model cannot capture
the underlying trend of data and over-simplifies the distribution. For instance, fitting a linear model to
a non-linear data distribution will result in a high training error and poor predictive performance.

optimal

underfitting overfitting

overfitting
optimal

underfitting

— As illustrated above, we can observe that overfitting is the result of optimizing for the training data
with too many parameters. With MSE, an overfitting model shows small errors indicating its ability
to adapt nicely to the training data, but it can not predict new data points well enough.

— Underfitting, on the other side, shows both large errors on the training data and poor prediction
performance for new data points; it obviously cannot capture the true essence of the distribution.

— We can control overfitting and underfitting by altering the capacity of the model. Optimal
capacity is reached if the model exhibits small errors on both the training set and the validation
set. To work best, training set and validation set must be distinct; but we can run several
iterations to adjust the capacity with different partitioning of training and validation set.

Multimedia Retrieval — 2018 5.3 The Learning Proces Page 5-21

When altering the capacity of the model, Occam’s razor provides an intuitive heuristic. The principle
was first stated by William of Ockham (c. 1287-1347) and has been made more precise over time,
most notably in the 20" century for statistical learning. The principle states:

— Numqguam ponenda est pluralitas sine necessitate [Plurality must never be posited without necessity]

— In a more modern language, the principle states that among competing hypothesis that explain
observations equally well, one should choose the “simplest” one.

— Indeed, simpler models are better able to generalize but we must choose a sufficiently complex
model to achieve low training error. Typically, training error decreases gradually as capacity
increases. The generalization error, however, has a U-shaped curve as a function of capacity:

A

error

underfitting | overfitting
zone | zone

generalization error

generalization gap
training error

»

optimal capacity capacity

The bias-variance tradeoff (or dilemma) is the problem of simultaneously minimizing two sources
of errors that prevent models to generalize well beyond their training data

— The bias is the error of a model causing it to miss relevant relations in the data set (underfitting)

— The variance is the error from sensitivity to small changes in the input. High variance can cause
the model to adopt to noise in the training data rather than to the data (overfitting)

The bias-variance decomposition is a way to analyze the expected generalization error. It uses
the sum of the bias, variance, and irreducible error (noise) in the problem.

Multimedia Retrieval — 2018 Page 5-22

« To drive the learning process, we partition the original data set (and its targets) into a training set
(70-80% of data) and test set (20-30% of data). If the model has need to optimize some hyper-
parameters, we further partition the data to obtain the validation set (20-30% of data):

— The training set is used for learning, i.e., to fit the parameters/weights minimizing training error

— The validation set is used to tune hyperparameters (models, capacity) to prevent underfitting
and overfitting issues. Validation data is not used for training and also not used for final testing

— The test set is used to assess the performance, i.e., the ability of the model to generalize

« Ideally, the three data sets are large enough to represent the true distribution equally well. If the
data set is too small, however, validation and testing lack statistical certainty on average errors
making it difficult to assess and compare performance. Cross-validation uses rotation schemes an

multiple iterations to improve the accuracy of validation and testing.

— k-fold cross validation partitions the original data set into k equal sized subsamples. In each
iteration, one subsample denotes the test set, and the remaining k-1 subsample form the training
set. The k results are averaged to produce a single value. k=10 is a typical value. The same
approach can be used for the validation set.

test set

1st iteration | 000

|;“..

2nd jteration 000

3rd jteration 000

4t jteration o0

5t iteration 000

training set

00000 mloom

00000 k’..' .”O:.

00000 mloom

0000 o000
e 0000 o000 f The same
applies for the
0000000000000000 validation set
oc|ooo o oo0
|
o*ooo 0000006

Multimedia Retrieval — 2018

5.3 The Learning Proces

Page 5-23

5.4 Methods

» Classification of Tasks (based on Input)
— Unsupervised
— Supervised
— Semi-Supervised
— Reinforcement Learning
» Classification of Tasks (based on Output)
— Regression
— Classification
— Clustering
— Density distribution of a distribution
— Topic Modelling / Dimensionality reduction

« Approaches considered in the following
— Decision Trees (ID3, C4.5)
— Nalve Bayes
— Unsupervised Clustering (k-means / Expectation Maximization)
— Multi-layer Network
— Deep Learning

Multimedia Retrieval — 2018 5.4 Methods Page 5-24

5.4.1 Decision Tree Learning

« Classification is a key concept to obtain higher-level features. The usual approach is to extract low-
level features from the signal, normalize and transform the features, and deduce a mapping to pre-
defined categories. Let us consider an audio database with a simple classification as follows:

Male

Speech Female
Child

——— Silence

—————— Noise

— Classical
————— Rock ——

Pop

Jazz

« Decision tree learning is a simple but effective classification approach. We start with a data set that
has discrete and continuous features and given labels (targets for objects), and then create the
“optimal” decision hierarchy to map the features with a series of tests to their labels. The resulting
classification tree is easy understandable by humans and machines and can create efficient rules for
classification, i.e., predicting the class with a minimal number of tests.

Multimedia Retrieval — 2018 Page 5-25

« The concept of classification trees is quite old. An early example is the Orde fomdum quemi METHODI kbbter

classification scheme of Carl Linnaeus (1735) for plants (see right hand e — LU
figure) and animals. Each node represents a test and each branch to | G,

the right denotes a possible outcome of the test. Leaf nodes, finally,
contain the class labels. The tree does not have to be balanced and
different numbers of tests may be required to reach a leaf node.

« A node in a classification tree usually tests for a single feature only. If
the feature is discrete (a set of values), a node partitions the values

%Vll RIVINI 101

Numerog, y LuBWIGH prid

2%

) l le-%

Iz
w- X1 TOURNEFORTIE 319
vaR- Figun {X1, FONIEDERA 109

x|
|

SHninlutem —a XV LINMN. ‘44t
Frutificatiooe swea ~— XV} FI.AGMENT (11

XVII VAILGANTII . 17
"“"_""""—“""{xvxll PONTEDEREs:s

Vsbelorom ___‘_{ng 418 Z{;

into distinct sets (or just individual values) each with a separate branch e “,%gﬁ :;;
out. The test in the node checks which partition includes the feature value. — ;‘:m:rt.fs& o
If the feature is continuous, the branches are given by distinct ranges in the {run—— e o
feature domain. Features can be multi-dimensional but it is more common e cm e s A B

to treat each dimension as an individual (“orthogonal”) feature achieved

through dimensionality reduction. A special case is the binary test node which yields “true” if a
condition on the feature is met and otherwise no. In many cases, nodes branch always into exactly
two children (binary decision trees) but actually any number of branches is possible. Examples:

true x=a x €{a,b,c} x<—=10

x=b ¢ x €{d,e <
— f(x)? —» equals? ——» —» included? #» —>» inrange? —}10 x <100
‘ false | E56 | xE{f,g,h}k | 100 < x >

binary test discrete values discrete sets continuous values

(f(x) is the condition)

Multimedia Retrieval — 2018 Page 5-26

« The leaf nodes denote the labels (or targets) associated with the objects. The series of test should
deterministically lead to a leaf node and thus the label. Example:

credit
worthy?

true

v

age < 25 false

v

v

student?

25 < age <65

v

_

age = 65 _ credit score < 75

score?

score =75

v

v

yes

no

yes

no

yes

_{ Note that this

tree is not
balanced

* In order to create a decision tree, the machine learning approach must identify a set of tests against
the features of the training data sets that lead to the observed labels with a minimal number of
steps. Once the tree is learned, we can follow the decision hierarchy for a new data instance until a
node is reached. The label in the node is our prediction for that new data instance.

— Note: the condition “minimal number of steps” leads to the most simple tree that maps features to
labels following Occam'’s razor (i.e., prefer simple solutions over complex ones)

Multimedia Retrieval — 2018

Page 5-27

To construct decision trees, we will use a fundamental concept from information theory: information

gain. In a nutshell, the information gain is the reduction of entropy given the observation that a

random variable has a given value. With this in mind, we build test nodes in the decision tree such

that they maximize the information gain, i.e., choose a feature and conditions on it that reduces the

uncertainty of the outcome (here: label) as much as possible.

— Let T be the training set of the form (x,y) = (x4, x5, x3, ..., xy,) Where x; is the j-th feature value
with values from V; and y the target label. The expected information gain is then a function of
entropy H. Let T;,, = {x € T | x; = v} be the subset of T such that all elements have x;= v:

] v

IG(T,x;) = H(T) — Z ||1r|

UEW]

Entropy H is defined on the probabilities of the target labels y;. P(y;) denotes the probability that
a randomly selected item from T has the label y = y;. We can estimate these probabilities
through simple counting of labels in the training set.

Entropy is usually based on log, but
H(T) = — Z p(yi) -log, (P(}’i)) for the purposes h_erc_a, the basis of
: the logarithm is irrelevant
l

H(T;0) = = D P(il; = v) -log (P(vilx; = v))

i

In summary, the idea of information gain is to measure whether the entropy (uncertainty about
the distribution of the target labels) would decrease if we split the data set along the feature x;

Multimedia Retrieval — 2018

Page 5-28

— Example: consider the table on the right hand side. There are

Outiook | Temp.___|Humidity _|windy _|Play

: _ Sunny Hot High FALSE [
four features x; in the first columns and a target y (“can we Sunny Mot High RUE
play tennis?”) in the last column. Let us compute the information e — -
gain if we choose j = Windy. The entropy H(T) is obtained as: Rany cool Normal FALSE

Rainy Cool Normal TRUE m
9 9 5 5 Overcast Cool Normal TRUE
H(T) = — P(y) -log,(P(»)) = =7 log, (ﬁ) =<7 log, (ﬁ) = 0.9403 Sunny Mild High FALSE [NEIO
ye{Yes,No} Sunny Cool Normal FALSE
] Rainy Mild Normal FALSE N5
14 entries with 9 “Yes’ and 5 ‘No’ A T TN S N
Overcast Mild High TRUE
_ _)] Overcast Hot Normal FALSE
The entropy given the observation of x; = v for j = Windy Rainy ~ Mid High TRUE [
With Viyingy = {TRUE, FALSE} is:
6 TRUE entries with 3 ‘Yes’ and 3 ‘No’
—Z—
3 3\ 3 3
H(Tjrguz) = — P(ylx; = TRUE) - log, (P(y|x; = TRUE)) = —<log <€> — 2 log, <€> =1
ye{Yes,No}
6 6\ 2 2
H(’]I‘LFALSE) =- P(y|xj = FALSE) - log, (P(y|xj = FALSE)) =-3 log, (§> 3 log, (§> = 0.8113
ye{Yes,No}
T

8 FALSE entries with 6 ‘Yes’ and 2 ‘No’

Leading to an information gain IG(T, x;) of:

|Tj,v|

IGT,-=H']1‘—Z H(T
(x}) (1) ve{TRUE FaLsE} |T| (]'v) 14 14

14 entries with 6 ‘TRUE’ and 8 ‘FALSFE’

6 8
=09403 ——-1——-0.8113 = 0.0481

Multimedia Retrieval — 2018 5.4.1 Decision Tree Learning

Page 5-29

« A high-level pseudo code for constructing a decision tree is given as follows

Function DecisionTree(Features, Targets)
TrainingSet, validationSet, Attributes & CleanseData(Features, Targets)
Root €« BuildTree(TrainingSet Attributes)
Rules €« PruneTree(Root, ValidationSet)
Return Rules

— We can re-write a decision tree as a set of rules where each rule denotes a path from the root to
a leaf with all tests along the path and the label of the leaf. Depending on the programming
context, the algorithm can produce native implementations with the high computational efficiency
(while traversing the decision tree is sub-optimal). For instance:

true

———— > Yes Note that ‘true’ and ‘false’ are labels

. ol and not Boolean values in the rules
age < alse
,—» student? —» no

Rule Set:
credit 25 < age <65 yes €& (age<25) AND (student==‘true’)
— ? >
worthy? age yes - no € (age<25) AND (student==‘false’)
| a9¢ =65 credit score <75 yes € (25<=age) AND (age<65)
score? > no no & (age>=65) AND (score<75)

yes € (age>=65) AND (score>=75)

| score =75
yes

public boolean isCreditworthy(Customer c) {

if c.getAge()<25 && c.isStudent(Q) return true;
if c.getAge()<25 && !c.isstudent() return false; rules compiler
if 25<=c.getAge() && c.getAge()<65 return true;

if c.getAge()>=65 && c.getCreditScore()<75 return false; \§§:\\\\
if c.getAge()>=65 && c.getCreditScore()>=75 return true;
return false; // default: false

Further optimizations of
code generation possible

Multimedia Retrieval — 2018 Page 5-30

« Cleanse data: our running example from the previous page had unique rows, i.e., there are no two
entries with the exact same feature values. In practice, however, there will be several observations
with the same feature values, and more importantly, they may have conflicting labels. In addition,
some feature values may be missing, or labels are not given. Not all features might be useful for
classification. E.g., having a column “Date” in our running example would not help us to identify
good rules for classification. Further transformations on the data are possible depending on the
domain. This can include outlier and noise elimination, or dimensionality reduction:

Function CleanseData(Features, Targets)
Features, Targets €« eliminate entries with missing Targets (=NULL) and outliers
Features € predict missing Features (=NULL) with domain knowledge
Features € transform and normalize Features with domain knowledge
Attributes ¢« select set of useful Features with domain knowledge

collapse entries that share the same Features

assign the most frequent label from Targets to the collapsed entry

keep Counts (=number of entries) for correct entropy calculations later on
Data €& combine Features, Targets, and Counts into a structure

TrainingSet, validationSet & Split Data into distinct sets with given Ratio (e.g., 70:30)
Return TrainingSet, validationSet, Attributes

— Note: most of the data cleansing and feature selection is domain dependent. Although there are
generic approaches for data preparation such as dimensionality reduction, clustering and outlier
elimination, most of the manual work goes into a good feature design with the goal to have as
few features as possible with minimal correlation between each other and the ability to separate

target values.

