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5.1 Motivation

• Signal information is too low level and too noisy to allow for accurate recognition of higher-level 

features such as objects, genres, moods, or names. As an example, there are exceedingly many 

ways how a chair can be depicted in an image based on raw pixel information. Learning all 

combinations of pixels or pixel distributions is not a reasonable approach (also consider clipped 

chairs due to other objects in front of them).

• Feature extraction based on machine learning abstracts lower level signal information in a series 

of transformations and learning steps as depicted below. The key ingredient of a learning 

approach is to eliminate noise, scale, and distortion through robust intermediate features and then 

cascade one or many learning algorithms to obtain higher and higher levels of abstractions.

5.1 Motivation
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• Demo:

– Clarifai provides APIs to recognize ‘models’ in images. Developers can use the APIs to retrieve 

tags from existing models or can add and train new models.

– https://www.clarifai.com

• Demo: Recognition of handwriting

• Demo: Speech Recognition

5.1 Motivation
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• Machine learning has greatly improved over the past years because of three factors:

– Deep learning has introduced new layers and methods that removed the limitations of (linear) 

multi-layer networks.

– CPUs and especially GPUs have allowed for much deeper and larger networks. What took 

months in the 90s can be computed within hours 20 years later

– Availability of frameworks like Tensorflow makes it very simple to build a huge distributed network 

to compute large-scale neural nets.

5.1 Motivation

The biggest improvement over the 

past ten years was the creation of

CUDA, a extreme parallel computing 

platform created by Nvidia. In 

combination with new neural network 

algorithms and the advent of 

map/reduce as a generic distributed 

computing paradigm, enormous 

amounts of data became processable

through the sheer brute force of 1000s 

of connected machines. Going forward, 

we will see highly specialized chips 

(like Google’s TPUs) and cloud 

compute hardware (like HPEs ‘The 

Machine’) further accelerating the hunt 

in ever larger data lakes.

SP: single precision (32 bits)

DP: double precision (64 bits)

NVIDIA Titan/Tesla: high-performance 

GPUs with 5000+ CUDA cores
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• Although not every aspect of the human brain is understood, there are a number of key insights that 

helped to further developed and refine deep learning. For instance:

– It was believed that the brain adapts in the first months

of a new born and does not change afterwards. This

belief was disproved: next to short term and long term

memory adjustments, the brain is also able to functionally

change. Areas of the brain that are used more frequently

become more excitable and become easier to activate.

The brain can shift how and when such areas are getting 

activated and with that can provide more neurons for a

task. It has been shown, with limitations, that different

areas can take over functions after brain damages. For

instance, somebody who loses eye sight with age is able

to accentuate other senses and to use them as compensation of the visual information (no longer 

stimulating the visual cortex).

– What does this mean? The brain is most likely working with a “universal algorithm” rather than 

task dedicated learning patterns. The way we learn a musical tune is similar to learn a 

complicated sequence of movements. Even more, it is believed that the algorithms are rather 

simple but given the dynamically built connections and the sizes allow for even very complicated 

tasks. But as you know, learning rates greatly vary between individually. While some learn 

patterns extremely fast, others require months and months of hard training. It is shown that we 

learn best with increasing difficulties and if we struggle in the practice. Every learning session will 

change your brain, but each one will adapt in different ways.

• Many researchers switch between neuroscience and artificial intelligence and have stimulated both 

areas with exchange of ideas.

5.1 Motivation
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5.2 Machine Learning Basics

• The Machine Learning Problem

• There is a wide variety of machine learning problems as a combination of what the task is, what 

experience is provided and how performance is measured. Subsequently, we look at each individual 

component independently to categorize the different flavors of machine learning.

• Often, real-life examples employ a set of different approaches and combine them to achieve the 

overall objective of the problem. For instance, in credit card fraud, the first component is to learn 

fraudulent transaction based on past transactions and investigations. This knowledge is used to 

predict fraud in real-time for new transaction. A second component segments transactions to identify 

outliers or anomalies that may lead to new types of fraud that have not been identified/learned yet. 

While the first component is an example for supervised learning where the algorithms get labeled 

data to learn from, the second component is unsupervised, i.e., we don’t know what we are looking 

for and the algorithm must identify the patterns without any human feedback.

