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5.1 Motivation

« Signal information is too low level

« Feature extraction based on machine learning abstracts lower level signal information
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pemo:  clarifai

— Clarifai provides APls to recognize ‘models’ in images

— https://www.clarifai.com
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* Machine learning has greatly improved over the past years because of three factors:
— Deep learning

— CPUs and especially GPUs

— Auvailability of frameworks like Tensorflow
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« Although not every aspect of the human brain is understood

— It was believed brain adapts in the first months
does not change afterwards

The brain can shift h

take over functions after brain damages

— What does this mean? The brain working with  “universal algorithm”

simple

learn best with increasing difficulties and if we struggle in the practice

* Many researchers switch between neuroscience and artificial intelligence

algorithms are rather
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5.2 Machine Learning Basics

The Machine Learning Problem

A computer program is said to learn-from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T, as measured by P,
improves with experience E [Mitehell 1997]

There is a wide variety of machine learning problems

Often, real-life examples employ a set of different approaches

« Other examples include cascading several methods

« Modern approaches in Deep Learning build excessively deep sequences
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5.2.1 Tasks

* With task ability that the machine is
supposed to perform

- [ Classification

Sy = f() vith f: R

Dedaciiy L olatic sy _

#1 0.28 0.56 105 7
#2 8.1 0.56 ;%ng 3.117 9.3 5
#3 7.4 0.59 0.08 338 9 4
#4 7.9 Sos? 0.51 3.04 9.2 6
#5 8.9 0.22 0.48 3.39 6

» Classification with missing input
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* Regression predicting a numerical value
W

&

« Clustering divides a set of inputs into groups
K
AL

~

« Density estimation (probability mass function estimation) is the construction of an estimate of
an underlying, unknown probability density function

0.16 /. N T T 0.25

0.14 + \

0.12

0.20

0.10 | sl

005 -

P(t)
P(t)

0.06 |- | 00k

0.04 +
0.05

0.02

0.00

L L L L L m L L L
-5 -10 \_/ 0 5 10 15 - -1 -5 0 5 i 15

Multimedia Retrieval — 2018 5.2.1 Tasks Page 5-8


































































































































g\\." Imputation of missing values redUires an algorithm to replace (estimate / guess) missing data

lcaions. incomple C( ¢ D( -

— T

¢ Synthesis and sampling is a type of task where the machine learning algorithm must generate
~new examples thaﬁtgre similar to the training data

N )

Anomaly detectiog,réﬁuires the algorithm to flag unusual, incorrect, or atypical events
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«~“Machine translation (MT) is the mapping of a sequence of input symbols (source language) to a
sequence of output symbols’(target language)

English Spanish French English - detected ~ "'.. English Spanish German ~ Translate
Machine translation (MT) is the mapping of a sequence of input symbols (source X | Maschineniibersetzung (MT) ist die Abbildung einer Folge von Eingabesymbolen
language) to a sequence of output symbols (target language). In simpler cases, (Quellsprache) auf eine Folge von Ausgangssymbolen (Zielsprache). In einfacheren
subsequent input symbols correlate directly to sequences of output symbols. Applied Fallen korrelieren nachfolgende Eingabesymbole direkt mit Sequenzen von
to natural language-transtation however, simple word-by-word translation is not Ausgangssymbolen. Auf die natirliche Sprachubersetzung angewendet, ist jedoch
sufficient and the algorithm must find a representation in the target language that is eine einfache Wort-fur-Wort-Ubersetzung nicht ausreichend und der Algorithmus muss
|structurally and semantically correct. eine Reprasentation in der Zielsprache finden, die strukturell und semantisch korrekt
ist.

[_D ") ‘/: f Suggest an edit

L DI

« Transcription asks a machine learning algorithm to observe a unstructured representation of the
data an to transcribe it into a discrete (often textual) form

« Dimensionality Reduction simplifies the input vectors to a lower-dimensional space
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~  Reasoning is the process of generating conclusions from knowledge
| y |

Ny,

- “Autonomous Robots work with reinforceme

[ | o —

nt le

_ g ~ ~ N M)

arning

— While

Tesla states that its autopilot is
10 times safer than the average driver.

— Laws for and acceptance of robots in society
are in its infancy

— Further obstacles are insurance issues
(who pays for a mistake of a robot)
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5.2.2 Performance

* To evaluate

Chapter 1 (Evaluation of Performance). A short summary:
— Binary classification

— Multi-class classification \

— Binary classification with scores and thresholds ﬂ\ ~

— Multi-class Classification with Probabilities

— With Regression mean squared error (MSE)

— As machine learning algorithms to evaluate
to find an optimal set of parameters
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5.2.3 Experience

« Supervised Learning
the data set

feature 2

target for each instance of

Regression

target: label in the A
form of a shape

target

— As discussed

— Even though targets are given

feature 1 feature

the teacher provides an error measure

noise

wrong labelling defects, distortion
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« Semi-Supervised Learning

— Missing targets some objects do not have
targets (or labels)

credit card firms investigate only a small subset of “suspicious” transactions

1) Smoothness Classification
A @ form of a shape
2) Cluster E A x © o O
2 A A A EXA O O
_ A pn  AA DDO ©
3) Manifold AA g o o
A A 58
A m 2 O o0 O
O o O o
O e
(T
8 8
" 8 ? @)
« Induction only fewlabels  missing feare

predict the missing labels
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 Transduction

1. Start with a single cluster with all objects

2. While a cluster has two objects with different labels
Partition the cluster to resolve the conflict

3. For all clusters
Assign the same label to all objects in the cluster

— Missing features
features

* Naive Bayes
k* = argmax P(Cy.) [1; P(x;]Cy.)
k

missing features simply ignore them
o If

“average” over the missing features

N\, /\feature 2 \

Classjfication

' target: Jabel inthe
missing tayget fgrm of a shap!
A ' ¢ %
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« Unsupervised Learning observe data set without targets

algorithm must learn without any guidance. Classificatior

— Clustering

feature 2

— Outlier/Anomaly detection

— Density function

— Dimensionality reduction

— Self-organizing maps (SOM)
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* Reinforcement learning evaluates possible actions in an environment so as to maximize the
cumulative award

— Areinforcement agent typically interacts with its environment in discrete time steps

maximize the cumulative rewards

4 \\ \
$
y ¢ o~ \ /

/ reward l \ - ’
¢ Reinforcement e ®
—:»&wr e : —— Action

= state Learning policy
Agent
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— A policy is a series of actions

define policies and choose the best policy
Exploration developing (or composring) new policies

application of the best known policy

exploitation

— Reinforcement learning is an efficient approach if the environment behaves non-deterministic or

even chaotic
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5.3 The Learning Proces

« Machine learning algorithm learn from data “right” data

— Feature selection, i.e., ability to capture essential information to learn a task

— Data cleansing, i.e., ability to remove the negative impact of outliers or of noise

— Normalization, i.e., ability to address correlation between features and to normalize scales
— Curse of dimensionality, i.e., inability to learn underlying structure due to sparse data space
— Opverfitting, i.e., inability to generalize well from training data to new data sets

— Underfitting, i.e., inability of the algorithm to capture the true data structure