Additional information — not part of the exams

Multimedia Retrieval — 2018 Page 5-31

« Build tree: Tree construction is recursive. At each iteration, a new node is inserted with a test on a
selected attribute. The algorithm is called for each branch until the subset is empty or has one label

Function BuildTree(Data, Attributes)
N € new Node and associate most common Tlabel in Targets with node N
If all Targets have same label Then Return N
If Attributes is empty OR Data too small Then Return N
A, Tests, Fitness &« SelectBestAttribute(Data, Attributes)
If Fitness below Threshold Then Return N
Foreach T in Tests Do
B €< add new branch to node N for test T
P €« get partition of Data which fulfills test T
If P is empty Then add new (empty) node below branch B with same label as node N
Else C ¢« BuildTree(P, Attributes - {A}); add node C below branch B
End T
Return N The typical approach is to use an attribute only once
on each decision path in the tree. Hence, tree height
is limited by the number of selected attributes.
Function SelectBestAttribute(Data, Attributes)
Foreach A in Attributes
Tests[A], Partitions €« split feature values for attribute A and determine partitions
Fitness[A] &« determine a fitness/score for attribute A (e.g., information gain)

End
Abest €& find A with Fitness[A]==max(Fitness)
Return Abest, Tests[Abest], Fitness[Abest]

— We can observe that attributes are only used once during classification. We may relax this
condition for continuous features to enable finer interval splits later in the tree.

— The scoring function determines how well an attributes helps us to decide quickly along the paths
in the decision tree. In ID3 this is the information gain as introduced before; extensions such as
C4.5 balance this with the ability of the attribute to generalize.

— We will discuss further details when we review concrete implementations like ID3 and C4.5.

Additional information — not part of the exams

Multimedia Retrieval — 2018 Page 5-32

 Prune tree: decision trees tend to overfit to the training set due to their recursive creation of nodes
until no further attribute split is possible. As a consequence, generalization to new data sets may be
poor. As we discussed earlier, a validation step allows a machine learning approach to compromise
training errors with the ability to generalize. To do so, the pruning step eliminates tests that are not
significantly improving performance against the validation set (remember Occam’s razor). Pruning
can also be done during building time: in BuildTree(), if the data set is too small or if the split along
an attribute is not significant enough (fithess too small), the algorithm stops the recursion. We
illustrate a few pruning techniques:
— Elimination of branches: we assess the performance against the validation set, for instance,
using accuracy (percentage of correct predictions). Then, we visit decision nodes and replace the
subtree underneath them with leaf nodes if that improves overall accuracy

Function PruneTree(Root, ValidationSet)

Repeat _ _ This pseudo-code is obviously not
Accuracy € get total accuracy for validationSet optimized for speed but rather shows the
Foreach N underneath Root steps that are necessary for pruning

If N is Teaf Then Accuracy[N]=Accuracy
Else

replace subtree at node N with leaf (keep Tabel of N = most common target)
Accuracy[N] € get total accuracy for validationSet
insert original N into the tree again

End

End
N €& find node N with AccuracyNode[N]==max(AccuracyNode)
If AccuracyNode[N]>Accuracy Then replace subtree at node N with Teaf

until AccuracyNode[N]<=Accuracy

Return (Rules €& create rule set given the tree underneath node Root)

Additional information — not part of the exams

Multimedia Retrieval — 2018 Page 5-33

— Pruning rules: Each rule contributes to the overall accuracy for the data items that pass through
it. Initially, rules are not sorted because they are mutually exclusive (i.e., each data item can fulfill
exactly one rule). The ‘pruning rules’ approach considers each condition in the rules and
eliminates them if that improves overall accuracy. As a side effect, rules are no longer distinct
and need to be sorted by their contribution to the overall accuracy.

This pseudo-code is obviously not
optimized for speed but rather shows the

Function PruneTree(Root, VvalidationSet) steps that are necessary for pruning
Rules & create rule set given the tree underneath node Root ___zz//////’
Repeat

Accuracy € sort Rules by accuracy; get total accuracy for validationSet
Foreach R in Rules
ForeEach condition C in R
remove condition C in R
AccuracyRule[R][C] €« get total accuracy for validationSet
insert condition C into R again
End
END
R,C €« find rule R and condition C with AccuracyRule[R][C]==max(AccuracyRule)
If AccuracyRule[R][C]>Accuracy Then remove condition C in R
Until AccuracyRule[R][C]<=Accuracy

Return (Rules € sort Rules by accuracy)

Additional information — not part of the exams

Multimedia Retrieval — 2018 5.4.1 Decision Tree Learning Page 5-34

* Implementations (selected examples):

— The ID3 algorithm was invented by Ross Quinlan in 1986. It only worked for attributes with
discrete values and used the information gain to select attributes. For each attribute x; and each

value in V;, the training set T is split into subsets T; ,, with v € V;. The information gain is:

IG(T,x;) = H(T) — Z ITI

UEW

Jjv

To compute the entropy H(T) over the K labels y,, we simply count the frequencies f; (T) of y,
in the set T. Similarly, for the subsets T, ,,, the frequencies are given by fk('ﬂ"j,v). This leads to:

K
_ fk(T) fk(T) |T]v| f(T]v) fk(T]v)
r0(r) =~ > Ay .logz(m) z s z e

The best attribute x;- maximizes the information gain, hence:

fi(T; Since we are looking for the
0= argmaX IG(T x]) = argmaxz Z fk(TJ v) log (|§I‘ jT) maximum value, the base of
i DA

k=1vEeV; the logarithm is irrelevant.

If T; ,, is empty, the summand evaluates to 0 - 10g2% = 0, i.e., empty partitions are simply ignored.

Similarly, if fk(TJ-,v) = 0, the summand evaluates to 0 - log, |1r_0-| = 0.
v

 Decision nodes only exists for discrete attributes. Partitioning is straightforward: for each
possible value of the attribute, its partition contains all training items that have that value.
Should a partition be empty (e.g., at that level of the tree no item has the value), prediction
assume the most common label of the node.

Multimedia Retrieval — 2018 Page 5-35

— Ross Quinlan refined the ID3 algorithm and published the C4.5 algorithm in 1993. It got quite
popular after ranking #1 in a Springer LNCS publication “10 top data mining algorithms (2008)".
C4.5 addresses many of the disadvantages of the original ID3 algorithm:

« The information gain measure favors attributes with many values increasing the risk of
overfitting the training data. Quinlan improved selection of attributes with the so-called split
information. It is given as the entropy with respect to the attribute values rather than with
respect to the target values as usually in this section. For each attribute x; with discrete values

v € V;, the training set T is split into subsets T; ,,. The split information SI('JT, xj) iS:

_ Mol 1og, ol
SI(T, x;) = Z T 27T
VeV
The gain ratio is then the ratio between information gain and split information:

I1G(T, x;)
SI(T, x;)

GR(T,x;) =

A practical issue, however, occurs if one T;,, is almost as big a T. This leads to a split
information that is close to zero and hence a very large gain ratio. Clearly, such attributes are
not interesting for decision nodes as most entries lie in the same branch. To counter this
anomaly, the attribute selection process works as follows:

compute IG(T, x;) for all x;
» select a threshold IGryyesnoia, fOr example:

* IGrhreshold = avg (1 G(T, xj)) (mean information gain)
* IGrpreshola = Pso |1G(T, x; median information gain, 50-percentile)
]
* = argmax (—IG(T’xj))
J 5 SI(T.x;)

J; IG(T,xj)>IGThreshold

Multimedia Retrieval — 2018 Page 5-36

* To allow for continuous values in decision trees, C4.5 maps a continuous attribute x; to a
Boolean attribute with a simple threshold value 7. If x; < 7, then the value is ‘true’, otherwise it
is ‘false’. So how can we select the best threshold value? Consider the example

4
II_-----

Obviously, we want to select a threshold value that maximizes the information gain. By sorting
the training set according to the attribute values, we only need to identify adjacent data items
with different targets, and create threshold candidates in between their values. For the example
above, the first candidate is between 48 (No) and 60 (Yes), so we select (48 + 60)/2 = 54. The
second candidate is between 80 (Yes) and 90 (No), soitis (80 + 90)/2 = 85. This produces
two decision criteria Temperature.c, and Temperature_ gz for which we compute the
information gain and select the better one.

There are extensions that map a continuous attribute to several intervals instead of just two as
proposed by the C4.5 algorithm. In such cases, a balance is required to avoid overfitting to the
intervals of the training set (e.g., using the validation set and an alternate scoring).

» There are several strategies to address missing values: the most simple one is to dismiss the
object further down the branch if a test cannot be performed. This, however, disables also
predictions for new data sets with missing values. A better strategy is to assign the most
common value for the attribute at the current node (either for all training items or for only those
that share the same target) and continue with this new value. A more complex approach is to
compute distributions across all values, and use fractions for each value when following the
branch. For instance, if there are two values, and if 40% of the data items have value 1 and
60% have value 0, a data item missing this attribute will be split and used in both branches but
only counting for a fraction (0.4 in the branch for 1, 0.6 in the branch for 0).

Multimedia Retrieval — 2018 5.4.1 Decision Tree Learning Page 5-37

« Example: audio classification

— Decision trees are very simple and produce efficient classifiers that are more than sufficient for

many tasks. An example is discussed here: classify audio signals into speech and music.

— In the learning phase, we need to pre-process the audio signal, extract features, gather statistical
information about features and their mapping to output classes (music, speech), and select the
best features for classification. In this example, we use C4.5 to select features and derive rules.

\ 4

targets

Segmentation
> length=4s
hop=100ms
Audio
Signal v
> |Fr?:]£g o Feature _ Statistical features i
> ength=40ms > . > _ > .
hop=20ms Extraction Computation

5

A\ 4

——» HZCRR

v

——» LSTER

v

—» AM Ratio

v

> FFT

Co ——> MET —»
MFCC
¢y ..,Ciy ——» VAR ——>»

v

VSF

Example with a combined feature extraction and statistical computation [Castan, 2010]

Features (6 dimensions)

Rule
Set

Multimedia Retrieval — 2018 5.4.1 Decision Tree Learning

Page 5-38

— Framing and Segmentation: the audio signal is processed in overlapping frames and segments.
Each frame and segment has the same length, and the hop distance specifies when the
subsequent frame/segment starts. Typically, features are extracted per frame, and statistical
measures are applied for the segment over its frame.

— Castan (2010) focused on a small number of characteristic features:

HZCRR: The Zero-Crossing Rates (ZCR) measures how often the amplitude of the signal
passes the 0-value within a frame. The High Zero-Crossing Rate Ratio (HZCRR) measures,
per segment, the ratio (percentage) of ZCR values of frames in the segment that are 1.5 times
higher than the average ZCR value of frames in the segment.

LSTER: The Short Time Energy (STE) is simple the sum of squared amplitude of the signal
within the frame (a measure of energy in the frame). The Low Short Time Energy Ratio
measures, per segment, the ratio (percentage) of STE values of frames in the segment that are
smaller than 50% of the average STE value of frames in the segment.

AMR: The Amplitude Modulation Ratio (AMR) measures the low-pass energy of a frame, i.e.,
the sum of squared amplitude after applying a low-pass filter with cut-off at 25Hz. It then
measure the ratio of highest energy over lowest energy over all frames in the segment. Speech
has a much higher ratio than music due to gaps between vowels and consonants.

VSF: The Spectral Flux (SF) is the Euclidean distance between subsequent frames over their
fourier transformed signals (spectrum magnitudes). The Variation of Spectral Flux (VSF)
measures the variance over the frames in the segment.

MET & VAR: For each frame, we extract 13 Mel-Frequency Cepstrum Coefficients (MFCC)
denoted as C,, ..., C;,. The Minimum-Energy Tracking (MET) measure how long C, is above a
threshold. Pauses in speech will result in short lengths. VAR sums the variance of all MFCC
over the frames in the segment. Small VAR values indicate music.