• Other examples include cascading several methods: for instance, a first step reduce dimensionality 

and eliminates outliers (unsupervised learning), a second step learns that mapping of reduced 

features to a set of labels (supervised learning).

• Modern approaches in Deep Learning build excessively deep sequences with neuronal networks to 

apply multiple different approaches to extents that require vast amounts of compute power to train 

and then to use the network. 

5.2 Machine Learning Basics

A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P if its performance at tasks in T, as measured by P, 

improves with experience E [Mitchell 1997]
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5.2.1 Tasks

• With task, we do not mean the learning process itself. Rather the ability that the machine is 

supposed to perform. For instance, if we want a car to drive autonomously, then driving is the task. 

Often, machine learning tasks involve a set of input features that the system needs to process into a 

“correct” set of output features.

• Classification is the task of mapping the input features to a set of K categories. Typically this 

means to find a function f that maps a M-dimensional vector x to a category represented by a 

numeric value y, i.e., 𝑦 = 𝑓 𝒙 with 𝑓: ℝ𝑀 → 1,… ,𝐾 . A variant of the classification task requires a 

probability distribution 𝑃(𝑦) over all classes y with 𝑃 𝑦 = 1 denoting the class y is certain and 

𝑃 𝑦 = 0 denoting the class y is impossible, i.e., 𝑃 𝑦 = 𝑓(𝒙) with 𝑓: ℝ𝑀 → 0,1 𝐾

– Applications include object recognition in images, text categorization, spam filtering, handwriting 

and speech recognition, credit scoring, pattern recognition, and many more

• Classification with missing input is similar to classification with the exception that some input 

values can be missing. Instead of a single function f, a set of functions is needed to map different 

subsets of inputs to a category y (or distribution 𝑃(𝑦)), potentially 2𝑀 functions. A better way is to 

learn the probability distributions over all relevant features and to marginalize out the missing ones. 

All tasks have a generalization with missing inputs.

5.2.1 Tasks

Sample fixed acidity volatile acidity citric acid pH alcohol quality

#1 8.5 0.28 0.56 3.3 10.5 7

#2 8.1 0.56 0.28 3.11 9.3 5

#3 7.4 0.59 0.08 3.38 9 4

#4 7.9 0.32 0.51 3.04 9.2 6

#5 8.9 0.22 0.48 3.39 9.4 6
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• Regression is the task of predicting a numerical value given the input features. The learning 

algorithm must find a function f that maps a M-dimensional vector x to a numeric value, i.e. 𝑓:ℝ𝑀 →
ℝ. The difference to classification is the output: instead of a category, a real number is required. 

Also, regression does not deliver distribution functions over all possible values.

– Applications: predictions / extrapolations to the future, statistical analysis, algorithmic trading, 

expected claim (insurance), risk assessment (financial), cost restrictions, budgeting, data mining, 

pricing (and impact on sales), correlation analysis

• Clustering divides a set of inputs into groups. Unlike in classification, the groups (and the number 

of groups) are not known beforehand and the machine learning algorithm must find them. As the 

output is not known at training time, this type of task is called “unsupervised” while the ones before 

are “supervised” (we tell the machine what outputs we expect). 

– Applications: human genetic clustering, market segmentation (groups of customers), social 

network analysis (communities), image segmentation, anomaly detection, crime analysis

• Density estimation (probability mass function estimation) is the construction of an estimate of 

an underlying, unknown probability density function given the input features. In the most simple 

case, the algorithm must learn a function 𝑝: ℝ𝑀 → ℝ where 𝑝(𝑥) is interpreted as a probability 

density function (if x is discrete p is called probability mass function). The most basic form is shown 

in the example on the right with histogram

based density estimation using two different 

numbers of bins.

– Applications: age at death for countries,

modelling of complex patterns, feature 

extraction, simplification of models

5.2.1 Tasks
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• Imputation of missing values requires an algorithm to replace (estimate / guess) missing data with 

substituted values. For a new example 𝒙 ∈ ℝ𝑀 with some missing 𝑥𝑗, the algorithm must provide a 

prediction for the missing values. 