« Data preparation is a 3-step approach which we do not further discuss in this section

1) Select Data
2) Preprocess Data
3) Transform Data

« We need to pay attention how we divide the data sets into training sets
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Train model
with training
set only

atures Targets

Validate model, adjust
hyper parameters, and
repeat steps 2, 3, 4

Validation

o — o > 4 aiicat Assess model with test
' YV Set S set and compare with
. other methods

e L » Test Set —>» Assess —“@—V. ‘

I
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\\ | 4 / Results

training sets and test sets are distinct

Set Model
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e
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i
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Q
>
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7 ‘f’jsai?t/training
“and validation

Split training
and test data

* Most algorithms have hyper parameters

validation sets (again, distinct from the training sets)
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* Overfitting and underfitting

optimal

overfitting

optimal |
\
underfitting
overfitting optimizing for training data
with too many parameters
— Underfitting large errors on the training data and poor prediction

performance
capacity of the model
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« When altering the capacity Occam'’s razor

— Numqguam ponenda est pluralitas sine necessitate [Plurality must never be posited without necessity]

among competing hypothesis that explain
observations equally well, one should choose the “simplest” one.

error

underfitting | overfitting
zone | zone

generalization error

generalization gap
training error

»

optimal capacity capacity

 The bias-variance tradeoff (or dilemma)

— The bias error of a model (underfitting)

— The variance error from sensitivity to small changes
(overfitting)

The bias-variance decomposition is a way to analyze the expected generalization error
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 Todrive partition data set training set
(70-80% of data) test set (20-30% of data)

validation set (20-30% of data):
— The training set is used for learning

— The validation set is used to tune hyperparameters

— The test set is used to assess the performance

— k-fold cross validation

test set training set -

1stiteration Mmuw.wuooummomonmoum»

2nd jteration onnmnol.uonoommﬁn«oonmmomonmoumno :I T saie
N applies for the

31 iteration onmmoWuWomonmouwo validation set

4t jteration O“WMOW“OO“MMO“”%MO“MO

5™ iteration onmmownoonmmomo{omonnm{
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5.4 Methods

» Classification of Tasks (based on Input)
— Unsupervised
— Supervised
— Semi-Supervised
— Reinforcement Learning
» Classification of Tasks (based on Output)
— Regression
— Classification
— Clustering
— Density distribution of a distribution
— Topic Modelling / Dimensionality reduction

« Approaches considered in the following
— Decision Trees (ID3, C4.5)
— Nalve Bayes
— Unsupervised Clustering (k-means / Expectation Maximization)
— Multi-layer Network
— Deep Learning
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5.4.1 Decision Tree Learning

* Classification

Male

Speech Female

Child

Silence

« Decision tree learning

Background

Noise

Classical

Rock
Music
Pop

Jazz

simple but effective classification

—

Multimedia Retrieval — 2018

5.4.1 Decision Tree Learning

Page 5-25




« The concept of classification trees is quite old Orde icsdum quewt METHODI tebbter
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* A node in a classification tree usually tests for a single feature only
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(f(x) is the condition)
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« The leaf nodes denote the labels (or targets)

true

» yes
| e 5 student? —o= » no _— Note that this
tree is not
i 25 < age <65 balanced
w(z)rreig;? —>  age? B -
| age = 65 _ credit score < 75 ~
score? " no
score =75
» yes
» In order to create a decision tree must identify  set of tests

— Note: the condition “minimal number of steps” leads to the most simple tree that maps features to
labels following Occam’s razor
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To construct
gain

— Let T be the training set

Letlev={xE']1"| xj = v}

] v

IG(T,x;) = H(T) — Z L

UEV]

ITI

Entropy H

(x; )’) = (xler; X3, ey

information
reduction of entropy given the observation

xM»y)

subset of T such that

P(y;) denotes the probability that

a randomly selected item from T has the label y = y;

- Z P(y:) - logz (P (7))

| H(T) =

Entropy is usually based on log, but
for the purposes here, the basis of
the logarithm is irrelevant

—

H(T;0) = = D P(il; = v) -log (P(vilx; = v))

i
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— Example
H(T) “‘ P(y) -log,(P()) B I 9 > AN
= . | — — . — — —— o0 — =
I Y 08P T 082\ 1) T 1a %82 \12) T
|| ye{Yes,No} | M | -
) | 14 entries with 9 ‘Yes’ and 5 ‘No’
Jj = Windy

Viinay = {TRUE, FALSE}

(H(Tj,TRUE))z - Z P(ylx; = TRUE) - log, (P(y|x; = TRUE))
ye{Yes,No}

H(T; pase)

ye{Yes,No}

|Tj,v|

IG(T,x;) = H(T) — Z H(T;,) = 0.9403

veE{TRUE,FALSE} |T|

14 entries with 6 ‘TRUE’ and 8 ‘FALSFE’

23 0e, (2) -
6 ®2\6
6 6\ 2 2
P(y|xj = FALSE) - log, (P(y|xj = FALSE)) =-3 log, (§> 3 log, (§> 0.8113

Outlook

iIsunny
| Sunny
| Overcast ||Hot High
' Rainy Mild High |
| Rainy Cool Normal ||
- Rainy Cool Normal
=1 | overcast Normal
94-03“ " Sunny High
e || Sunny Normal
Rainy Normal
|| Sunny Normall
|| Overcast High
i Normal
High

— —

3 3
6

T

6 TRUE entridswith 3 ‘Yes’ and 3 ‘No’

3

o (3) <O

8 FALSE entries with 6 ‘Yes’ and 2 ‘No’

= 0.0481
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A high-level pseudo code

Function DecisionTree(Features, Targets)

TrainingSet, validationSet, Attributes & CleanseData(Features, Targets)

Root €« BuildTree(TrainingSet Attributes)
Rules ¢ PruneTree(Root, ValidationSet)
Return Rules

We can re-write a decision tree as a set of rules

true
l—» yes
age < 25 false
,—» student? ——» no
credit 25 < age <65
—> age? » yes
worthy? -
age = 65 i score < 75
Y credit X .
score?
| score =75

public boolean isCreditworthy(Customer c) {
if c.getAge()<25 && c.isStudent()
if c.getAge()<25 && !c.isStudent()
if 25<=c.getAge() && c.getAge()<65
if c.getAge()>=65 && c.getCreditScore()<75
if c.getAge()>=65 && c.getCreditScore()>=75
return false; // default: false

Note that ‘true’ and ‘false’ are labels
and not Boolean values in the rules

Rule Set:
yes €& (age<25) AND (student==‘true’)
no € (age<25) AND (student==‘false’)
yes €& (25<=age) AND (age<65)
no € (age>=65) AND (score<75)
yes € (age>=65) AND (score>=75)

return true;
return false;
return true;

return false: \Qi:\\\\\

return true; -
’ Further optimizations of
code generation possible

rules compiler
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* Cleanse data

Function CleanseData(Features, Targets)
Features, Targets €« eliminate entries with missing Targets (=NULL) and outliers
Features € predict missing Features (=NULL) with domain knowledge
Features € transform and normalize Features with domain knowledge
Attributes ¢« select set of useful Features with domain knowledge