Multimedia Retrieval — 2018 Page 5-39

— In the prediction phase, we need to perform the same pre-processing, windowing, feature
extraction, and statistical computations as in the learning phase. In addition, we want to smooth
the results over the entire duration of the song (voting based approach) or to segment a
continuous audio signal (e.g., radio broadcast) to detect changes from speech to music.

Audio - |ei;?mgﬂs o Feature .| Statistical features | | Rule
Signal hop=20ms Extraction Computation Set
N predictions
continuous stream single file
v \ 4
Smoothing Voting
Segmentation v v
> h|engifc‘)=o45 Segmentation
op= ms . ps q
P & Classification
Classification

« Smoothing uses weighted sums over past predictions with exponentially smaller weighs to
avoid fast alteration between targets. If enough support for a change is present, segmentation
closes the current segment (not to be confused with the segments used for feature extraction)
and labels it with the last class label. Then it marks the start of a new segment.

 Voting is rather simple: the single file is classified either by the label most frequently predicted
for its segments, or classification returns probabilities for labels based on their frequencies in

the predictions over all segments of the single file.

Multimedia Retrieval — 2018 5.4.1 Decision Tree Learning Page 5-40

5.4.2 Naive Bayes

« Bayesian classifiers go back to 1950. It has been applied in many areas, and still is competitive in
text classification and medical diagnosis. Especially, Naive Bayes scales very well to large feature
dimensions where other methods, like decision trees, struggle from the curse of dimensionality:

* Naive Bayes uses a conditional probability model based on Bayes theorem:

P(x|Cy) - P(Cy) . likelihood - prior
P(x) posterior =

P(Cylx) = ,
evidence

where x is a feature vector and C,, the class (=target). P(C}) is the so-called “prior”, i.e., the
knowledge (here a probability) about the distribution of classes Cy. P(x|Cy,) is the likelihood to
observe the feature x for a given class C,, and P(x) is the evidence to observe x (for any class).
P(Cy|x) is then the so-called “posterior”, i.e., the knowledge we gain (or better: predict) given the
observation of feature x to infer that it belongs to class Cj,.

« Let x be a high-dimensional vector, for instance, from a huge term space for documents. Due to the
high-dimensionality and the limited set of training data, it is difficult to accurately describe the
probability distribution function in such a sparse space. To simplify matters, naive Bayes assumes
conditional independence of features. This immediately leads to the following simplification:

M
1 Note that P(x) is a constant over classes
P(Crlx) = P(Cylxq, ooy xpy) = m - P(Cy) - 1_[P(leck) cx and scales the probabilities. For our
j=1

purposes, we do not need to know it.

« Given the probability model, we pick the hypothesis (here: class Ci+) which is most probable. This
selection rule is also known as the maximum a posteriori (MAP):

M
That is it! The equation describes the decision rule
k* = argmax P(Cy|x) =argmax P(Cy) - | | P(x]-|Ck) of Naive Bayes. The only thing left are the estimates
k k =1 for the probabilities on the right hand side

Multimedia Retrieval — 2018 Page 5-41

To obtain the prior and the likelihood, we need to estimates the probability distributions based on the
training set. And we need to address a number of practical issues such as numerical underflow due
to the multiplication of many (small) probabilities, smoothing to address missing features, and
feature selection. At the end, we apply the method to text classification

Learning process

— Estimating P(Cy) is the easy part: let N, bet the number of training items with label C;, and let N
be the total number of training items. Then:

Ny
P(Cy) = N

If the exact numbers are not clear (for instance, spam classifier: what is the ratio between spam
and normal email?), the probabilities can be approximated with P(C;) = 1/K with K denoting the
number of classes, i.e., equiprobable classes. This is not accurate but works well.

— To find the probability distribution P(x;|C;) we first need to model the underlying distribution of
values for x;, and then learn the model parameters from the training set. The typical approach to
learn estimators from training data is the maximum likelihood estimation (MLE), i.e., choosing
model parameters that maximize the likelihood of making the observations given the parameters.

— Let x; be discrete with values from V;. Let Ny (x; = v) with v € V; be the number of training items
with label C; that have x; = v. In other words, it denotes how often x; = v is observed in the
training set for items belonging to the class C;. Naturally, we obtain

Ni(xj =v)

P(xi=v|C) = N,

Multimedia Retrieval — 2018 Page 5-42

— What if a value v is never seen for x; over a class Ci. Obviously, P(xj = v | Ck) = 0 and with that:

P(Cylx) = P(Ci|xy, o, xj =, 0, 3py) = 0

In other words, if v was never observed for a class Cy, its presence in a new data item eliminates
C, as a prediction regardless how well the other features support C;. To prevent O-probabilities,
we need to smooth the probability distribution, commonly using Laplace smoothing (add-1).
The idea is that we “steal” probability mass and distribute it to the values with O-probabilities:

P(xj =v|Ck) =

Nk(xj = v) +1
Nic + V]

Note: the sum of P(xj = | Ck) over all values v € V; is still 1. But we got rid of O-probabilities.

0.4

0.3

0.2

0.1

Red indicates “stolen” probability mass and green denotes added probability mass.

Observed Probabilities
0.4

0.3

0.2

0.1

Smoothed Probabilites

lstolen

* added

Multimedia Retrieval — 2018

5.4.2 Naive Bayes

Page 5-43

— A special case is a discrete Boolean value x; € {0,1} denoting the presence (x; = 1) or absence
(x; = 0) of a feature in the training data. In this case, the distribution follows a Bernoulli event

model (or a multivariate Bernoulli event model if several values are Boolean). As the
probabilities sum up to 1, only one parameter is required:

P(xi1C) = (i)™ - (1= i)

with py ; representing the probability that the feature is present, i.e., how often x; = 1 is observed
in the training set for objects with label C,. Hence:

D = Nl =1) or smoothed: _min (Nk —1 max(l'Nk(xf — 1)))
k,j Nk pk,] Nk

Note that smoothing is done with stealing 1 only in the extreme case that all observations are the
same (either all x; = 1 or all x; = 0).

— Afinal case for discrete values is the multinomial event model which is given by a feature
vector x = (x4, ..., x)y) representing a histogram with x; counting the number of times a feature or
event j was observed in the training set. We will see an example later on with x; denoting the
number of occurrences of a term ¢t; in a document. The probability distribution is given by:

(Z x)' X Note that the factor to the left of the product symbol is a constant when
_] 7 J . . :
P(x | Ck) - 1—[x.'_) (pk,j) looking for the best class €, and hence drops in the argmax equation
je :
J

Let ny ; be the total number of occurrences of feature j in all training items with label C. Then:

ng,j ng; +1
or smoothed: pri=c———
T i+ M

Phj = X Nk,

Multimedia Retrieval — 2018 Page 5-44

— If feature values x; are continuous, we need to choose a model for the probability distribution
p(x;|C,) and then learn the parameters of the model using the training set. A common approach
is assuming a Gaussian distribution with the two parameters p, ; denoting the mean value, and

a,f,i being the variance. The probability distribution is defined as:

1
’2710,3’1-

To estimate the two parameters, we need to use the unbiased estimators based on the
observations from the training set. Let N, = |C,| be the number of training items with label Cy:

2
(i)
20’,%‘1

p(x:|Ci) = ‘e

1 1 When estimating vgriance frpm samples, we must
Uy = — Z X O i = z (x. —u .)2 account for the error in the estimated mean value, that
’ N L k.l N, —1 . k.l is, we underestimate the variance because differences
xX€Ck XECk between values and the estimated mean are too small.

— Using a Gaussian mixture model, we can adopt to arbitrarily shaped distribution function. We
overlay L normal distributions V' (u ; 1, 07 ;) with weights wy:

L
p(x;|Cy) = Z wi 'N(ﬂk,i,l'al?,i,l)
=1

To learn the parameters of the normal distributions, we can use the Expectation Maximization
approach (we will see this later for clustering methods). In addition, we should use a validation
set to adjust the hyper-parameter L, i.e., if L is large, we may fit the probability distribution for the
training set very well, but cannot generalize well to the validation set due to overfitting. Using
least mean squared errors over the validation set provides an instrument to control L.

Multimedia Retrieval — 2018 Page 5-45

 Prediction

— To predict the class C,+ to which a new data item with features x belongs to, we apply the
maximum a posteriori (MAP) selection:

M
k* = argmax P(Cy|x) =argmax P(Cy) - HP(xj|Ck)
k K :
j=1

With moderate to large numbers for M, we run into practical issues due to the multiplications of
small probabilities (numerical underflow). To provide a stable calculation of the probabilities,
naive Bayes algorithms compute log-probabilities as the logarithm does not change the ordering:

M
k* = argmax log(P(Cy|x)) =argmax <log P(Cy) + z logP(xj|Ck)>
k k :
Jj=1

— To reduce the noise of a large number of features, we can focus on a few features only that are
sufficient to classify data items. In general terms, we want to identify features whose presence or
absence is correlated with the data item having or not having a label. This leads to 4 tests for
each of the combinations of {*feature present”, “feature not present”} and {"item in class”, “item
not in class’}. If there is a strong correlation for any combination of events, then the feature is
discriminative for classification. Literature provides several approaches with Chi-square and
mutual information being the most prominent ones. A much simpler approach is to select the

most discriminative features, much like we have seen in classical text retrieval.

Multimedia Retrieval — 2018 Page 5-46

« Example: Text Classification — Naive Bayes is quite popular due to its simplicity, its speed, and
accuracy. Common applications include spam detection, author identification, age/gender
identification, language identification, and sentiment analysis. With sentiment analysis, for example,
we want to distinguish positive from negative movie reviews.

— There are two models for text classification: 1) set of words, and 2) bag of words. With the
former, we consider only the presence of terms and apply a multivariate Bernoulli model. With
the latter, we count term occurrences and use the multinomial model. Both approaches assume
that the position of terms in the text does not matter and that terms are conditionally independent.

— Set of words and multivariate Bernoulli: like with Boolean text retrieval models, a binary
feature vector x denotes the presence of terms, taken from a defined vocabulary, in the given
documents. The training documents have labels for classes C, and we use the training set to
estimate the probabilities. Let N, bet the number of training items with label C, then

i 1
P(C) = Wk or if Nj is not known: P(Cy) = =

Let x; = 1 denote that term ¢; is present in the document represented by x. Then:

Pkj = By =1 or smoothed: p, = min(N, — 1, max(1, Ne(x; = 1))
) Nk ,] Nk

Prediction means finding the class that maximizes P(C,|x) for a document with representation x:

M
k* = argmax P(Ci|x) =argmax <log P(Cy) + Z(x] logpy j + (1- xj) log(1 — pk,j))>
K k :
j=1

Instead of using all terms of the vocabulary, we can reduce the features (see feature selection) or
only take the terms present in the document (i.e., we only consider x; = 1).

Multimedia Retrieval — 2018 Page 5-47

— Bag of words and multinomial: like with vector space retrieval models, a feature vector x
denotes the number of occurrences of terms, taken from a defined vocabulary, in the given
documents. The training documents have labels for classes C;, and we use the training set to
estimate the probabilities. Let N, bet the number of training items with label C, then

o 1
P(C) = Wk or if Nj is not known: P(Cy) = =

Let n; ; be the total number of occurrences of term ¢; in all training documents with label Cy:

_ nk,j h d le’j +1
Pk,j = Zlnk,l or smoothed: pg; = m

Prediction means finding the class that maximizes P(C;|x) for a document with representation x:

k* = argmax P(Cj|x) =argmax (logP(Ck) + Z Xj logpk,j>
k k

x]'>0

That is, we select the best class only with the terms that are present in the document.

« Summary: Naive Bayes is not so naive. Even though the strong assumption of independence does
not always apply in practices, it excels due to high speed, low storage requirements, robustness to
noise, and very good performance (accuracy). There are better methods but still naive Bayes is an
excellent baseline for text classification.

Multimedia Retrieval — 2018 Page 5-48

5.4.3 Unsupervised Clustering

« With unsupervised learning tasks, the machine learning algorithm observes data set without targets
and infers a function that captures the inherent structure and/or distribution of the data. In a
clustering scenario, that function is a set of clusters and the ability to assign new data items to one
(or several) of the clusters. In this chapter, we study the k-means clustering and the Expectation
Maximization over a Gaussian mixture to infer a mapping of features to clusters. In the context of
multimedia data, typical applications are:

— Feature quantization, i.e., reducing a multivariate feature to a small number of discrete values.
The quantized value serve as an approximated or smoothed version of the original ones much
like histograms approximates the distribution of data values

— Cluster analysis, i.e., the validation of the cluster hypothesis and the extraction of clusters to infer
labels for the clusters.

— Image segmentation, i.e., the extraction of different areas in an image that “belong” to each other.
In a first step, clustering reduces the number of features through quantization. In a second step,
morphological operators build coherent regions for segmentation.