– Applications: incomplete sensing data, demographics (incomplete data over person), medical 

analysis (incomplete or expensive test data), restoration of signal (after data loss)

• Synthesis and sampling is a type of task where the machine learning algorithm must generate 

new examples that are similar to the training data. In video games, for example, large portions of the 

immersive landscape are generated automatically 

instead of by hand. This also requires some sort of 

variance in the output to break “dull” patterns that are 

easily recognized as artificial landscape (see example

on the right side). Other examples include speech 

synthesis where a written text is emitted as an audio 

waveform for the spoken version of the text. The 

challenge for the algorithm is the lack of a “correct 

answer” and the necessity to include large quantities 

of variation in the output.

• Anomaly detection requires the algorithm to flag unusual, incorrect, or atypical events or data 

points. The output can be a simple 0,1 flag (1 indicating an anomaly) or a probability for an 

anomaly. Supervised anomaly detection needs a training set with labels “normal (0)” and “abnormal 

(1)”. Unsupervised anomaly detection requires the algorithm to describe the normal behavior (e.g., 

using density estimation) and to detect outliers automatically.

– Applications: credit card fraud, intrusion detection (cyber security), outliers to improve statistics, 

change detection, system health monitoring, event detection, fault detection

5.2.1 Tasks
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• Machine translation (MT) is the mapping of a sequence of input symbols (source language) to a 

sequence of output symbols (target language). In simpler cases, subsequent input symbols 

correlate directly to sequences of output symbols. Applied to natural language translation, however, 

simple word-by-word translation is not sufficient and the algorithm must find a representation in the 

target language that is structurally and semantically correct.

– Google Translate

• Transcription asks a machine learning algorithm to observe a unstructured representation of the 

data an to transcribe it into a discrete (often textual) form. The most widely known versions are 

optical character recognition (OCR) and speech recognition. 

• Dimensionality Reduction simplifies the input vectors to a lower-dimensional space. In many 

cases, the output is interpreted as topics or concepts that are key to disseminate the input vectors 

as good as possible (topic modelling). This allows the machine to more easily find documents that 

cover similar topics, i.e., instead of considering hundred thousands of different terms (words), only a 

few topics are considered. Dimensionality reduction is often used to reduce the amount of input data 

but to keep as much of the core information as possible.

– Application: data mining, latent semantic analysis, principal component analysis, statistical 

analysis, data reduction/compression

5.2.1 Tasks
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• Reasoning is the process of generating conclusions from knowledge using logical techniques such 

as deduction and induction. Knowledge-based systems have been used over the past 30 years 

including expert-system written in prolog. Facts and rules were used to prove (or disprove) a new 

statement within a closed world. Newer approaches use machine learning to prove theorems or 

constraint solvers. Cognitive reasoning and cognitive AI have recently boosted performance of chat 

bots and speech recognition.

• Autonomous Robots work with reinforcement learning, i.e., it is not possible to provide samples 

that connect input signals with correct or expected output signals. Rather, robots need to adjust their 

behavior based on incentives and penalties provided by the environment. The rise of autonomous 

driving has created an entire new set of challenges on reinforcement learning: machine ethics. While 

this sounds like science fiction, there are many scenarios where robots must make decisions that 

programmers cannot foresee or hard code. As an example, if the car is inevitably hitting an animal 

or a person on the street, should the machine try a risky evasive move endangering its passengers 

or accept the potential death of the animal or person (including potential damages)

– While the field is relatively young, recent

progress was accelerated by deep learning

techniques. Tesla states that its autopilot is

10 times safer than the average driver.

– Laws for and acceptance of robots in society 

are in its infancy. People are still worried 

about safety and mostly the fact of having 

the car hacked

– Further obstacles are insurance issues

(who pays for a mistake of a robot)

5.2.1 Tasks
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5.2.2 Performance

• To evaluate (and improve) a machine learning algorithm, we need to provide a quantitative measure 

for the “accuracy” of carrying out the task T. We already looked at different type of performance 

measures in Chapter 1 (Evaluation of Performance). A short summary:

– Binary classification (0-1 decisions) uses a confusion matrix to assess the performance, and 

provides numeric summary values to optimize for a desired optimum for the task. Typical 

measures include precision, accuracy and so on.