«wercollapse entries that share the same Features
assign the most frequent label from Targets to the collapsed entry
keep Counts (=number of entries) for correct entropy calculations later on
Data €& combine Features, Targets, and Counts into a structure

TrainingSet, validationSet & Split Data into distinct sets with given Ratio (e.g., 70:30)
Return TrainingSet, validationSet, Attributes

Additional information — not part of the exams
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 Build tree

Function BuildTree(Data, Attributes)
N € new Node and associate most common Tlabel in Targets with node N
If all Targets have same label Then Return N
If Attributes is empty QR Then Return N
A, Tests, Fitness Data, Attributes)
If Fitness below ThresSho
Foreach T in Tests Do
B € add new branch to node N for test T
P €& get partition of Data which fulfills test T
If P is empty Then add new (empty) node below branch B with same label as node N
Else C ¢« BuildTree(P, Attributes - {A}); add node C below branch B
End T
Return N The typical approach is to use an attribute only once
on each decision path in the tree. Hence, tree height
is limited by the number of selected attributes.
Function SelectBestAttribute(Data, Attributes)
Foreach A 1in Attributes
Tests[A], Partitions €« split feature values for attribute A and determine partitions
Fitness[A] &« determine a fitness/score for attribute A (e.g., information gain)

End
Abest €& find A with Fitness[A]==max(Fitness)
Return Abest, Tests[Abest], Fitness[Abest]

Additional information — not part of the exams
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* Prune tree

Function PruneTree(Root, ValidationSet)

Repeat _ _ This pseudo-code is obviously not
Accuracy € get total accuracy for validationSet optimized for speed but rather shows the
Foreach N underneath Root steps that are necessary for pruning

If N is Teaf Then Accuracy[N]=Accuracy
Else

replace subtree at node N with leaf (keep Tabel of N = most common target)
Accuracy[N] € get total accuracy for validationSet
insert original N into the tree again
End

End

N €& find node N with AccuracyNode[N]==max(AccuracyNode)

If AccuracyNode[N]>Accuracy Then replace subtree at node N with Teaf

until AccuracyNode[N]<=Accuracy

Return (Rules €& create rule set given the tree underneath node Root)

Additional information — not part of the exams
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— Pruning rules

This pseudo-code is obviously not
Function PruneTree(Root, VvalidationSet)

optimized for speed but rather shows the
steps that are necessary for pruning

Rules €« create rule set given the tree underneath node Root

Repeat

A

Accuracy € sort Rules by accuracy; get total accuracy for validationSet
Foreach R in Rules
ForeEach condition C in R
remove condition C in R

AccuracyRule[R][C] €« get total accuracy for validationSet
insert condition C into R again
End

END

R,C €« find rule R and condition C with AccuracyRule[R][C]==max(AccuracyRule)
If AccuracyRule[R][C]>Accuracy Then remove condition C in R

Until AccuracyRule[R][C]<=Accuracy

Return (Rules €& sort Rules by accuracy)

Additional information — not part of the exams
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* Implementations
— The ID3 algorithm was invented by Ross Quinlan in 1986

T
IG(T,x;) = H(T) — z |I1]fl |H(1rj,v)

UEW]'

To compute the entropy count frequencie Vi

= fr (']I‘j_v) Since we are looking for the
max z z fk(Tj_v) - log, |'1T | maximum value, the base of
j .
k

=1veV; the logarithm is irrelevant.

O empty partitions are ignored.

» Decision nodes only exists for discrete attributes

j{= argmax IG(T,x;) = ar
j
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— Ross Quinlan refined the ID3 algorithm and published the C4.5 algorithm in 1993

« The information gain measure favors attributes with Lﬁny values

C) D split
information entropy with respect to|the attrib
| d
PPN 7 q
I SI(T,x;) = — ZW: AN logz—ﬁ‘ .
. , ve j B\ \
The gain ratio is then the ratio between information gain and split informattott: o
_IG(T, x;) -
GR(T. ) = si(T, x,)

A practical issue, however, occurs if one T;,, is almost as biga T

- compute IG(T, x;) for all x;
» select a threshold IGryyesnoia, fOr example:

* IGrhreshola = avg (1 G(T, x,-)) (mean information gain)
* IGrpresnoia.= Pso (1 G(T, xj)) (median information gain, 50-percentile)
. jr= argmax (—IG(T’xj))
)= & s1(T,x;)

J; IG(T,xj)>IGThreshold
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* To allow for continuous values PR
( x; <@)then the value is ‘true’, otherwise it

IS falSe’ i ————————

--

T 60 < 90

» There are several strategies to address missing values
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« Example: audio classification
— Decision trees are very simple and produce efficient classifiers

— In the learning phase, we need to pre-process the audio signal

information

A

length=4s
hop=100ms

Segmentation

res, gather statistical

S

Audio
Signal /

-~

A

Framing

\ 4

O

K Feature

AM Ratio

> length=40ms > .
feahe @

Statistical
~Computation

\ features

targets

\ 4

/

Rule
Set

A\ 4

C4.5

Features (6 dimensions)
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— Framing and Segmentation

— Castan (2010) focused on a small number of characteristic features:

« HZCRR
High Zero-Crossing Rate Ratio (HZCRR)

LSTER
Low Short Time Energy Ratio

« AMR Amplitude Modulation Ratio

* VSF
Variation of Spectral Flux

MET & VAR
Minimum-Energy Tracking (MET) measure how long C,
Pauses variance of all MFCC
over the frames in the segment. Small VAR values indicate music.
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— In the prediction phase

Audio K
Signal

\ 4

Framing
length=40ms
hop=20ms

Feature
Extraction

—

« Smoothing uses weighted sums over past predictions with exponentially smaller weighs to |

v

Segmentation
length=4s
hop=100ms

Statistical

| Computation

7 )features o

A

avoid fast alteration between targets

* Voting is rather simple

»

predictions

Rule
Set

) A

Smoothing |

A 4

Segmentation
&
Classification

- | continuous stream
|

single file

\ 4

Voting

A 4

Classification

D §
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5.4.2 Naive Bayes

» Bayesian classifiers go back to 1950

likelihood - prior

osterior = -
p evidence

naive Bayes assumes
&__ﬂ

Note that P(x) is a constant over classes
¢, and scales the probabilities. For our

purposes, we do not need to know it.

P(,C\ ’&m)

\ That is it! The equation describes the decision rule
k™ = argmax P(Cylx) = argmax P(Cy) - | | P(x] |Ck) of Naive Bayes. The only thing left are the estimates
| il for the probabilities on the right hand side
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« To obtain the prior and the likelihood, we need to estimates the probability distributions

« Learning process

— Estimating P(Cy) N, bet the number of training items with label C,
‘ P(Cy) = N
If the exact numbers are not clear
— To find P(x;|Cy) need to model the underlying distribution

maximum likelihood estimation (MLE)
model parameters that maximize the likelihood of making the observations

— Letx; discrete Ni(x; = v) with v € V; number of training items
with label"Cythat have x; = v

Ne(xj = v)
Ny

P(x;=v|C) =
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— What if a value v is never seen for x; P(x;=v|C)=0

l‘;P(Cklx) =;P(Ck|x1, ...\;'xj = v, ,./.“;,xM) %O / |
In other words eliminates
C, as a prediction
Laplace smoothing (add-1).
“steal” probability mass

Nk(xj = v)f+r 1

P(Xj=U|Ck)= Nk+|v'|7
] .