« As we do not know the number of clusters that are present in the data (we have no labels!), we need
to guide clustering algorithms in the selection of the optimal number K of clusters. Again, poor
choice for the number of clusters can lead to underfitting (extreme case is K = 1) and overfitting
(extreme case is K = N with N being the number of training items). As we have no targets, we
cannot use a validation set to measure accuracy of prediction. Instead, we utilize a target function
for the compactness of the clusters and the separation between clusters and must prevent, at the
same time, an excessive number of clusters.

« We conclude this section with an example from image segmentation and a very early application
called Blobworld.

Multimedia Retrieval — 2018 Page 5-49

 k-means clustering goes back to the 1960s as an approach to quantify vectors for signal
processing. It subsequently became very popular in data mining for cluster analysis. k-means
clusters the data set into k clusters in such a way that each data point belongs to the cluster with the
nearest centroid (or prototype of the cluster). The centroids are the mean position over all points in
the cluster. The centroids divide the space into Voronoi diagrams defining the cluster shapes.

— Although the computation of the optimal K centroids is a NP-hard problem, there are very
efficient heuristics that lead to a (local) optimum. We will first describe the classical approach
using Lloyd’s algorithm and then re-interpret the approach with Expectation Maximization.

— Let N be the number of data items with the d-dimensional representations x4, ..., x. We then
want to partition the data items into K sets S = {S4, ..., S} such that the within-cluster sum of
squares (WCSS, also called the variance) become minimal, i.e.:

= argmlnz z lx — w3 —argmanISkI o

=1 x€Sk

with u,, denoting the mean of items in S, and o7 being the variance of items in S,. With Lloyd’s
algorithm, we obtain a local optimum with a simple iterative algorithm:

1. Select an initial set of centroids u(), ,ug{) (see later how to select)

2. Assign each data point x to the set SU° if it is closest to gy, i.e., | = 22| < ||x - || vier <1<k

(if several centroids are closest, pick one randomly)
3. Calculate the new centroids for the next iteration (t + 1):

u+D 1 Z X
ke T e®
st

xES(t)
4. Repeatsteps2and 3 untll algorithm has converged

Multimedia Retrieval — 2018 Page 5-50

— Initial choice of centroids

« Random points: pick K random items from the data set. This leads to a spread of centroids
across the data space.

« Random partition: assign each data item to a random cluster (1 to K) and compute centroids
over these random clusters. These centroids tend to be closer together near the center of the
data set.

* k-means++: the first centroid is chosen randomly from the data set. Each subsequent centroid
(up to K) is chosen from the remaining items with probabilities proportional to the their squared
distance to closest centroid. Although more expensive, it leads to much smaller final errors and
faster convergence during the iterative part.

Expectation Maximization (EM) (and interpretation of k-means algorithm)

— Expectation maximization is an iterative method to estimate parameters in a statistical model
than cannot be solved in closed form. It assumes that the observations (here: the training set) are
obtained from probability distribution, typically a mixture of several distributions with a soft
assignment. In k-means, we used a hard assignment, that is, every data point is assigned to
exactly one cluster. In EM, soft assignment denotes that cluster assignment of a point follows a
conditional distribution. Finally, the objective is to find the soft assignment and the parameters of
the distributions (e.qg., with Gaussian, these are the means and variances) that best explain the
observations (maximum likelihood).

— Solving above objective function in closed form is not always possible. The EM algorithm consists
of two steps: in the expectation step, the distribution parameters are constant and we compute
the best soft assignment. In the maximization step, we keep the soft assignment constant and
choose the parameters that maximize the objective function. With each step, the objective
function increases and eventually converges, but not necessarily to a global maximum.

Multimedia Retrieval — 2018

Page 5-51

— Let us start with a simple one dimensional example with a
mixture of two (K = 2) Gaussian distributions V' (p, o7). The
picture on the right shows the two Gaussian distributions and
their mixture. With an infinite number of Gaussians, a mixture
can model any distribution. Each Gaussian represent a sub-
population (cluster) of the data items that follow its
distribution. In addition, a prior P(C,) defines how likely data
items come from k-the cluster with }; P(Cy) = 1.

— Now, assume we make the observations T = {x4, ..., xy}.
Further assume, we know that all x € §; stem from the blue
cluster C;, and all x € S, = T \ S; stem from the red cluster
C,. We then can easily compute the parameters and the
priors of the distributions using the (biased) estimators:

—Gl1

Y xes;, X Y e, (X — ui)? S
= X€ES 0_}3 _ XESk k P(Ck) _ u
|Sk| S

k
N

— On the other side, assume we know the parameters py, o of
the distributions and the priors P(C;), can we estimate the
probability P(Cy|x;) that a point x; is part of cluster C,?

P(x;[Cy) - P(Cx) — P(xi|Cy) - P(Cy)

P == S =S p(xlc) - PG
P10 = (o o) = o () N
Znaﬁ - o

Multimedia Retrieval — 2018 5.4.3 Unsupervised Clustering Page 5-52

— Given the probabilities P(Ci|x;) that x; belongs to cluster C;, we
no longer have a hard assignment as above with T =S, U §S,,
and S§; NS, = @, but utilize soft assignments. In other words,
we are not entirely sure from which sub-population the points
come from but have a fairly good understanding how likely they
stem from each cluster. To estimate the parameters and the
priors, we need to take the soft assignments into account:

AN .

_ ZiP(Ckai) * X 2 ZiP(Ck|xi) c(x — .Uk)z _ ZiP(Ck|xi)
He = =5 P(Crlx) %= Ty P PG ==—F

— Now we can summarize the EM algorithm: to this end, we introduce the responsibility y;;, =
P(Cy|x;) denoting the soft assignment of data item x; to cluster C,, and the weights w;, = P(Cy)
representing the prior of cluster C;. The algorithm runs as follows:

1. Selectinitial values for 4,62 and w(® for 1 < k < K

2. E-step: evaluate new responsibilities yl(,? for1 <i <N and1 <k < K using current parameters

()
w - f (1, a2”)
y©O =
Lk t ®
Sew? - f (s 10, 07)

t+1 . L eres
3. M-step: evaluate new parameters y(t“) ak() and W,Et“) for 1 < k < K using current responsibilities
®) ® (t+1)
](ct+1) _ i Vak(t)xl D LiVik (— Mk) WD Xi Vz(t)
Z yl k Z y(t) k N

4. Repeat E-step and M-step until the parameters stop changing

Multimedia Retrieval — 2018 Page 5-53

— Once convergence of EM is reached after 9 iterations, we can (hard) assign a data item x; to its
most likely cluster C+ by solving the following equation:

P(x;|Cy) - P(C
(il Ce) - P(Ci) _ argman (ngﬁ) 'f(xi; #I((ﬁ),glg(ﬁ)»

P(x;)

k* = argmax P(Cy|x;) = argmax
k k

— We can generalize this approach to d-dimensional spaces with d = M being the number of
features. We create a mixture of K multi-variate (or multi-dimensional) Gaussian distribution
N (py, Zx) with w, = E[x € T,] denoting the centroid of items of cluster Cy, and £, = Eyer, [(x —

) (x — w)T] the covariance matrix of items in cluster C.

1. Select initial values for p, 22 and w(® for1 < k < Kk

2. E-step: evaluate new responsibilities yif,? for1 <i <N and1 <k < K using current parameters

® @ 520
(t) _ Wk .f(xll l'lk 1zk)

ik — t t)
kal(()-f(xi: H,(();ZI%)

t+1 . cp pea
3. M-step: evaluate new parameters u,(f“),z,%() and W,Et“) for 1 < k < K using current responsibilities
O O (. _,,E+D) (Y T ¢
”’(ct+1) _ ZLL@xl zl((tﬂ) _ LivVik (xl Ky) (xl Ky)) _ Zl‘yifk)
2iYix 3, sz? Kk N

4. Repeat E-step and M-step until the parameters stop changing
— Again, we obtain a hard assignment for a data item x; to its most likely cluster C, - as follows:

. @ . (. O 52 S T <_1 TRl)
k —arg;{nax(wk f(xl, [Tha)) £ we 23) SR exp | =2 (i —)" Ty (i —)

Multimedia Retrieval — 2018 Page 5-54

— Where does the nhame Expectation Maximization come from? Let X = {x;} be the set of data
items and Y = {wq, uq, 04, ..., Wy, g, 0x } be the set of unknown parameters of the mixture of K
Gaussian distributions. In addition, we have the latent unobserved data items Z = {Vi,k} denoting
the soft memberships of x; to cluster C;,. Given, X we want to find the parameters Y that
maximize the probability that the data items in X are observations from the mixture using these
parameters. This is called the maximum likelihood estimate (MLE):

Y* = argmax p(X]|Y) = jp(X,ZW) dZ
Y
Z

In other words, if Y is known, how likely is it that data items in X follow the mixture of the K
Gaussian distributions. Adding the soft memberships Z, p(X|Y) is given by the marginal
probability of p(X, Z|Y) over all possible sets of Z. This equation, however, is often not solvable in
closed forms. Instead, an iterative method is used, that improves log p(X]|Y) with each iteration.

EM uses a so-called Q-function that indirectly improves log p(X|Y) given current estimates Y®:

Q(Y|[Y®) =E log p(X, Z|Y)]

Z| X,Y(t) [

The right hand side is the expectation function over log p(X, Z|Y) given the conditional distribution
of Z given X and the current estimates Y(®). Now, the E-step generates this expectation function
by computing the probabilities P(Cy|x;) for Z (soft assignment) given X and the current estimates
Y® and uses Bayes’ rule as we have done above. Then, given Z, the M-step maximizes the Q-
function over all possible Y to obtain a new estimate Y+, With log-probabilities and Gaussian
distributions, we can cancel log and exp in the equation, and solutions are found by solving for
the maximum (partial derivative is zero). We omit proof for solutions and convergence.

Additional information — not part of the exams

Multimedia Retrieval — 2018 Page 5-55

— Let us reconsider the k-means algorithm as an EM problem. We can re-write the objective
function (within-cluster sum of squares, WCSS) as follows:

N k
] = zzyi,k”xi — el

i=1 j=1

Yir are the hard assignments of x; to Cy, i.e., for each 1 < i < N exactly one y;, = 1 and all
others are 0. We can transform k-means to an EM algorithm over a mixture of K Gaussian
distributions with hard assignments as follows:

1. Selectinitial values for ”]((0). Keep X =1 and w;, = 1/k constant
2. E-step: evaluate new responsibilities yif,? for1 <i < N and1 <k < K using current parameters

© |1 ifk=argmin|lx; — pll3
Yik = L
0 otherwise

3. M-step: evaluate new parameters u,(f”) for 1 < k < K using current responsibilities

()

uED = LiVik " Xi

koo ®
Ziyi,k

4. Repeat E-step and M-step until the parameters stop changing

Additional information — not part of the exams

Multimedia Retrieval — 2018 Page 5-56

For both k-means and EM, we need to control then number K of clusters. If the number is too small,
the error value is high and the algorithms suffer from underfitting. If we select a large K, we can
reduce the error but at risk of overfitting. Let S, be the set of data items x that are assigned to
cluster C,. To control K, we determine the sum of squared errors SSE over all clusters:

K K

SSE(k—means) = Z z llx — w1 SSE(EM) = z Z (x —) Z (=)

k=1 x€Sy k=1 x€eSg

If we plot this SSE as a function of K, we obtain a graph like on the right side below. As we increase
the number K, the SSE decreases. However, we cannot simply solve for K that minimizes the SSE
function as K = N would have an SSE = 0 but clearly overfits the data. Rather, we look for the so-
called elbow point as highlighted in the figure where the SSE-functions “abruptly” levels out as is
decreasing much slower than before the elbow. We can obtain an optimal K in two ways:

a) Vary K from 2 to an upper bound (here 20) and determine the point that lies farthest away
from the line between the start and the end of the curve.

Sum of Squared Errors(SSE)

b) Start with K = 2 and determine the distance to the point .
(2,0). While increasing K observe the distance. Stop if
the distance starts growing.

60

B
[=]

Method b) has the advantage of iterating less over K. For both
variants to work, we need to normalize the two dimensions, for
instance with a min/max scaling, to obtain a meaningful result. | elbow point

Multimedia Retrieval — 2018 Page 5-57

Example: Image Segmentation (Blobworld)

— Blobworld was a project at the University of Berkeley and published first in 1999. It was using
segmentation to divide an image into distinct regions and used descriptors on these regions to
retrieve objects embedded in images. The right hand side shows an example of the segmentation

a) The original image contains too many edges and
corners yielding a large number of potential regions

b) A rough Gaussian filter smooths the image and
eliminates finer structures

c) Color is transformed into the L*a*b* space. For
each pixel, Blobworld extract additional texture
features describing the polarity (clear direction
of edges in a neighborhood), edgeness, and
texture contrast. The feature vector consists
of the pixel position (x,y), the 3 color and the e
3 texture values at that position. |

d) Apply the EM algorithm on a Gaussian mixture
model over the 8 feature values. This is T
computed for 2, 3, 4, and 5 clusters. . R

e) To steer the number of clusters, a special | ® ! LN
objective function based on the Minimum el B el
Description Length (MDL) was applied. (¢) final segmentation (f) Blobworld

f) Blobworld hard assigns pixels to a cluster and
C

{a) original image (b} smoothed image

selects a unique color for each cluster.