– Multi-class classification (one out of a set of classes) requires a generalized confusion matrix

resulting in a table with pair-wise “confusion”. Accuracy still works fine; in addition, we can 

summarize performance of a single class against all other classes.

– Binary classification with scores and thresholds is a simple extension of the confusion 

matrix. With increasing threshold values, we obtain a method to optimize the threshold 

(adjustment of a hyper-parameter), and the Receiver Operating Characteristic Curve (ROC 

Curve). The area under the ROC curve is a simple method to assess performance.

– Multi-class Classification with Probabilities measures the performance based on the 

probabilities on the class labels of an object. Typically, this is based on cross-entropy with the 

log-loss measure being a simpler version of it.

– With Regression tasks, we measure the performance as the mean squared error (MSE)

between the actual values and the predicted ones.

– As we will see, machine learning algorithms not only use these measures to evaluate 

performance but also employ them to find an optimal set of parameters to minimize the error/loss 

function. In addition, it can also be used to control so-called hyper-parameters (as we see later).

5.2.2 Performance
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5.2.3 Experience

• Supervised Learning algorithms observe a data set with features and a target for each instance of 

the data set. The goal is to learn a general rule that maps features to targets and that can be applied 

to predict the outcome of newly presented data items. The term “supervised” originates from the 

view that the target is provided by an instructor or teacher. As an example, classification tasks 

presents for each example, described as a set of feature, a target in the form of a label (or set of 

labels). The “teacher” instructs the algorithm how sets of features are correctly mapped to labels 

and the algorithm should learn the mapping rule.

– As discussed in the “Performance” section, the teacher also provides an error measure that 

enables the machine learning algorithm to assess accuracy during training sessions. 

– Even though targets are given, the algorithm must be able to deal with noise in the output values 

due to human errors (wrong labelling) or sensor errors (defects, distortion)

5.2.3 Experience
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• Semi-Supervised Learning is a special case of supervised learning. The algorithm is presented 

with features and targets, however, some features or targets are missing (incomplete observation) in 

the training data. Depending on the task, the algorithm must either complete the missing features or 

predict targets for newly presented data sets.

– Missing targets: The training set consists of complete features but some objects do not have 

targets (or labels). Incomplete targets often result if the labeling process is expensive or labor 

intensive. Consider a data set for credit card fraud detection with billions of transactions. 

Naturally, credit card firms investigate only a small subset of “suspicious” transactions and label 

them based on the outcome of an investigation (“fraud”, “no fraud”). The vast amount is not 

labeled. To learn from such data sets, algorithms make one of the following assumptions:

1) Smoothness: points in close proximity share the 

same label, i.e., the distribution function is continuous

2) Cluster: data tends to form clusters and all objects

in the same cluster share the same label

3) Manifold: often, features are high-dimensional but 

there are only a few labels. Hence, the data is more 

likely to lie on a low dimensional manifold.

Semi-supervised learning takes ideas both from 

supervised learning and from unsupervised learning.

• Induction: if only a few labels are missing, a

good strategy is to learn the distribution from the labeled data items with a supervised learning 

method. We can then go back and predict the missing labels. However, this does not work well 

if most objects have no label as the training set is not sufficient to capture the true distribution 

of labels. Evidently, such training ignores most of the data (information loss).

5.2.3 Experience

Classification

feature 1

fe
a
tu

re
 2

target: label in the 

form of a shapemissing target









Page 5-15Multimedia Retrieval – 2018

• Transduction: to consider all data points, transductive

algorithms identify clusters in the data set and apply 

the same label to all objects in the cluster. A simple

approach is the partitioning transduction:

1. Start with a single cluster with all objects

2. While a cluster has two objects with different labels

Partition the cluster to resolve the conflict

3. For all clusters

Assign the same label to all objects in the cluster

There are other variants to develop the clusters.