Note: the sum of P(xj = | Ck) over all values v € V; is still 1. But we got rid of O-probabilities.

Observed Probabilities Smoothed Probabilites
0.4 0.4
] stolen
0.3 0.3 l
0.2 0.2
0.1 0.1
o HHI_I o H’:"Z‘l—lﬁﬁpdded
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Red indicates “stolen” probability mass and green denotes added probability mass.
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— A special case is a discrete Boolean value x; € {0,1}

Bernoulli event model

Py 1 Ge) = (i) (1 =)™

Dij = —Nk(xj =1) or smoothed: /', . _ min (Nk -1 max(l’Nk(xf ~ 1)))
' Ny k.J Ny,
- A multinomial event model
x = (xq, ..., x)y) representing a histogram x; counting the number of times a feature or

event j was observed e -

Note that the factor to the left of the product symbol is a constant when
looking for the best class C;, and hence drops in the argmax equation

(%)
P(x|Cy)= W : H(pk,j)

Let ny ; : occurrences of feature j in items with label C,

ng,j ng; +1
orsmoothed: [ pri =———
T i+ M

Prj N X Ng1
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— If feature values x; are continuous _

Gaussian distribution

2
(i)
20-,%'1

1
p(x;|Cy) = —="¢
/2110,3’1-

unbiased estimators based

When estimating variance from samples, we must
account for the error in the estimated mean value, that
is, we underestimate the variance because differences
between values and the estimated mean are too small.

To learn the parameters of the normal distributions, we can use the Expectation Maximization
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 Prediction

— To predict the class C+
maximum a posteriori (

k* = argmax P(Cy|x) =largmax P(C) -
k k

With —practical issues due to the multiplications

M
k* = argmax log(P(Cy|x)) =argmax | log P(C}) + Z log P(x;|C)
k k :
Jj=1

— To reduce the noise of a large number of features, we can focus on a few features only that are
sufficient to classify data items

Chi-square and
mutual information

Multimedia Retrieval — 2018 5.4.2 Naive Bayes Page 5-46




























« Example: Text Classification
— There are two models for text classification: 1) set of words, and 2) bag of words

— Set of words and multivariate Bernoulli
feature vector x

classes Cj

i 1
P(C) = Wk or if Nj is not known: P(Cy) = =

Let x; = 1 denote that term ¢; is present

_ NG =1) or smoothed: = min(N — 1, max(1, Ny = D))

pk.j Nk / pk,j Nk

Prediction

M
k* = argmax P(Cy|x) =argmax| log P(Cy) + Z(xj logpy,; + (1- xj) log(1 — pk,j))
k AN :
j=1

binary

Multimedia Retrieval — 2018 5.4.2 Naive Bayes

Page 5-47










— Bag of words and multinomial X
denotes the number of occurrences of terms

classes Cj
N 1
P(C) = Wk or if Nj is not known: P(Cy) = =
Let n, ; be the total number of occurrences
k,j
nk,j nkj + 1
Pk,j = or smoothed: =
“ : Zl N1 pk'] Zl N 1 + M
Prediction

k* = argmax P(Cy|x) =argmax (logP(Ck) + Z X; logpk‘j>
K k

x]'>0

« Summary: Naive Bayes is not so naive
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5.4.3 Unsupervised Clustering

« With unsupervised learning tasks,

k-means clustering and Expectation
Maximization over a Gaussian mixture
typical applications are:

— Feature quantization

— Cluster analysis

— Image segmentation

guide clustering algorithms in selection of optimal number K of clusters
underfitting (extreme case is K = 1) and overfitting
(extreme case is K = N with N being the number of training items)
utilize a target function
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« k-means clustering

data point belongs to cluster with the
nearest centroid

— Although computation Is a NP-hard
efficient heuristics

— Let N be number of data items with d-dimensional representations x4, ..., Xy
K sets S = {S4, ..., Sg} within-cluster sum of
squares

K

K
s' = argmin ) > {ix — pilP=argmin ) ISyl - of
k=1

k=1 x€Sy N

with u,, denoting the mean of items in S, and o7 being the variance of items in S,

1. Select an initial set of centroids ugo), ...,uE{O) (see later how to select)

2. Assign x to closestto py, i.e., |x—pul| < [|x— 1| v:1<1<k

3. Calculate the new centroids for the next iteration (t + 1):

u+D 1 Z X
ke T e®
st

(®)
XES;,
4. Repeat steps 2 and 3 until algorithm has converged
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— Initial choice of centroids
* Random points

« Random partition

* k-means++: the first centroid chosen randomly subsequent centroid
chosen with probabilities proportional to squared
distance to closest centroid

« Expectation Maximization (EM) (and interpretation of k-means algorithm)
— EXxpectation maximization

observations are
obtained from probability distribution
soft assignment denotes that cluster assignment follows a
conditional distribution find the soft assignment and the parameters of
the distributions that best explain the
observations
— Solving above objective function not possible

expectation step
maximization step
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— Let us start
two (K = 2) Gaussian distributions V' (uy, o7)

prior P(Cy)
LP(C) =1.
— Now, assume observations T = {x4, ..., xy }.
assume XES, from blue
x€ES,=T\$, from red

(biased) estimators:

— —_——

_ Lxesi ¥ , Des, (X — i)? IS, |

_ 1l
Ug = |Sk| : Oy |Sk| P(Ck) - N
— On the other side, assume parameters py,, o7
priors P(Cy)
P(Cylx;) x; part of C,?
p(C |x.)=P(xi|Ck)'P(Ck) _ P(x;|Cy) - P(Cy)
o P(x;) Yk P(xi]Ci) - P(Cr)

_ 1 (xi—p)?
with  P(x;C) = f(xi5 e, o) = Pl (_ xZ:;%k )
21 oj,
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— Given  probabilities P(Cy|x;)

soft assignments.
not entirely sure from which sub-population

_ 2 P(Cyelx;) - x; 2 2 P(Crlxy) - (x — py)?

e = T3 P(Clx) o T Ty P(Clx)

— Now we can summarize the EM
P(Cylx;)

1. Selectinitial values for 4,62 and w(® for 1 < k < K

.../..'...\ SIS |

i P(Cilx;)
N

P(Cy) =

responsibility y;, =
weights wy, = P(Cy)

2. E-step: evaluate new responsibilities yl(,? for1 <i <N and1 <k < K using current parameters

®
we  f (3 w0t
O _
Lk t) 20
kak 'f(xu .u}(c)'o—k )

t+1 . L eres
3. M-step: evaluate new parameters y(t“) a,g( ) and W,Et-l-l) for 1 < k < K using current responsibilities
®) ® t+1))?
]({t+1) _ YiVik X O XiVik ( ~ Mk NCE i Vz(ltc)

> y(t) k 3, y(t)

4. Repeat E-step and M-step until the parameters stop changing

k N
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— Once convergence of EM  reached (hard) assign data item x;