Multimedia Retrieval — 2018 5.4.3 Unsupervised Clustering Page 5-58

5.4.4 Multi-Layer Network

 Atrtificial neural networks are machine learning models that are inspired by how the brain works. Indeed,
brain research has frequently led to new approaches like the use of connections between neurons of
different layers rather than adjacent ones (multi-layer approach). Neural network, on the other hand, are
often employed to model the brain and its learning algorithms.

» The first wave of neural network research started in the late 1950s and was focusing on a single
perceptron (in hardware). It was possible to use multiple perceptrons in parallel, but they were only
connected to input and output states. The problem of perceptrons was articulated in its famous inability to
learn a simple XOR function. Even though it was shown that a two-layer network could indeed encode an
XOR function, the limitations were obvious and a first Al winter began.

« The second wave started with research in the 1960s with the introduction of hidden layers. Several
researchers were developing similar ideas but the credits usually go the Rumelhart, Hinton, and Williams
and their 1986 paper on backpropagation which describes the approach with such clarity that it is still the
basis for many descriptions in text books. The area revived quickly and lead to convolutional networks,
recurrent networks, belief networks with many of the concepts found today in deep learning. However, the
field suffered from calculation issues (vanishing and exploding gradients) and the computational limitations
in the 1980s and 1990s.

« At the beginning of the 2000s, almost no research was published or cited and funding was very sparse.
However, the Canadian government funded a small research team around Hinton that first rebranded the
field into “Deep Learning” and then published in 2006 a break-through paper with a fast learning algorithm
for deep belief nets. In parallel, compute power has significantly grown. Inspired by the Canadian research
team, the field arose again and soon it was found that GPUs were up to 100 times faster than CPUs. This
allowed the training of deep networks within hours and days rather than weeks and months. Google started
in 2011 its Google Brain research project to connect thousand of CPUs for a network with 1 billion weights.
Since then, research has generated an enormous amount of improvements and efficient learning
frameworks leading to an overwhelming success story of Al with many applications.

Multimedia Retrieval — 2018 Page 5-59

W Perf / watt

source: https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-

googles-first-tensor-processing-unit-tpu

Electronic Brain

S. McCulloch - W. Pitts

DGX-1 with Tesla V100

8X GPU Server

18 hours, 40X faster

CPU-only Server [| 711hours

0X

Workload: ResNet50, 90 epochs to solution | CPU Server: Dual Xeon E5-2499 v4, 2.6GHz

source: https://www.nvidia.com/en-us/data-center/dgx-server/

10X 20X 30X 40X 50X

Relative Performance [Base on Time to Train)

60X 70X 80X 90X 100X

Multi-layered
XOR Perceptron
ADALINE (Backpropagation)
A A
A
Perceptron
Golden Age Dark Age (“Al Winter”)

F. Rosenblatt B. Widrow - M. Hoff

M. Minsky - S. Papert

1990

Deep Neural Network
(Pretraining)

SVM

2000

A

XA%NDY XORY NOT X
+1 +] -2 +1 +1 - -1
/LN /LN]
X Y #1 X Y # X

Foward Activity =——jp»

¢—— Backward Error

« Adjustable Weights

« Weights are not Learned

source: ttps://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_partl.html

* Learnable Weights and Threshold

» XOR Problem

+ Solution to nonlinearly separable problems
 Big computation, local optima and overfitting * Kernel function: Human Intervention

« Limitations of learning prior knowledge

* Hierarchical feature Learning

Multimedia Retrieval — 2018

5.4.4 Multi-Layer Network

Page 5-60

https://www.nvidia.com/en-us/data-center/dgx-server/
https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html
https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

« We first consider the original perceptron idea: in principle, it is a binary classifier mapping a real-
valued input vector x € RX to a binary output value f(x):

_J1 ifwix+b5>0
@)= {0 otherwise

where w € RX are the weights and b is the bias. From this definition we derive that the perceptron is
splitting the space with a hyperplane given by w”x + b. In a more general setup, L perceptrons with
weights w; and bias b; are connected to the K input value i, and produce L binary output values o;.
We can visualize this general setup as follows:

Wi 1 K
X —> | - —> 0; <+« U ;
h b1 Vi<I<L: Ol:f(Z lk'Wk+b>
k=1
X2 —> i, b, —» 02 <« 1

with the binary step function

XK —> iy b,— 0L +—— I f(2) = 1 z>0
sample input weights bias output target ~ |0 otherwise
The learning algorithm is then as follows: (demo: https://www.cs.utexas.edu/~teammco/misc/perceptron/)

1. Initialize the weights w,gf? and the biases bgo) with small random values. Set a learningrate 0 < a <1
2. For each example x € T, apply it to the perceptron, i.e., leti = x

- Calculate that actual output: o, = f(ZK_; iy - wy) + by)

- Update the weights: w =w +alt; —o) iy, (ie. only adjust if target==output)

» Update the bias: bl(“l) = bl(t) + a(t; — o) (i.e., only adjust if target=output)

Convergence is only reached if the data set is linearly separable. Otherwise, the algorithm may falil
completely. A number of variants address this later issue.

Multimedia Retrieval — 2018 Page 5-61

https://www.cs.utexas.edu/~teammco/misc/perceptron/

 Intuitively, the perceptron learning algorithm only adjust weights (and bias) if the target differs from
the output. If the output is O but the target is 1, then weights and bias are incremented, otherwise
they are decremented (assuming x; = 0). We also note that the algorithm does not aim to optimize
any objective function but merely is a heuristic approach to learn the weights. If data is separable, it
converges to binary partition of the space with a hyperplane (one of many that partition the space).

* In contrast, the support vector machine (SVM) computes an optimal solution for the hyperplane
that separates the sets and maximizes the margin (the distance of marginal points to the
hyperplane). SVM even works if the data is not separable; it then finds a solution that minimizes the
partitioning error. We are not considering here how SVMs are computed.

Perceptron SVM

possible

solutions exactly one

optimal solution

* In any case, a binary classifier can be used to learn multiclass outputs as well. The “one-vs-all”
approach learns a binary classifier for each of the L classes to separate a class C; from the rest. In
other words, we use L perceptrons and the binary target vector t has t; = 1 and all other
components are 0. For prediction, the output with the highest value denotes the “winning” class.
Alternatively, the “one-vs-one” strategy uses L(L — 1)/2 perceptrons to separate two classes from
each other learning the perceptrons individually. For prediction, the output with the highest value
indicates the “winning” class.

Multimedia Retrieval — 2018 Page 5-62

« The linear classification approach of SVM seems rather limiting (like for perceptron). However, SVM
has the “kernel trick”: the idea is that data points are mapped to a higher dimensional space that
enables better separability of the data by a hyperspace. The mapping to this higher dimensional
space is typically non-linear. The “kernel-trick” now means that we do not explicitly compute the
mapping to the high-dimensional space, but rather only compute the inner product between data
points that is required for the SVM calculations. For instance, the kernel K(x,y) = (1 + x"y)? with
x,y € R? is an efficient way to compute the inner product of two mapped values ¢(x) and ¢(y) in a
6-dimensional space. With a Gaussian kernel K(x,y) = exp(—y||x — y||?) we obtain an infinite-
dimensional mapping function ¢.

« The “kernel trick” is often considered as a human intervention into the machine learning process.
SVM classification works very well and is efficient but we need to design an appropriate kernel
function for the problem at hand.

Multimedia Retrieval — 2018 5.4.4 Multi-Layer Network Page 5-63

« Multilayer networks introduce a number of changes to the original perceptron

several “hidden” layers between input and output

different activation functions to “fire” a neuron, and not necessarily only binary output
objective functions to define an optimal state for all network parameters

a new algorithm to learn the weights (the so-called backpropagation)

« Let us start with a simple two-layer network to understand the fundamentals with a concrete
example, and then we generalize the concepts to arbitrary shaped networks.

t1(x)

sample input hidden output error
W1 Ws l
i1 hy 01 1
Wp We
x€eT]
W3 w7
Iy 4 h, 8 02 J2
1 t

t2(x)
1 1

« The network consists of two input neurons i,, i,, two hidden neurons h4, h, and two output neurons
04, 0,. We have two (shared) biases, b, for the hidden neurons and b, for the output neurons. Note
that we modeled the bias as a weight from a neuron that always has the state 1. wy, ..., wg denote
the weights on the connections. Even though we have 6 neurons, the connections are only from one
layer to the next one and especially, there are no inter-layer connections or cycles. This is an
important topological constraint that will simplify our learning algorithm. Finally, we added nodes to
capture the training error: J; and J, measure the error between the first and the second target
component t, (x) and the computed output of the network. /] denotes the training error.

Multimedia Retrieval — 2018 Page 5-64

 Feed-Forward: given a data sample x from the training set T, the network is computing the state of
each neuron using a simple model:

ay Wk Z S=Zak-wk+b
@O —, e
1 b 1

y=<p(s)=1+e_s

o(s)

weights

nput bias

summation activation output

We use s to indicate the result of the summation, and we employ the logistic activation function ¢
also known as soft step. With this, we can determine every state of a neuron, given the input x € T:

il - x1 and iz - xz 1
@(s) = =
1+e™°

hy = <P(Sh1) =@w;-x; +wy-x;+by) and h; = (P(Shz) = @(wWs X1 + Wy - x; + by)
01 =§0(501) =@Ws - hy +wg-hy+by) =@ws-@wyx; +wy x5 +by) +we-@ws - x3 +wy-x; +by) + by)

02=<P(Soz)=§0(W7'h1+W8'h2+b2)=<P(W7‘<P(W1'x1+W2‘x2+b1)+W8‘<P(W3‘x1+W4'x2+b1)+bz)

The calculations are straightforward. The term feed-forward denotes that we “feed” the data sample
first into the input layer, and then forward the results from one layer to the next one. Each layer can
be computed concurrently.

Later on, we will see different activation functions and also different approaches to connectivity and
sharing of weights between subsequent layers. The principle model for neurons remain the same for
most deep networks. We will also encounter special dropout neurons, that set input elements to
zero with a certain probability to prevent overfitting of the network.

Multimedia Retrieval — 2018 Page 5-65

« Error function: we want to measure how well the network is able to predict the targets for all given
data samples in the training set T. As a starting point, we use the mean square error (MSE):

1©) = mZ](x 0) = 7= > 16 — (O

xX€ET

where 0 denotes the parameters of the network. In our example: @ = (wy, ..., wg, b1, b,). Learning a
network means finding parameters 6* that minimizes the error function:

0 = arg;nax](@) = let(x) —o(x; 0)|I5

2 - |']I‘|

— Due to the size of networks and the number of data items, it is generally not feasible to solve the
equation in closed form. Instead, we use the gradient descent method to find a (local) optimum
through an iterative approach. Let Vj(@) be the gradient of /(@) for the parameters 0 of the
network. The gradient descent method defines the learning strategy for the network:

1. Choose an initial random vector for (%) and a learningrate 0 <75 < 1
2. Repeat until ||@¢+D — B(t)||2 <e O t>tmax

- Compute gradient: A®=7-vj(8®)

« Adjust parameters; 9+D = gt) _ A(®)

— Gradient descent is relatively slow close to the minimum and often “zigzags” for poorly
conditioned convex functions. In addition, for large-scale data sets and networks, gradient
descent requires enormous computational and storage requirements to determine the gradient
(which we can derive in closed form for the network as we will see later).

Multimedia Retrieval — 2018 Page 5-66

— Instead of gradient descent, neural network algorithms use the stochastic gradient descent
(SGD) often in combination with a momentum method to prevent the afore mentioned zigzag
issue. SGD approximates the true gradient of /(@) with a single data sample (instead of over all
data samples). As we will see with backpropagation, this allows us to quickly update the weights
with minimal storage overhead. SGD still suffers from slow convergence especially towards the
end of the iterations. Momentum is one method to accelerate the descent. We keep the gradient
of the past iteration and re-apply some fraction y of it in the descent:

1. Choose an initial random vector for (%), a learning rate 0 < n < 1, and a momentum 0 <y < 1.
. 2
2. Repeatuntil [0 — D" <& or &> tpay

Randomly shuffle the training set T

g(t+D) = g(®

Foreachx € T
- Compute gradient: A=y -A+7n-V/(x;0¢D)
« Adjust parameters; @U¢+D = gt+1) _ A

* Increase y

The momentum y defines how long a previous gradient is still used. Generally, we start with
y = 0.5 and then increase it after the initial learning stabilizes to y = 0.9 or even higher.