– Missing features: The training set has complete targets, but some objects lack some of the 

features. For newly presented data, potentially with missing features, the algorithm must predict 

the target. A good example is disease prediction where the target (“healthy”, “has disease”) must 

be predicted from a set of test results. Laboratory tests are expensive so naturally not all features 

are available. The approach to do so depends on the selected method:

• Naïve Bayes (more details later in the deck) is a simple technique for constructing classifiers 

based on conditional probabilities. Let there be K classes 𝐶𝑘 and M features 𝑥𝑖. The best class 

𝑘∗ is then given by 𝑘∗ = argmax
𝑘

𝑃(𝐶𝑘)ς𝑖 𝑃 𝑥𝑖|𝐶𝑘 . The probabilities 𝑃(𝐶𝑘) and 𝑃 𝑥𝑖|𝐶𝑘 are 

learned from the training data (ignoring missing features 𝑥𝑖). To predict the class for a new 

object with missing features, we simply ignore them in the Naïve Bayes optimization.

• If we have learned the distribution function over all features, we can simply “integrate” or 

“average” over the missing features, i.e., we assume that the missing features follow the 

distribution of the training set and we approximate them with an expected value. 

5.2.3 Experience
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• Unsupervised Learning algorithms observe a data set without targets and infer a function that 

captures the inherent structure and/or distribution of the data. In other words, we want to identify 

interesting facts in the data and derive new knowledge about its structure. In contrast to supervised 

learning, there is no instructor or teacher that provides targets or assess the performance of the 

outcome. The algorithm must learn without any guidance. 

– Clustering: the most common task for unsupervised

learning is to identify groups of objects that “belong”

together (with regard to a distance function). The number 

of clusters is often not known and must be learned too.

– Outlier/Anomaly detection: the algorithm must learn the

“normal” behavior through any means and identify 

outliers that significantly differ from the other objects. 

Note that the training data may also contain outliers.

– Density function: describe the data set through an 

“appropriate” density function. A simple case would be a Gaussian approximation and a simple 

learning of the mean value and the variance. More complex cases may choose from a set of 

different distribution functions and optimize to the “best fit”

– Dimensionality reduction: high-dimensional features often disguise an inherent simple 

characteristic of the data. Principle component analysis extracts “core concepts” along principal 

directions in the feature space that provide a simpler (but still accurate) view on the data.

– Self-organizing maps (SOM): a SOM produces a discrete (often 2-dimensional) presentation of 

the data in a mesh of nodes, thereby mapping high-dimensional data to a low-dimensional view. 

It uses a competitive learning approach.

5.2.3 Experience
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• Reinforcement learning evaluates possible actions in an environment so as to maximize the 

cumulative award. The problem is very general and broad and studied in various fields such as 

game theory, control theory, operations research, simulations, and genetic algorithms. 

Reinforcement learning is different to supervised learning as correct input/output correlations are not 

known. The focus is on finding a balance between exploration (of unknown situations) and 

exploitation (of current knowledge).

– A reinforcement agent typically interacts with its environment in discrete time steps. At each time 

t, the machine observes the environment including potential rewards. It then chooses and action 

from the set of available actions and performs it against the environment receiving rewards for 

the transition. The objective is to maximize the cumulative rewards.

5.2.3 Experience
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– A policy is a series of actions. Instead of optimizing for individual actions, reinforcement learning 

algorithms define policies and choose the best policy for immediate and cumulative rewards. 

Exploration is the process of developing (or composing) new policies, while exploitation is the 

application of the best known policy. Exploration can lead to algorithms that are no longer 

understood by the human developers. AlphaGo, Google’s Go program that has beaten the world 

champion, can not be explained anymore, i.e., it is not clear how the computer decides and what 

the winning strategy is.

– Reinforcement learning is an efficient approach if the environment behaves non-deterministic or 

even chaotic due to incomplete or erroneous observations. It is the only viable option if we lack 

an accurate error (or success) measure. Driving autonomously in a city is a good example for the 

chaotic and non-deterministic nature of such tasks. Though it is possible to describe broadly what 

success means (“arrive safely at the target within n minutes”), it is not possible to provide 

accurate measures at every point in time.