P(x;|Cy) - P(C

— We can generalize d-dimensional spaces

1. Selectinitial values for ”(0) 22( ) and wko) forl<k<K
2. E-step: evaluate new responsibilities y; k) for1 <i < N and1 < k < K using current parameters

® (t) 5200
® _ Wk f(xll l'lk 12 )
ik — t t )

kal(() . f (x“ u,({),Zz )

(t+1) 22 (t+1)

3. M-step: evaluate new parameters pu, and W,Et“) for 1 < k < K using current responsibilities

® (t+1) (t+1)
”’(€t+1) _ Zlylk(t)xl 5 (1) _ ka ( o ) ( — My ) LEFD Zlyl(,?
Z y k Z ]/(t) Wi N

4. Repeat E-step and M-step until the parameters stop changing

— Again, we obtain a hard assignment

1 1
k* = argmax( 9) - f (xl, () 22(19))) f(xi me Z3) = o exp <_E(xi — w)TE (g — M))
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— Where does the name Expectation Maximization

Y* = argmax p(X]|Y) = Jp(X,ZW) dZ
Y
Z

Q(Y[Y®) = Eyy yo [log p(X, Z|Y)]

Additional information — not part of the exams
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— Let us reconsider the k-means algorithm as an EM problem

] = z Yirllx: — uells

N k
i=1

j=1

1. Selectinitial values for u,(co). Keep X =1 and w;, = 1/k constant
2. E-step: evaluate new responsibilities yif,? for1 <i < N and1 <k < K using current parameters
o |1 ifk= arg{nin”xi — i3

YVik = _
0 otherwise

3. M-step: evaluate new parameters u,(f”) for 1 < k < K using current responsibilities

()

uED = LiVik " Xi

koo ®
Ziyi,k

4. Repeat E-step and M-step until the parameters stop changing

Additional information — not part of the exams
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 For both k-means and EM need to control number K of clusters

sum of squared errors

K K

SSE(k—means) = z z llx — w1 SSE(EM) = Z Z (x — )" E (e — )

k=1 x€Sy k=1 x€eSy

If we plot this SSE as a function of K

a) Vary K from 2 to an upper bound (here 20) and determine the point that lies farthest away
from the line between the start and-the.end of the curve.

Sum of Squared Errors(SSE)
b) Start with K = 2 and determine the distance to the point

(2,0). While increasing K observe the distance. Stop if
the distance starts growing.

100

=]

60

40

need to normalize the two dimensions

20

elbow point
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« Example: Image Segmentation (Blobworld)

y 4
Y 4

L N

__Aa) original image "\

(bY smoothéd ;magc

LN

\

\

— Blobworld University of Berkeley a
a) The original image
b) A rough Gaussian filter
c) Coloris transformed into L*a*b*
seTGscribing the polarlty \s\
/ 0d edgeness and
wtex ture contrast_ 7
A\ plxel posmon (). -l
N g
d) Apply the EM-algorith m
8 feature values
2 3 4 and 5c|usters
e) To steer sters, a
'V“”Imum
Description Length (MDL)
f) Blobworld hard assigns plxels
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5.4.4 Multi-Layer Network

 Artificial neural networks inspired by how the brain works

* The first wave late 1950s
perceptron (in hardware).

XOR function

 The second wave 1960s with the introduction of hidden layers

1986 paper on backpropagation

calculation issues (vanishing and exploding gradients)

» At the beginning of the 2000s, almost no research was published

2006 a break-through paper

Google started
in 2011 its Google Brain
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W Perf / watt

source: https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-

googles-first-tensor-processing-unit-tpu

Electronic Brain

S. McCulloch - W. Pitts

DGX-1 with Tesla V100

8X GPU Server

18 hours, 40X faster

CPU-only Server [| 711hours

0X

Workload: ResNet50, 90 epochs to solution | CPU Server: Dual Xeon E5-2499 v4, 2.6GHz

source: https://www.nvidia.com/en-us/data-center/dgx-server/

10X 20X 30X 40X 50X

Relative Performance [Base on Time to Train)

60X 70X 80X 90X 100X

Multi-layered
XOR Perceptron
ADALINE (Backpropagation)
A A
A
Perceptron
Golden Age Dark Age (“Al Winter”)

F. Rosenblatt B. Widrow - M. Hoff

M. Minsky - S. Papert

1990

Deep Neural Network
(Pretraining)

SVM

2000

A

XA%NDY XORY NOT X
+1 +] -2 +1 +1 - -1
/LN /LN ]
X Y #1 X Y # X

Foward Activity =——jp»

¢—— Backward Error

« Adjustable Weights

« Weights are not Learned

source: ttps://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_partl.html

* Learnable Weights and Threshold

» XOR Problem

+ Solution to nonlinearly separable problems
 Big computation, local optima and overfitting * Kernel function: Human Intervention

« Limitations of learning prior knowledge

* Hierarchical feature Learning
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« We first consider the original perceptron idea

_J1 ifwix+b5>0
@)= {0 otherwise

w € RK are the weights and b is the bias

hyperplane given by wix + b L perceptrons
as follows:
, Wi,1 K
X1 —> i by —» 01 «— U Vi<I<L: Ol:f(Z ik'Wk+b>
2—> 0 b, —> 02 «— t; k=1

with the binary step function

XK —> iy b,— 0L +—— I f(2) = 1 z>0
sample input weights bias output target ~ |0 otherwise
The learning algorithm is then as follows: (demo: https://www.cs.utexas.edu/~teammco/misc/perceptron/)

1. Initialize the weights W,Ef? and the biases b£°) with small random values. Set a learningrate 0 < a <1
2. For each example x € T, apply it to the perceptron, i.e., leti = x
- Calculate that actual output: o, = f(ZK_; iy - wy) + by)

- Update the weights: w =w +alt; —o) iy,  (ie. only adjust if target==output)
» Update the bias: bl(“l) = bl(t) + a(t; — o) (i.e., only adjust if target=output)

Convergence is only reached if the data set is linearly separable.
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https://www.cs.utexas.edu/~teammco/misc/perceptron/

* Intuitively adjust weights if target differs from
output

heuristic approach

* In contrast support vector machine (SVM) computes  optimal solution

Perceptron SVM

possible

solutions exactly one

optimal solution

* Inany case, binary classifier can learn multiclass outputs “one-vs-all”

“‘one-vs-one”
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The linear classification
has the “kernel trick”

The “kernel trick” is

considered

seems limiting

human intervention

However, SVM
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« Multilayer networks introduce a number of changes to the original perceptron
— several "hidden™layers between input and output
— different activation functions to “fire” a neuron, and not necessarily only binary output
— objective functions to define an optimal state for all network parameters
— anew algorithm to learn the weights (the so-called backpropagation)
« Let us start with a simple two-layer ne

hidden output
W1 Ws
hy 01
Wp We
w3 W7
Wy h, Wg 0,
1
* The network ut neurons i, i, hidde urons hq, h, output neurons
01, 0, (shared) biases
weights on the connections connections are only from one
layer to the next one no inter-layer connections or cycles
nodes to
capture training error: J; and J,
J denotes the training error.
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 Feed-Forward sample x

e ]

input \évizlsghts summation  activation output

1—x1 and i2= 1

P(s) = 1+es
TE @(sn,) = (wy %3 +wy - x5 + by) } and {hz = @(sp,) = oWz - x1 +wy - x, + blL]
t‘i 90(501) @Wws - hy + wg - hy + by) %hws oWy - x1 +wy Xy +by) +we - @(ws - x; +wy - x; +by) + bz))