— The above algorithm defines the overall learning strategy. Each batch (step 2) runs against the
entire training set and for each data samples, the weights and biases in the network are adjusted
for each data sample. What remains to do is to compute the gradient V/(x; @) for the current data
sample and the current set of parameters of the network.

1
1(x:6) = 5 16(x) — o(x; 0)113 V) (x: 6) =7

Multimedia Retrieval — 2018 Page 5-67

Gradient computation: before we consider the backpropagation algorithm, let us re-consider our
example network from the beginning with two input nodes, two hidden nodes, and two output nodes.
For the stochastic gradient descent, we need to compute the gradient. Note that in our example, we
have @ = (w4, ..., wg, b1, b,). The gradient is then given as the partial derivatives over J(x; 0):

9] o a] a]
ow,’ " dwg’ db,’ db,

. Q) = 1 1
V](x;6) = (J(x;0) =J1(x;0) +],(x;0) = 5 (t; — 0%+ 5 (t; — 03)°

with given targets t,; and t, for data sample x, and o, and o, as given previously as a function of x

and the weights wy, ..., wg and the biases b, and b,.
— Let us start simple: consider we. It only occurs in o; but not in 0,. Thus the partial derivative is:

01 = <P(Sol) = @(ws - hy + wg - hy + by) 0y = (P(Soz) = @(w; +hy + wg - hy + by)

d d (1 1 d (1 0
J __<—'(t1_01)2+§'(t2_02)2) =6_W5<§.(t1_01)2) = (t1_01)'i
as,

6_W5 B 6W5 2 aW5

0 0
S = 5w (0(50)) = 0(50) - (1= 0(s0,)) 5ok =01 =00 52

050, 0

aWS =6W5(W5'h1+W6'h2+b2)=h1

all together: 1

3] 9(s) = 1+e7s
a_Ws=(t1—01)'01(1_01)'h1 p'=¢-(1-9)

Additional information — not part of the exams

Multimedia Retrieval — 2018 Page 5-68

d] dJ 9]

— Similarly, we obtain the other partial derivatives and Altogether we have:

owg' dw,’ dwg’ db;
9] 9]
a—%=(t1_01)‘01(1—01)‘h1 a_%=(t1_01)‘01(1_01)‘h2
aJ a]
a—m=(t2_02)‘02(1—02)'h1 a_%=(t2_02)‘02(1_02)'h2

0
i = (t; —01) - 0:(1 —09) + (t; —03) - 0,(1 —03)

We already note the recurring patterns in the calculations: the derivatives on the error function
are multiplied by the derivative on the activation function and are multiplied by the derivative on
the summation. For the gradients, we require the results (=states) from the feed-forward step and
can the efficiently compute the gradients (see backpropagation).

— Now to the remaining partial derivatives (see next page how to derive for w,):

aaT]=h1’(1_h1)‘x1’((t1_01)’01'(1_01)'W5+(t2_02)'02'(1_02)'w7)

aifz hy - (1—h1)'x2'((tl_01)'01'(1—01)'W5+(t2_02)'02'(1—02)'W7)
afxg hy (1 —hy)-xy - ((tg —01) - 01- (1 —01) - wg + (£ — 05) - 05 - (1 — 03) - wg)
667]4:hz'(l_hz)'xz’((t1_01)'01'(1_01)'W6+(t2_02)'02'(1_02)'W8)

aa_bjlzhl'(1_h1)'((t1_01)'01'(1_01)'W5+(t2—02)-02-(1—02)-w7)+

hz‘(l_hz)’((t1_01)‘01‘(1_01)‘W6+(t2_02)‘02'(1_02)‘W8)

Additional information — not part of the exams

Multimedia Retrieval — 2018 Page 5-69

— Let us now consider w;: we note that w, only occurs in h; which in turn is part of both o, and o,.

0, = 90(501) = @(ws + hy + wg * hy + by) 0y = ‘P(Soz) = @(wy + hy + wg - hy + by)
hy = QD(Shl) =@wy - x1 +wy - x; + by) h, = ‘P(Shz) = @(ws X1 +wy - x5 + by)
6] d (1 1 do, do,
B 5_Wl(_ (t; — 01)? +— (tz — 02) > = (t; — 01) .0_Wl+ (t; —02) - B
004 9] 050, 05, 0o, 050,
6_\/|/1 = a_%((p(so1)) - (p(501)) (1 - (p(so1))) 6W1 =01- (1 - 01) : 6W1 a_VVl =0y (1 = 02) ’ 6W1
ds 0 dh
Sk = (W5 - hy +We by + by) = ws 0502 _ 4, . 20
W1 ! W1 ow, ow,
ahl aShl ashl
T = (40(hl)) = ¢o(sn,) (1 — (P(Shl)) ", =h-(1-hy)- o,
aSh 0
aW;I: = an (Wl 'x1 +W2 'xz +b1) =x1
all together:
a/
a—Wl=(t1_01)‘01‘(1_01)'W5‘h1‘(1—h1)‘x1+ p(s) = +1 -
=
(tz —03) -0;- (1 —03) w7 -hy - (1—hy) x4 ' =¢-(1—¢)

Additional information — not part of the exams

Multimedia Retrieval — 2018 5.4.4 Multi-Layer Network Page 5-70

« Evidentially, it is possible to compute all partial derivatives for the gradient, but it seems tedious
work to do so (and error prone). Can we do it simpler? Yes, we can. Backpropagation is an
astonishingly simple scheme that computes the gradient starting at the error node and working back
towards the input nodes. It does not provide us with the closed forms of the derivatives, but it
computes the gradient avoiding multiple computations of the same sub-expressions.

— Let us look again at the chain rule from calculus:

Fx)=feog=f(g(x) F(x)=f"(g()-g'x)
or in Leibniz notation with z = f(y) andy = g(x): - = Z—; =) g' ()

In graphical notation, we obtain the forward path to compute the composite function:

x y=g(Xx) z=f(y)
. . >

forward x > g >

Now to compute the derivative % for x we move backwards. We first compute f'(y) and then

multiply it with g’(x). To this end, we need to keep track of intermediate results and use them on
the back path to calculate the derivative:

x y =g(x) z=f()
forward x > g > f >
x y
dz dz dy
C o 4— " < " < 1
dx dy dx dz _dz g dz f } backward

Additional information — not part of the exams

Multimedia Retrieval — 2018 Page 5-71

— Similarly, we can look at multivariable chain rules

F(x) = f(g(x), h(x)) F(x) = f'(g(x),h(x)) - g'(x) + f'(g (), h(x)) - R’ ()
or in Leibniz notation with z = f(y),y = g(x) and w = h(x)

dz dz dy dz dw
o dy dx Taw dx] Ow g+ Ow) K@)

In graphical notation, we obtain the forward path to compute the function:

y=gX)

z=fQ,w)

forward x

w = h(x)

Now to compute the derivative % for x we move backwards similarly as before:

v

x g
z=f(y,w)
forward x >
X h
yw
X
dz _ dz 7 dz ’
dx _dy 9 g o =ow
dz _dz dy+dz dw) 1 e
dxdy dxTaw xS + x f < 1 ackwar
dZ dZ h’ hl dZ o
gy "™ oy = TowW
Additional information — not part of the exams
Multimedia Retrieval — 2018 5.4.4 Multi-Layer Network Page 5-72

« Let us apply the chain rule to our neural network. Let start with the output neurons. To simplify the
structure, we introduce a node a, which always has the state 1, and the weight w, = b which
represents the bias. All formulas become a bit simpler. The visualization for the forward and

backward path are given below:

p(s) =

ap =1 Wi,1,Wo,1 = by 17} 1+eS
!
' =¢-(1-9)
1 t
forward 1
a L= Zkak Wl o = ¢(s1) L= E(tl —0)?
a > > ¢ > > —> =)
: : : :
L Y L tLog v
1 1 1 1
1 1 1 1
v v v v
< Y < @ < I, < J] €/ 1 backward
6 l S6y=0,-(1—0)(t;—0p) (tr—o) 1
aJ aJ
Wt =ay -6 A=y D, +1n- IWies Wit = wi — Ay

— Every layer outputs the §-values that are propagated back to the inputs and are used to adjust
the parameters in every layer. Above, we used a separate bias b; for each node. If we would
share the bias across the layer like in the example, we need to simply sum up the deltas over the

nodes using the same bias, i.e.:

/ Bt)
5

1 byl -y —"
\ 61{

dJ
ETi Z,ﬁk

9]

Abzy'Ab‘l'T]'% bneW:b_Ab

Additional information — not part of the exams

Multimedia Retrieval — 2018

5.4.4 Multi-Layer Network

Page 5-73

— Hidden layers are calculated similarly, however, there are L incoming edges from the subsequent
layer during backpropagation. The visualization for the forward and backward path are as follows:

1

Ao = 1 Wi, Wo1 = bl T T T Vim S) =
| ¢(s) 14+eS
r_
forward 1 l Z | l o' =¢p-(1-9)
5 = ag - w _
a L o e Tkl / 0 = @(s) i
ag) > \] > i —>
1 1 1 1
1 1 1 1
| | | 1
1Ay 1 0p 1 1 0
1 1 | 1
1 1 1 1
v v) 4 v
< I < @' < + < Y — backward
6, \ 6,=0,-(1-0p) Z Vim* Om Z Vim * Om Om
m m
aJ]
=ay -6 A=y Dy +1- Wit = wyy — Ay

aWk,l

oY
S
=

— Let us sum up the backpropagation algorithm: during the stochastic gradient descent, we search
for the optimal parameters (weights, biases, etc.) of the network. To compute the gradient for
these parameters with respect to an error function J, we first use the network in forward mode to
predict the output with the current set of parameters. At the same time, we keep track of
intermediate values that are required on the backward path. We then compute the error with
regard to a single sample and propagate the partial derivatives backwards to the previous layers.
At each layer, we compute the A-values for the weights to obtain new estimates for them. Note
that the old weights are still required for the preceding layer to compute its partial derivative (see
figure above, the (+)-node requires weights v;, m from the subsequent layer).

Additional information — not part of the exams

Multimedia Retrieval — 2018 Page 5-74

« Generic implementation of multilayer networks: let us model a dense multilayer network. We
assume N layers L; and we denote L, to be the input layer and L, to be the output layer. Each
layer has M; neurons with states o;, with 0 < i < N and 0 < k < M; whereby o;, = 1 (used for the
bias). Further we use weights w; ,,, with1 <i <N, 0 <k < M; and 1 <[< M;_, to connect the [-th
node of Layer L;_; with the k-th node of Layer L;. In addition, we keep track of the increments A; . ;

J

Wlkl

for the computation of the gradlents

— Example with 3 layers:

00'0 = 1\01,0 - 1\0210 i 1\
00,1 011 02,1 031 1
Wi1,k,1 W2kl W3 k1 :)i

0o,m, 01,M, 02,M, 03,15 Ims

— Feed Forward is then given as:
1. Initialize o, = x; from the current data sample x € T c R™o with target t € R*~
2. For each layer L; with i iterating from 1 to N:
« Compute o;, = @(X; W; ;- 0;—1,;) With a selected activation function ¢ forall 1 < k < M;
3. Compute J, = E,(onx; tx) With a selected error function E forall 1 < k < My

Compute training error J(x; 8) = Y. Jx = E(on x; tx) for current sample

So far we have used the logistic activation function ¢(s) =
(MSE) with J(8) = m Y erllt(x) — o(x;)13 such that Ek(oNk, ty) = —(tk — oy k) We will
see further activation functions and error (or loss) functions in the deep learning section.

Multimedia Retrieval — 2018 Page 5-75

— Backpropagation is finally (e.g., with logistic activation function and mean square error):
1. Given target t and assume output oy from feed forward step; assume learning rate n and momentum y
Initialize A; ;= 0

Compute 8y, = <P'(01v,k) . E,'C(ON,k; tk) = Oynk* (1 — oN’k) . (tk — ON,k) foralll < k < My
For each layer L; with i iterating from N — 1 down to 1:

e

- Compute 8;x = @'(0ix) - ZiWizrik - Sipg forall 1 <k < M
S Compute Ai,k,lz Y - Ai,k,l +n- 0j-11"° Si,k foralll1 <k < Mi
5. Update WelghtS Wi,k,l = Wi,k,l — Ai,k,l

Note: it is tempting to update the weights in the inner loop (step 4). However, we need the old
weights in the preceding layer (next iteration in step 4) to compute §; .

« While multilayer networks are still used in later layers in deep learning scenarios, the original
approaches in 1980s and 1990s suffered from a number of issues (we will discuss them in the deep
learning section). Essentially, the main issues involved numerical problems while computing the
gradients (vanishing and exploding values) and the vast compute power necessary to learn
moderate to large network. The smaller networks, on the other hand, did not work too well on typical
classification scheme, and with SVM and kernel functions superior alternatives emerged.