(502) =@y -hy +wg-hy, +by) =pw;-@w; - x; +wy - x5, +by) + wg - @(Wz - x; + Wy - X3 + by) + by)

feed-forward we “feed” data
into input layer then forward from one layer to the next one
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e Error function

O mZ](x 0) = 7= > 6@ — o O

xX€ET

6 denotes parameters of the network 0 = (Wq, ...,wg, by, by)

@: arg;nax](@) — |']I‘| let(x) —o(x; 0)|I5

gradient descent

1. Choose an initial random vector for (%) and a learningrate 0 <75 < 1
2. Repeat until |+ — B(t)”z <e O _t>tmax

- Compute gradient: A®

« Adjust parameters; ¢+ =gttr—A®

— Gradient descent slow close to minimum and “zigzags” for poorly
conditioned convex functions
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— Instead stochastic gradient descent
(SGD) with a momentum method T he

—_—_—

1. Choose an initial random vector for (%), a learning rate 0 < n < 1, and a momentum 0 <y < 1.
. 2
2. Repeatuntil [0 — D" <& or &> tpay

* Randomly shuffle the training set T r\
. gt+1) — g(©)
* Foreachx e T \
« Compute gradient: Am
« Adjust parameters; @U¢+¥D = g+ _ A —

* Increasey

compute the gradient V/(x; )

1
1(x:6) = 5 16(x) — o(x; 0)113 V) (x: 6) =7
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« Gradient computation 4\(& Yoo
{

I\ 7 /\51

o _(d] oJ a] d] 1 1
V](x’e)_<@""’awg"ab2> J(x;0) = J1(x;0) +)2(x;0) 7 - (&4 2+§ (tz { 02)
—

'h1+W6'h2+) 02=(P(502)=<P(W7'h1+W8‘h2+bz)
——— -

O (2t =02 45 (6= 07 ) = o5+ (01 = 0007 ) = (6 = 01) - o
dwg\2 1T O T2 Tl )G\ T o T T 0 G
/ [ S
do, 0 S0, .@
a_vvs_a_vvs((p(sol)) _(p(sol).(l_go(sol) : aW - 01.(1_01). aWS
050, 0
aWS _6W5@+W6.h2+b2)‘h1
_alltogether:
aJ

e (ty —01)-0,(1—09) hy

Additional information — not part of the exams
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{"’—’=h1-(1—h1)-

0
_]=h1'(1—h1)'

_=hz‘(l—hz)‘x1‘((t1_01)‘01‘(1—01)‘W6+(t2_02)'02'(1—02)'W8)
_=hz‘(1—h2)‘x2‘((t1_01)‘01‘(1_01)‘W6+(t2_02)‘02‘(1—02)‘W8)
_=h1'(1—h1)'((t1_01)’01'(1—01)'W5+(t2_02)°02°(1—02)°W7)+

hZ'(l_hZ)'((tl_Ol)'ol'(1_01)'W6+(t2_02)°02°(1_02)'W8)

Additional information — not part of the exams
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01 = 90(501) = @(Wws - hy + wg * hy + by)

hy = 90(5111) = @(wy - x; +wy - x5 + by)

0y = 90(502) = @w; +hy + wg - hy + by)

hy = ‘P(Shz) =@ws x; +wy - x + by)

a9 9 (1 1 do, do,
— (= (t, - = (t; — =(t;—0) - —+ (¢t —

6W1 ﬁwl( - (t; — 01)? + +(ty — 03) > (t; —01) T (t; —03) T

&:L((p(s ))zq)(s ).(1_(p(s )).05(,1 o (1—o0 ).aso1 9o, e ).aso2

an an 01 01 01 an 1 1 an a 1 - 02 02 an

ds 0 dh

601_6 (Ws + hy + wg * hy + by) = ws - 61 6502: %

! W1 W1 owy ow,

ahl aShl ashl

aw, (40( hl)) = ¢o(sn,) (1 — (P(Shl)) e hy-(1—hy)- o,

aSh 0

awl =an (Wl'x1+W2-x2+b1)=x1

1

all together:

aJ 1

—=(t;—01):0,-(1—01) wg-hy-(1—hy) -x; + —

an 1 1 1 1 5 1 1 1 (p(s) 1 o e—s

(tz —03) -0;- (1 —03) w7 -hy - (1—hy) x4 ' =¢-(1—¢)
Additional information — not part of the exams
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Can we do it simpler? Yes, we can. Backpropagation

chain rule from calculus

F(x) = fog Pe L F(509) - 9

or in Leibniz notafion with z = f(y) and y = g(x): % = Z—; % =f'(y)-g'(x)

A
S Te

O x y=9® z=f)
forward x > g > f > 7

y=9x) z=f)

forward > > z

dz dzdy b h
g‘ f‘ 1

dx dy dx dz dz dz 1
N\wm information — not part of the exams

backward
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multivariable chain rules

F(x) = f(g(x), h(x)) FQ) = f'(g(),h(x)) - g'(x) + f'(g (), h(x)) - ' (x)

H R
or in Leibniz notation with z = f(y),y = g(x) and w = h(x)

dz dz dy+dz dW_ Do) - g0 + £ aw) - K0
dx dy dx aw ax L oW g@Ffhw) - Rx

forward

forward

dz _dz dy+ dz dw
dx dy dx ' dw dx

backward

- —

Additional information — not part of the exams
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\ S) = —m——
NG Wil Wou = by ~ . oS =5
| =g (1 <p)
forwar(# i B | t ) T
| e Zkak}/k'l = ¢(s1) \ Ji= > (t; — 0))? N
2 4 () > ), — > ] — ] = Zl]’
| | 1 1 \ 1 ,' i 7
1 | ¢ - -
|oag = ’r'()z ) | tLo L
1 X | !
| ' . | N
) 4 D, — ]« 1 backward
&1 l Si=o0;-(1=o0) (- 01) (t;—op) 1 .
g ~ ’ -
= % 51 Akl=V'fA1/</z”+77' T\ WY = wiy — Dy
asz , ' ' 0wy 1 ' '
/bvzl__l___»zll 61
) a] o]
1 b =2k__l—_—> Z,k k —=Z 6]( Ab=y'Ab+r]'— bnewzb—Ab
\ 61{ b k ab
ZK_ - l -—— ZIK
Additional information — not part of the exams
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a =1 Wi, Wou = by mTTTTTTT Vim §)=——
! 9(s) 1+es
LA
forward 1 | l o' =¢-(1-¢)
o 5= Zkak * Wi / o=¢(s) !
ay X > \ : >y —»
| | 1 |
1 1 | 1
1 1 | 1
1Ay 1 0p 1 1 0
1 1 | 1
| | 1 |
\ 4 v v v
<« 5 < @' < + < Y — backward
&y \ Si=0-(1-0p) Z Vim * Om Z Vim * Om Om
m m
a] ]
Fy ag * 6; A=y Dy +1- Wi Wit = wi — Ay
Additional information — not part of the exams
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« Generic implementation of multilayer networks

— Example with 3 layers:

00,1 "N 01,1 AW 02,1 AW 031 1

0o,m, 01,1, 02,M, 03,1, T,
— Feed Forward is then given as:
1. Initialize o, = x; from the current data sample x € T c R™o with target t € R*~
2. For each layer L; with i iterating from 1 to N:
« Compute o;, = @(X; W; ;- 0;—1,;) With a selected activation function ¢ forall 1 < k < M;
3. Compute J, = E,(onx; tx) With a selected error function E forall 1 < k < My

Compute training error J(x; 8) = Y. Jx = E(on x; tx) for current sample
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— Backpropagation is finally (e.g., with logistic activation function and mean square error):

1. Given target t and assume output o, from feed forward step; assume learning rate n and momentum y
Initialize A; ;= 0

Compute &y, = <p’(oN,k) . E,'C(ON,k; tk) = Oynk* (1 — oN’k) . (tk — oN,k) foralll < k < My
For each layer L; with i iterating from N — 1 down to 1:

e

- Compute 8;x = @'(0ix) - ZiWizrik - Sipg forall 1 <k < M
S Compute Ai,k,lz Y - Ai,k,l +n- 0j-11"° Si,k forall1 <k < Mi
5. Update WelghtS Wikt = Wikl — Ai,k,l

Note: it is tempting to update the weights in the inner loop (step 4). However, we need the old
weights in the preceding layer (next iteration in step 4) to compute §; .
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« Example: Face Detection
— Rowley, Baluja, Kanade [1998], Carnegie Mellon University

Input Image Pyramid Extracted Window Histogram Derctated Corrected Histogram Receptive Fields

(20by 20 pixels] Equalized Window Lighting Equalized Hidden Units

St Yt
[o]
[5]
ooD
‘9/
g

REVBAR Y
PRV

]

\X\\x\

Hidden Angle
Input Units Charput
Preprocessing Detection Network Architecture
Router Network
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5.4.5 Deep Learning

 The second wave died very quickly

vanishing and exploding
gradients and competition of support vector machine (SVM)

« Let us first consider the vanishing gradient problem

aJ
a_Wl=(t1_01)'01’(1_01)’W5'h1’(1_h1)’x1+(t2_02)'02'(1_02)'W7'h1‘(1_h1)‘x1
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— The derivative of  sigmoid function ¢(s) =

_ 14+e~S _
maximum value is
Y,

(ty —01)-0,-(1—0y) ws-hy-(1—hy) x; <1/16
\ Y Jl_r_ll Y )
<1/4 <1 <1/4

, 1 1 1
(p_1+e‘5 1+es

0:2

0:1

— On the other hand, if we scale the weights and input values beyond the typical [-1,1] range, the
gradients will explode as we a now multiply several numbers larger than 1

* Deep learning

activation functions (ReLu),

improved architecture (convolution, pooling, inception modules, residual networks), and improved

regularization techniques (dropout, RelLu, L1, L2)
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* The rectified linear unit (ReLU)

@(s) = max(0,s)

closer to biological neurons
N 0, s<0
¢(s)= {1, s>0

— The output is no longer in the range [0,1
softmax function

Let o, be the k-th output value

10k

L L
=10 -5

g

Ok
e
Pk = o ](9) = — z Vi * log D J is defined as the cross-entropy
Zk e loss function. @ contains all
k parameters of the network, i.e.,
weights and biases.
aJ C

2 — that is

aok Pr = Yk simple!
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« To overcome

The derivative of the ReLU can become 0

0.01-s, s<0

<p<s)={ RN <p'<s)={

vanishing and exploding gradient

introduce a small slope
to keep the update alive

leaky RelL U

improved architecture
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Convolution

— Sofar layers
— In contrast,
fields extract features from

— Deep learning introduced

were fully connected

receptive

spatial neighborhood

convolutional layer

=

0;;(x) =¢ (b + z Wicl * Xivk,j+1 )
Tl

In addition

input neurons

&
(00

cooo) s

/6'

| £

e ——

—7 06 O

(S o ey
[ejeiele) Aun

b

x2loeoe X o
QG $<CS T3S =p

) —

weights wy ; and
a ~RFTE—San

bias @e shared across the neurons

arbitrary number of

filters within  single convolution layer
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As output can be N-dimensional, so can input be an M-dimensional
vector start with three channels

0;jn(x) = ¢ (bn + z Wi L, mn 'xi+k,j+l,m>

k,lm
For example assume a 5x5 convolution on three (M = 3) input channels want to
convolute to N = 20 output feature

20 biases and
5x5x3x20=1500 weights

256x256 input image with 3 channels output IS
256x256x20 arrays C /\/( gt
56 7N
] =1
Zg 6 ’ [ Nz:éz 11|
—— S 57 2 3 o
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— The special case ofa 1x1 convolution to reduce the dimensionality
convolution with 20 output features 20 input
features 5x5x20x20=10'000 weights and 20 biases

 We first apply 1x1 convolution to generate 3 output features (from the 20 input features).
1x1x20x3=60 weights and 3 biases

 We feed 3 features into  5x5 convolution with 20 output
features 5x5x3x20=1"500 weights and 20 biases
* Overall 1’583 parameters compared to 10°020

| -
R
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« Convolution layers are often followed by Pooling Layers
N—

———

hidden neurons (output from feature map)

- A pOOIIng Iayer max-pooling units

\ g )
— [:J 8

2X2

max-pooling layer outputs Imum value of the 2x2 window.
Etride of (2,2) 5 reduces “feature /‘3
map” by 4 times viv

S<<l,

0; jn(X) = MaX Xtk j+in

— Next to max pooling, other summarization functions are possible. Typical examples include
average pooling and L,-Norm pooling.

— In deep learning pooling layers
reduce spatial size of representation

G B
M oeT Ol ~ v
v — @-),_3/
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Regularization is an important element in deep learning to prevent overfitting to the training data.
model has too many ——

— Overfitting is

As

discussed

parameters

overfitting occurs if

lack of generalization

optimal |

underfitting

« Almost perfect accuracy for the training set at the end of the learning
« Significant lower accuracy for the validation set at the end of the learning

« The gap between training accuracy and validation accuracy is growing over the learning time

100% --

accuracy

Overfitting

training set

gap is growing over ti

significant difference

me;

»

epochs / iterations

validation set

100% --

accuracy

\ Regularization

training set

validation set

still a gap but validation accuracy much
closer following progress of training set

»

epochs / iterations
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— We have several options for regularization
» Adjust the network structure

« Expand the training set

« Adjust the cost function add a penalty
for use of large weights

L2 regularization

— A 2
Jreq(®) =18 + 5T z w;

penalties for weights but not for biases

(t+1) ni )
Wl * = <1 — m Wlt Al
Regularization adds weight decay factor (1 — ﬁ)
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« The Dropout technique

— At each training step, nodes are dropped out with a probability of 1 —p
— Feed forward: if a node is dropped out, its output value is setto O
— Back propagation: if a node is dropped out, it does no longer propagate changes

— The final model for prediction uses all nodes but compensates their weights with (1 — p).
We can interpret the dropout technique as learning many different networks at the same time.

a) Standard Neural Net (b) After applying dropout.
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« Putting all together

— Let MNIST
database consists of 28x28
images depicting hand written digits (0, 1, 2, ...