Multimedia Retrieval — 2018 Page 5-76

« Example: Face Detection

— Rowley, Baluja, Kanade [1998], Carnegie Mellon University, defined an elaborated algorithm for
detecting faces at any scale and direction. To keep the neural network small, their approach was
to first learn only normalized faces, and to then apply an exhaustive search for faces on images.
The detection network is based on a 20x20 input network (preprocessed image window). In a first
layer, 3 types of receptive fields are created: a) four 10x10 areas, b) 16 5x5 areas, and c) six
overlapping 20x5 areas. Each area is fully connected to a hidden unit which is fully connected to
an output. An output of 1 denotes a face, and an output of -1 denotes no face.

— A second network (router network) was trained to estimate the direction of a face within a
window. The 20x20 input network (preprocessed image window) is fully connected to hidden
units which in turn are fully connected to 36 output values representing an angle of i - 36°. The
angle can be used in the predication phase to normalize the face before application of the
detection network.

Input Image Pyramid Extracted Window Histogram Derctated Corrected Histogram Receptive Flelds _ | .
(20by 20 pixels] Equalized Window Lighting Equalized i Hldie” Units
‘ a0

B au omEE
i hS N
2O .

Hidden Angle
Input Units Charput

Preprocessing Detection Network Architecture
Router Network

Multimedia Retrieval — 2018 5.4.4 Multi-Layer Network Page 5-77

— Once trained, we can find faces in an image as follows: first, we build a pyramid of images by
subsampling to smaller and smaller sizes. This allows us to find faces of different sizes. Then, a
20x20 windows is sliding across the image and for each location, the network tests whether the
window contains a face. Due to the usage of normalized faces, the algorithm can return the
location and direction of faces as well as estimating the position of the eyes.

B @

¥ « ‘f’
. . i
: A
A
"

Multimedia Retrieval — 2018 5.4.4 Multi-Layer Network Page 5-78

5.4.5 Deep Learning

« The second wave of neural network research died very quickly after discovering more structural
issues with how the learning algorithm works. Even though it was proven that neural networks can
learn any function, that theory often would not materialize in practice. Especially, it was observed
that adding additional hidden layers does not lead to better results, and bigger networks were
becoming increasingly instable to operate. The famous notion of vanishing and exploding
gradients and the competition of support vector machine (SVM) with elaborated kernels drove a
whole research field into a dead end. Only the Canadian government continued to fund neural
network research: Geoff Hinton and team published in 2006 a paper on deep belief network where
they showed how they could learn a network layer wise overcoming the issues of early
backpropagation learning. In parallel, the massive amount of labeled data sets (a prerequisite to
start learning) and the massive parallelism of GPUs greatly accelerated the success of what is know
simply called deep learning (although the concepts are much older).

« Let us first consider the vanishing gradient problem. In the network of the previous section, we had a
input layer, a hidden layer, and an output layer and were optimizing the networks parameters by
minimizing a quadratic cost function. The backpropagation algorithm computes gradients and would
update a weight on the first layer with:

aj
a_Wl=(t1_01)'01‘(1_01)‘W5'h1’(1_h1)’x1+(t2_02)‘02‘(1_02)‘W7‘h1‘(1_h1)‘x1
The gradient is the sum of two multiplications, each with factors of the form x - (1 — x) due to the

usage of the sigmoid activation function. Note that x stands for the outcome of a neuron after the

activation function, hence x = ¢(s) = 1+1e_5. In addition, the multiplications include the weights of the

last layer. If we add more hidden layers to the network, more factors of the form x - (1 — x) and more
weights of later layers appear in the gradients of weights and bias of the first layer.

Multimedia Retrieval — 2018 Page 5-79

— The derivative of the sigmoid function ¢(s) = 1+1e_5

on the right hand side. We note that the maximum value is
Y, and that values quickly drop on both sides. If we initialize
weights between 0 and 1, the gradient computation turns into o
a series of multiplications of small values yielding very small
updates weights and biases even if they a significantly wrong. 4 ° P
This requires a huge number of iterations to move weights and
biases towards their optimal values, hence, learning is very slow and expensive.
(t1—01)-01-(1=04) - ws-hy-(1—hy)-x <1/16
\ Y ”_Y_“ Y J
<1/4 <1 <1/4

is plotted (i)

1+es

e—s

As a consequence, gradients are reduced to a fourth for each layer in the backpropagation
making it very slow to train networks with lots of layers (GoogLeNet used ~20 layers).

— On the other hand, if we scale the weights and input values beyond the typical [—1,1] range, the
gradients will explode as we a now multiply several numbers larger than 1. With only a few
layers, gradients become exponentially larger as we propagate back, and with that the weights
and biases grow in absolute values, resulting in potentially even larger gradients in the next
iteration. Several attempts for deeper networks failed due to instable gradient computations.

« Deep learning addressed these issues with backpropagation friendly activation functions (RelLu),
improved architecture (convolution, pooling, inception modules, residual networks), and improved
regularization techniques (dropout, RelLu, L1, L2). We consider some of these concepts
subsequently.

Multimedia Retrieval — 2018 Page 5-80

« The rectified linear unit (ReLU) is a simple activation function replacing P
the sigmoid function used previously. There are now many alternative °t
activation functions, but the ReLU marked an important step towards /
more stable gradient computations. It is defined as /

d=
T

@(s) = max(0,s)

The function is plotted on the right hand side. What is so special about this function? First, its is
closer to the way biological neurons works while the sigmoid function (and its counterpart the
hyperbolic tangent) were inspired by probability theory. Second, its gradient is either O or 1:

N 0, s<0
‘p(s)‘{l, s>0

Hence, the gradients of the activation function do not accelerate the vanishing and exploding effects
as described before. ReLU have become the standard activation function for deep learning despite
some of the challenges that come with them:

— The output is no longer in the range [0,1]. If we train classifiers, how can we map the output of
the last layer to class labels? The softmax function can be used to convert output values to class
probabilities. It is often used together with the cross-entropy loss function to simplify gradient
calculations as follows. Let o, be the k-th output value, and y, be the target label. Then:

ek
Pk = Z eOk](9) = - z Vi log Dk J is defined as the cross-entropy
k
k

loss function. @ contains all
aJ C
2 — that is
aOk P~ Yk simple!

weights and biases.

parameters of the network, i.e.,
Multimedia Retrieval — 2018 Page 5-81

— The derivative of the ReLU can become 0 which means thatback | 0w S
propagation stops at this unit and predecessors are not adjusted.
While some see this as a regularization of the network by thinning niroduce a small slope
out the connections (much like neurons in the brain are also not fokeep the Update aive
fully connected), others are concerned that an initial selection of
weights and biases may randomly close paths and the network
can only slowly recover from that (if at all). Instead, a common extension is the leaky ReLU
which is defined as (including its derivative):

001-s, s<0) 001, s<0
<p(s)={ S, s=0 (p(s)z{ 1, s=0

The advantage is that the derivative is never becoming O; it is small for negative values allowing
a network to recover a closed path

« To overcome the vanishing and exploding gradient, deep learning improved the architecture of the
network: instead of fully connected, cascading layers, deep networks uses convolution, pooling,
inception, residuals, and regularizations to structure the network. Convolution, for instance, uses a
few weights and biases that feed into several thousands output neurons. Hence, during
backpropagation, even though the gradients may have become small, thousands of updates are
summed up in one iteration. Regularizations, as another example, reduces the number of active
connections. Similar to convolutions, this reduces the number of (active) parameters in the network
making it more efficient to train and faster to learn. We look at these individual measure first in
isolation and then put all together for a truly deep learning network.

Multimedia Retrieval — 2018 Page 5-82

® CO nVO|UtIOn input neurons

— So far, we considered layers that were fully connected with the
previous layer. Each connection had its own weight, and neurons
hat either their own bias or a shared bias.
Q000 hidden neuron

— In contrast, the visual perception of nature works with receptive i —
fields that extract features from a spatial neighborhood. The fields
work the same across the entire visual range. In the traditional
learning, hence, images were pre-processed using different
algorithms (Gaussian, Sobel, HOG). However, that also limited the ways a network can learn.

— Deep learning introduced a new layer, the convolutional layer. As depicted above, it connects
only a small spatial neighborhood (here 5x5 input neurons) to a hidden neuron. This occurs for all
locations in the matrix, creating an identically sized hidden layer (using padding at the
boundaries). The output of the neuron is given as:

0;;(x) =¢ (b + z Wil * Xitk,j+1)
Tl

An interesting aspect is that the weights wy, ; and the bias b are shared across the neurons of the
new layer. In fact, the above formula correspond to the convolution approach we have seen in
the previous chapter (hence the name). Only, here we task the network to learn the best
convolution for the task at hand.

— In addition, we can define an arbitrary number of such filters within a single convolution layer.
The output at the hidden neuron is then not only a single value, but a N-dimensional vector which
can be used as the input for the next layer.

Multimedia Retrieval — 2018 Page 5-83

— As the output of a convolution can be N-dimensional, so can the input be an M-dimensional
vector. In fact, when processing images, we typically start with three channels. These three
channels can then be mapped through convolution to an arbitrary number N of output features (N
Is often called the depth of the output). The more general convolution functions is hence a
mapping of an M-dimensional input vector x to an N-dimensional output vector o. For a pixel
location (i, j), we obtain:

0;jn(x) = ¢ (bn + z Wi L, mn 'xi+k,j+l,m>

klm

For example, let us assume a 5x5 convolution on three (M = 3) input channels, and we want to
convolute to N = 20 output feature. The above formula contains shared biases b,, for each output
feature 1 < n < N, and shared weights wy; ., , for each of the 5x5 positions of the window, for
each channel 1 < m < M and each output feature 1 < n < N. Hence, we have 20 biases and
5x5x3x20=1500 weights. The shared parameters are then used for all pixel locations in the
Image. If we started with a 256x256 input image with 3 channels, the output of the convolution is
now a 256x256x20 arrays. Interestingly, we do not need to map the color spaces as the network
now can also learn the best linear combination of the channels.

Multimedia Retrieval — 2018 5.4.5 Deep Learning Page 5-84

— The special case of a 1x1 convolution is often used to reduce the dimensionality of the input
values. Assume we want to learn a 5x5 convolution with 20 output features and we have 20 input
features: we would need to learn 5x5x20x20=10'000 weights and 20 biases (in total 10’020
parameters). A 1x1 convolution can reduce the number of parameters to learn as follows:

« We can first apply a 1x1 convolution to generate 3 output features (from the 20 input features).
We require 1x1x20x3=60 weights and 3 biases for this layer (63 parameters in total).

» We then feed the 3 features from the 1x1 convolution into a 5x5 convolution with 20 output
features. We require 5x5x3x20=1"500 weights and 20 biases (1’520 parameters in total)

» Overall, the new network structure has 1’583 parameters compared to the 10’020 with the
naive, straightforward mapping.

— An interesting aspect of convolution is that its complexity (number of parameters) is independent
of the input size of the network. However, computational complexity (forward and backward
steps) depend on the number of input values. For instance, an input sizing for 256x256 is 4 times
faster than for a 512x512 sizing. If images are the input, the typical approach is to scale them
down to a reasonable size that can be fed into the network. We will see later techniques to deal
with scale variance, e.g., recognizing objects at different scales.

— Strides: convolution uses a sliding window which is applied at each location to compute an
output value. In addition, it is also possible to define how far apart two subsequent windows must
lie. A stride of (2,2) means that only every other value in both dimensions is used as the starting
location of the window. Thus, only half as many rows and columns are created in the output.
Strides can be used to reduce the initial size of the network. A (2,2) stride will lead to 4 times less
output neurons. For images, this allows to scale down the size and compute features at various
scales.

Multimedia Retrieval — 2018 Page 5-85

« Convolution layers are often followed by Pooling Layers. Pooling reduces the number of neurons
and thus simplify the overall information.
hidden neurons (output from feature map)

— A pooling layer is again a spatially organized structure. It max-pooling units
summarizes the values of a window in the previous layer. For 5
example consider the picture on the right hand side: a 2x2
max-pooling layer outputs the maximum value of the 2x2 window.

If we additionally use a stride of (2,2), this reduces the “feature
map” by 4 times. If the input consists of multiple channels, then
the pooling operator is applied at each channel individually. Here,
we do not apply an activation function:

Oi,j,n(x) = rr;%x Xitk,j+ln

— Next to max pooling, other summarization functions are possible. Typical examples include
average pooling and L,-Norm pooling.

— In deep learning, for instance image object recognition, pooling layers are an important control
mechanism to reduce the spatial size of the representation and with that the number of
parameters in the network model. This not only greatly reduces the amount of computation but
also reduces the risk of overfitting. Recall that the best model is the simplest one among equally
good methods. Also note that pooling only reduce spatial dimensions if the stride is larger than 1.
It does, however, not reduce the number of features (depth). For that, a 1x1 convolution is
required as described before.

Multimedia Retrieval — 2018 Page 5-86

« Regularization is an important element in deep learning to prevent overfitting to the training data.