— The conventional approach

fully connected hidden layers

hidden layer 1 hidden layer 2 hidden layer 3

input layer

EREN
T e
£ =

— The deep learning approach

deep
) learning
5x5 convolution produces
20 features with a ReLU activation
2x2 max-pooling
layer B e
- b xaax pooling layer §] n,;::;:.n:ir)tr
2880 elements A oxuzx2 QO O
fully connected to 100 neurons 4 -
- F 0 O

AN W

|
|
2 Tara
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* The original black and white images from NIST
HANDWRITING SAMPLE FORM

DATE CITY STATE ZIP
15-3-59 | lpuwew iy 1 gresz|

This sampie of handwriting s being collected for use 1o testing computer recognmition of hand prnted numbers
and letters Please print the following characters in the boxes that appear bejow
D1234567%6 012345687 RY 0123456729

lei23ysere9 || 0r3395¢252 || cr2395%67)
7 701 752 %0759 960941
Lzr]| |s752] [ so0757) [p0re” |
H ) I H 4588 32123 R32656 y
* The data set consists of 60’000 training items (25 [w540] [Gowz| [Fesarz ] [#2)
and 10°000 test items zus T uszie I
Lovsr| | pos37] 919272 | [£7] [22¢]
81738 T29658 75 390 5716
(6738 [70%05% | 1 522] |s7e ]
109334 40 625 4234 )2
losss | |90 [ez5] [s27¢] [x4222]

gyxlakpdsbtzirumw(lgjenhocv

« The best method currently (a convolutional [Byxda KA o7 z1r ammw Fodcnboce |
network) has an error rate of 0.23% ZXSBNGECMYWQTKFLUONFIRVDIA
| ZXSBUCECHYWR TKFLUOHFP /€Y pTA

Please print the following text in the box below:

We, the People of the United States, in order to form a more perfect Union, establish Justice, insure domestic
Tranquility, provide for the common Defense, promote the general Welfare, and secure the Blessings of Liberty L
ourselves and our posterity, do ordain and establish this CONSTITUTION for the United States of America

we, 7he Pecfte 0F tre Yy feq STetes, /s orderre
Forma more parfect Daor, establish Svstee,
msor e olome<sC Trangoility, Prevde £of The.
gommun Tefens< ) nrompte +ne geneval Weliar €]
and Seeuve tv<e BZ\essmas of pber+ty to our-

 List of further datasets for machine learning Selves and cor Posteri Ty, do ordawn and
o . S esTa Lligh *his VousSTITUTION Fov —tre
— https://en.wikipedia.org/wiki/List of dataset Omted &¥atese of America .

s for machine learning research
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GoogleLeNet for image classification

— GoolgLeNet was the winner of the ILSVRC 2014 Classification Challenge

— A key ingredient

» The inception module applies different operators

» To control the complexity of the model, 1x1 convolutions (marked in yellow) are added to
reduce the number of features

Filter
concatenation

7

inception modules

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

A

A

1x1 convolutions

1x1 convolutions

[)

3x3 max pooling

Previous layer
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* The full architecture of GoogleLeNet for .
image classification

— Input: 224x224 RGB images

1x1+1(5) [l 3x3+1(S) [l 5x5+1(5) [l 1x1+1(S)

[ Conv Conv. Conv.
1x1+1(S) [l 3x3+1(S) [l 5x5+1(5) [l 1x1+1(S)

|
|
|
|
.
|
|
|
|
|
.
|
convolution 7x7/2 112x112%x64 2.7K 34M i
] 3x3/2 56x56x64 A B BE B i
convolution  3x3/1 56x56x192 112K 360M :
max pool 3x3/2 28x28x192 =g i
inception (3a) 28x28x256 159K 128M vzl futlo i
inception (3b) 28x28x480 380K 304M l
max pool 3x3/2 14x14x480 I
inception (4a) 14x14x512 364K 73M i [l e s i
inception (4b) 14x14x512 437K 88M v J 1% i
inception (4c) 14x14x512 463K 100M :
inception (4d) 14x14x528 580K 119M = B i
inception (4e) 14x14x832 840K 170M R B |
max pool 3x3/2 7x7x832 :
inception (5a) 7x7%832 1072K 54M :L e _f
inception (5b) 7x7%x1024 1388K 7IM
avg pool 7x7/1 1x1x1024
dropout -40% 1x1x1024
linear 1x1x1000 1000K 1M
softmax 1x1x1000

Multimedia Retrieval — 2018 5.4.5 Deep Learning Page 5-93










 Tensorflow
— Tensorflow was developed by the Google Brain team

— The term tensor stands for an arbitrary dimensional array holding the data values (often float32).
— Tensorflow has two elements

* Nodes are operators on input tensors and produce an output tensor

« Data edges combine nodes and connect outputs with inputs (" 560 Trainer

— The Python front-end provides a simple way of building these
graphs

— Another aspect of tensorflow is the distributed execution of the graph
and the support for CUDA (GPU based operations) and parallel
execution of operations.

— For more information see: www.tensorflow.orq
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« In this chapter, we only looked at deep learning for Neu’l‘,’gi’“ﬁ"“"g{’wlb ks
spatial data sets (images, videos). But there is a o " e o 79

great number of further architecture extensions to B Noisyiop o Percepron ®)  FesForwad () Rt Basi et (450
. . . Hidden Cell -

support, for instance, natural language processing, o | S8 R e

m e m O rl Z atl O n Of faCtS an d d ata, an d SO O n . . Spiking Hidden Cell Recurrent NeuraL Netwark (RNM) Long / Short Term Memary (LSTM)  Gated Recurrenl Umt (GRU)

. . . . . Output Cell
» The Asimov Institute published in 2016 a map @ etch gt

outlining the neural network zoo @ recuromca

. Memary Cell

http://www.asimovinstitute.org/neural-network-zoo/ P

" Kernel

h ,m}’m’

Auto Encoder (AE) Variational AE (VAE) Denaising AE (DAE) Sparse AE (SAE)

O Convelution or Pool

Markov Chain (MC) Hopfield Netwark (HN) Boltzmann Machine (BM)  Restricted BM (REM) Deep Belief Metwork (DBN)

[ele)

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Netwark (DCIGN)

~ ™ P
\_O/o\.. X /O'\o - Pio g
™~ S ™~
Generative Adversarial Metwark (GAN) Liquid State Machine (LSM)  Extreme Learning Machine (ELM) Echo State Netwaork (ESN)
Q VaYaYyaY ‘
5 :lﬁﬂ‘ﬁ“ﬁﬂﬁﬂ
g AW »«v»«'; _
Deep Residual Network (DRMN) Kohonen Netwark (KN) - Support Vector Machine (SUM)  Meural Turing Machine (NTM)

m%%%
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