— As we discussed earlier, overfitting occurs if the model has too many ——
parameters and hence memorizes the data rather than generalizing otma
rules from it. The picture on the right hand shows a simple example
of what overfitting means. While the models on the right side may use
dozens of parameters, a deep neural network can have several
millions of parameters. Hence, how do we prevent the network
from simply memorizing the input to target mapping, and how can underfitfE8
we detect an overfitting problem.

— Overfitting is the lack of generalization and will become evident if we apply a trained to new data
items that were not used during training. The validation set can be used to detect overfitting.
Overfitting can be recognized as follows:

« Almost perfect accuracy for the training set at the end of the learning
« Significant lower accuracy for the validation set at the end of the learning
* The gap between training accuracy and validation accuracy is growing over the learning time

A Overfitting A Regularization
100% oo 100% oo
training set training set

validation set
gap is growing over time; ¢
significant difference

validation set

accuracy
accuracy

still a gap but validation accuracy much
closer following progress of training set

» »

epochs / iterations epochs / iterations

Multimedia Retrieval — 2018 5.4.5 Deep Learning Page 5-87

— We have several options for regularization

« Adjust the network structure and reduce the number of parameters—not really an option
given that we want to learn complex tasks. The success of small networks was rather limited.

« Expand the training set—not always feasible, but we can modify and alter the existing data
set. For instance, small rotations, varying brightness, adding noise, Gaussian filters, etc. With a
few such modifications, we can create 10 to 100 times more training data without any additional
labelling costs.

« Adjust the cost function to prefer simpler models. A simple method is to add a penalty to the
cost functions for the use of large weights. Smaller weights (preferably 0) reduce the
complexity of the model. This way we can balance overfitting to the training with a penalty for
more complex models. Our cost function looks now as follows (L2 regularization):

A 2
Jreq(®) = 1(8) + 57 > wi
With |T| being the number of training samples and A > 0 the regularization parameter. Note
that we only add penalties for the weights but not for the biases. With this, we have a new
update for w; during back propagation. Let A; be the update for w; without regularization, then:

(t+1) _ nA\
Wi+ —<1—m>wlt _Ai
Regularization adds a weight decay factor (1 - 7—1;1') for each weight, making them gradually

smaller unless the gradient compensates enough to increase weights in the learning step. This

was shown to greatly reduce the risk of overfitting.

Multimedia Retrieval — 2018 Page 5-88

« The Dropout technique heuristically adjust the network structure during the learning phase. At
any point in time during the learning phase, only parts of the network are active (with a random
selection of nodes). This selection can change over time:

— At each training step, nodes are dropped out with a probability of 1 — p. Over the learning
time, different sets of active nodes learn the training example

— Feed forward: if a node is dropped out, its output value is set to 0. We keep weights and
biases as the node may become active in a subsequent training step

— Back propagation: if a node is dropped out, it does no longer propagate changes. The
weights of connection to/from such a node do not receive an update.

— The final model for prediction uses all nodes but compensates their weights with (1 — p).

We can interpret the dropout technique as learning many different networks at the same time.
Finally, we combine all the individual networks into a single, bigger network. This helped with
overfitting as each individual subset of the network has adapted differently to the training set.
By “averaging” the networks for prediction, the impact of overfitting in one such sub-network is
evened out the other sub-networks (which may have overfitted other aspects of the training set)

a) Standard Neural Net (b) After applying dropout.

Multimedia Retrieval — 2018 5.4.5 Deep Learning Page 5-89

« Putting all together

— Let us start with a simpler example: the MNIST input layer o aver 1 hidden layer 2 hidden layer 3
database (see next page) consists of 28x28 '
images depicting hand written digits (0, 1, 2, ..., 9)

— The conventional approach with neural network
used fully connected hidden layers like in the
picture on the top right. Its performance was ok
but methods like SVM and k-NN classification
proved to be better.

— The deep learning approach: use of convolution
and pooling greatly improved performance. The
picture on the bottom right show a possible
architecture. The first 5x5 convolution produces
20 features with a RelLU activation (here, no
padding is applied hence the size of the network
reduces to 24x24). A subsequent 2x2 max-pooling
layer reduces the spatial dimension to 12x12 (with e gl
20 features). These 12x12x20=2880 elements are | Al e o <8
fully connected to 100 neurons. Finally, a softmax
layer reduces the 100 neurons to 10 classes. The ﬂ” 1 oo
output neuron with the highest value denotes the | I e 7

class for prediction.

deep
learning

Multimedia Retrieval — 2018 5.4.5 Deep Learning Page 5-90

* The original black and white images from NIST

» The data set consists of 60’000 training items
and 10’000 test items

* The best method currently (a convolutional
network) has an error rate of 0.23%

» List of further datasets for machine learning

— https://en.wikipedia.org/wiki/List of dataset
s for machine learning research

HANDWRITING SAMPLE FORM

DATE CITY STATE ZIP
[5—5—9 9_] I/z',wwé'/fy P FFESE]

This sampie of handwriting s being collected for use 1o testing computer recognmition of hand prnted numbers
and letters Please print the following characters in the boxes that appear bejow
D1234567%6 012345687 RY 0123456729

lcr23yserz9 | [07239056252 [3 vs2.57)
7 701 3752 %0753 960941

Lzr] |s7=2] [sorsz] [eerv~ |
158 4586 32123 R32656 82

[/59 [4s8¢| [32:22] [820557 | [&2]
T481 B0539 419219 67 904

[ovsr| [goc39) [w5279 | 7] [22¢]
81738 720658 5 390 5716

[6r738] [709:5% | |7 |13%2] |s2¢ |
109334 40 625 4234)2

losss | |90 [ez5] [s27¢] [x4222]

gyxlakpdsbizirumwlgjenhocy _

L9y Xda N AT b/ 2/ b F9IEn hoc |
ZXSBNGECMYWQTKFLUOHPIRVDJA

| ZXSBUCEOMYWR TKFLLOHP IV pTA

Please print the following text in the box below:
We, the People of the United States, in order to form a more perfect Union, establish Justice, insure domestic

Tranquility, provide for the common Defense, promote the general Welfare, and secure the Blessings of Liberty L
ourselves and our posterity, do ordain and establish this CONSTITUTION for the United States of America

we, 7he Pecfte 0F tre Yy feq STetes, /s orderre
Forma more parfect Daor, establish Svstee,
msor e olome<t1C Trangolity, Provide £of the.
gommen Tefen3<) promote +ne geneval Welfare
and Seeuve tv<e BZ\essmas of pber+ty to our-
3elves and ooV Dogter\Ty do ordawmn and
esTa tiign *hnie CopsSTITLUTION For Fre

Onivied 5‘:1*!-9-_:-, of Hmer\{qk.

Multimedia Retrieval — 2018

5.4.5 Deep Learning

Page 5-91

https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research

* GoogleLeNet for image classification

— GoolgLeNet was the winner of the ILSVRC 2014 Classification Challenge
— A key ingredient inception modules

» The inception module applies different operators

» To control the complexity of the model, 1x1 convolutions (marked in yellow) are added to
reduce the number of features

Filter
concatenation

_—7

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

A

A

1x1 convolutions

1x1 convolutions

[)

3x3 max pooling

Previous layer

Multimedia Retrieval — 2018

5.4.5 Deep Learning

Page 5-92

* The full architecture of GoogleLeNet for

image classification

— Input: 224x224 RGB images

7712
3x3/2
3x3/1
3x3/2

convolution
max poo
convolution
max pool
inception (3a)
inception (3b)
max pool 3x3/2
inception (4a)
inception (4b)
inception (4c)
inception (4d)
inception (4e)
max pool 3x3/2
inception (5a)
inception (5b)
avg pool 7x7/1
dropout -40%

linear

softmax

112x112x64 2.7K

56x56x64
56x56x192
28%28x%192
28x28%256
28x28x480
14x14x480
14x14x512
14x14x512
14%14%x512
14x14x528
14x14x832
Tx7x832
7x7%832
7x7%1024
1x1x1024
1x1x1024
1x1x1000
1x1x1000

112K

159K
380K

364K
437K
463K
580K
840K

1072K
1388K

1000K

34M

360M

128M
304M

73M
88M
100M
119M
170M

54M
71M

1M

1x1+1(5) [l 3x3+1(S) [l 5x5+1(5) [l 1x1+1(S)

[Conv Conv. Conv.
1x1+1(S) |l 3x3+1(S) [l 5x5+1(S) [l 1x1+1(S)

[C MaxPool

onv AveragePool
1x1+1(5) [l 1x1+1(5) [l 3x3+1(5)

5x5+3(V)

Conv

Conv
3x3+1(S) 5x5+1(S)

Conv Conv
1x1+1(S) M 1x1+1(S)

Conv

Conv
3x3+1(S) 5x5+1(S)

Conv [
1x1+1(S) | 1x1+1(S)

Conv Conv
3x3+1(S) 5x5+1(S)

v v
1x1+1(S) | 1x1+1(S)

Multimedia Retrieval — 2018

5.4.5 Deep Learning

Page 5-93

 Tensorflow
— Tensorflow was developed by the Google Brain team

— The term tensor stands for an arbitrary dimensional array holding the data values (often float32).
— Tensorflow has two elements

* Nodes are operators on input tensors and produce an output tensor

« Data edges combine nodes and connect outputs with inputs (" 560 Trainer

— The Python front-end provides a simple way of building these
graphs

— Another aspect of tensorflow is the distributed execution of the graph
and the support for CUDA (GPU based operations) and parallel
execution of operations.

— For more information see: www.tensorflow.orq

Multimedia Retrieval — 2018 5.4.5 Deep Learning Page 5-94

http://www.tensorflow.org/

« In this chapter, we only looked at deep learning for Neu’l‘,’gi’“ﬁ"“"g{’wlb ks
spatial data sets (images, videos). But there is a o " e o 79

great number of further architecture extensions to B Noisyiop o Percepron ®) FesForwad () Rt Basi et (450
. . . Hidden Cell -

support, for instance, natural language processing, o | S8 R e

m e m O rl Z atl O n Of faCtS an d d ata, an d SO O n . . Spiking Hidden Cell Recurrent NeuraL Netwark (RNM) Long / Short Term Memary (LSTM) Gated Recurrenl Umt (GRU)

. Output Cell
» The Asimov Institute published in 2016 a map @ etch gt

outlining the neural network zoo @ recuromca

. Memary Cell

http://www.asimovinstitute.org/neural-network-zoo/ P

" Kernel

h ,m}’m’

Auto Encoder (AE) Variational AE (VAE) Denaising AE (DAE) Sparse AE (SAE)

O Convelution or Pool

Markov Chain (MC) Hopfield Netwark (HN) Boltzmann Machine (BM) Restricted BM (REM) Deep Belief Metwork (DBN)

[ele)

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Netwark (DCIGN)

~ ™ P
_O/o\.. X /O'\o - Pio g
™~ S ™~
Generative Adversarial Metwark (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Netwaork (ESN)
Q VaYaYyaY ‘
5 :lﬁﬂ‘ﬁ“ﬁﬂﬁﬂ
g AW »«v»«'; _
Deep Residual Network (DRMN) Kohonen Netwark (KN) - Support Vector Machine (SUM) Meural Turing Machine (NTM)

m%%%

Multimedia Retrieval — 2018 5.4.5 Deep Learning Page 5-95

http://www.asimovinstitute.org/neural-network-zoo/

5.5 References

« Papers
— Quinlan, J. R. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81-106
— Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.

— X. Wu, V. Kumar, J.R. Quinlan, et al., A survey paper on Top 10 Algorithms in Data Mining,
Knowledge and Information Systems, 14(1), 2008.

— Lavner, Y and Ruinskiy, D, A Decision-Tree-Based Algorithm for Speech/Music Classification and
Segmentation, EURASIP Journal on Audio, Speech, and Music Processing, 2009.

— Diego Castan, Alfonso Ortega, Eduardo Lleida, Speech/Music classification by using the C4.5
decision tree algorithm, FALA 2010 VI Jornadas en Tecnologia del Habla and Il Iberian SLTech
Workshop

— C. Szegedy et al, Going Deeper with Convolutions, Computer Vision and Pattern Recognition
(CVPR), 2015.

« Books
— Mitchell, Tom M. Machine Learning. McGraw-Hill, 1997.
— M. Nielsen, Neural Networks and Deep Learning, free online book, Dec 2017.

— |. Goodfellow, Deep Learning (Adaptive Computation and Machine Learning series), 2016. Free
online version available at: http://www.deeplearningbook.org

« Software
— Tensorflow, Apache 2.0, https://www.tensorflow.org/
— Scikit-learn, BSD, http://scikit-learn.org/
— Online Neural Network: http://playground.tensorflow.org/

Multimedia Retrieval — 2018 5.5 References Page 5-96

https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
http://neuralnetworksanddeeplearning.com/index.html
http://www.deeplearningbook.org/
https://www.tensorflow.org/
http://scikit-learn.org/
http://playground.tensorflow.org/