5.2.3 Experience
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5.3 The Learning Proces

• Machine learning algorithm learn from data. It is critical that we feed the “right” data into this process 

for the task that we want it to solve. “Right” is not only referring to good data quality, complete data, 

but also the extraction of meaningful features. A number of challenges arises in this context:

– Feature selection, i.e., ability to capture essential information to learn a task

– Data cleansing, i.e., ability to remove the negative impact of outliers or of noise

– Normalization, i.e., ability to address correlation between features and to normalize scales

– Curse of dimensionality, i.e., inability to learn underlying structure due to sparse data space

– Overfitting, i.e., inability to generalize well from training data to new data sets

– Underfitting, i.e., inability of the algorithm to capture the true data structure

• Data preparation is a 3-step approach which we do not further discuss in this section. With data we 

always include features and targets (if they are available)

1) Select Data

2) Preprocess Data

3) Transform Data

• We need to pay attention how we divide the data sets into training sets, validations sets, and test 

sets. The latter aspects is essential to adjust hyper-parameter of the algorithm including capacity 

and to measure its ability to correctly generalize. In the following, we focus on the overall learning 

process and address the above overfitting and underfitting issues. 

5.3 The Learning Proces
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• To understand how well a machine learning algorithms can generalize to new data sets, it is 

essential that training sets and test sets are distinct. Otherwise, we can construct a memorizing 

algorithm that simply stores all features and targets. Assessments of such an algorithm will produce 

the best possible results, but the algorithm will perform poorly on new data.

• Most algorithms have models with so-called hyper parameters that drive their inherent capacity or 

structure. For example, we can vary the degree of a polynomial regression model to adjust to a 

larger variety of functions. In a neural network, the capacity is provided by the number of neurons 

and connections. In a nutshell, models with small capacity struggle to fit the training data and to 

capture its distribution; models with high capacity tend to overfit the training data and poorly 

generalize to new data sets. The usage of validation sets (again, distinct from the training sets) 

allows algorithms to optimize their hyper-parameters.

5.3 The Learning Proces
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• Overfitting and underfitting are common problems in machine learning. Overfitting occurs when 

the model is excessively complex to match the training data as accurately as possible. Often, such a  

model has too many parameters relative to the number of training items. But even worse, the model 

is likely to overreact to minor changes leading to poor predictive performance (see figure on the right 

hand side as an example). Underfitting, on the other side, occurs when the model cannot capture 

the underlying trend of data and over-simplifies the distribution. For instance, fitting a linear model to 

a non-linear data distribution will result in a high training error and poor predictive performance.

– As illustrated above, we can observe that overfitting is the result of optimizing for the training data 

with too many parameters. With MSE, an overfitting model shows small errors indicating its ability 

to adapt nicely to the training data, but it can not predict new data points well enough.

– Underfitting, on the other side, shows both large errors on the training data and poor prediction 

performance for new data points; it obviously cannot capture the true essence of the distribution. 

– We can control overfitting and underfitting by altering the capacity of the model. Optimal 

capacity is reached if the model exhibits small errors on both the training set and the validation 

set. To work best, training set and validation set must be distinct; but we can run several 

iterations to adjust the capacity with different partitioning of training and validation set.

5.3 The Learning Proces
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• When altering the capacity of the model, Occam’s razor provides an intuitive heuristic. The principle 

was first stated by William of Ockham (c. 1287-1347) and has been made more precise over time, 

most notably in the 20th century for statistical learning. The principle states:

– Numquam ponenda est pluralitas sine necessitate [Plurality must never be posited without necessity]

– In a more modern language, the principle states that among competing hypothesis that explain 

observations equally well, one should choose the “simplest” one.

– Indeed, simpler models are better able to generalize but we must choose a sufficiently complex 

model to achieve low training error. Typically, training error decreases gradually as capacity 

increases. The generalization error, however, has a U-shaped curve as a function of capacity:

• The bias-variance tradeoff (or dilemma) is the problem of simultaneously minimizing two sources 

of errors that prevent models to generalize well beyond their training data

– The bias is the error of a model causing it to miss relevant relations in the data set (underfitting)

– The variance is the error from sensitivity to small changes in the input. High variance can cause 

the model to adopt to noise in the training data rather than to the data (overfitting)

The bias-variance decomposition is a way to analyze the expected generalization error. It uses 

the sum of the bias, variance, and irreducible error (noise) in the problem.

5.3 The Learning Proces
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• To drive the learning process, we partition the original data set (and its targets) into a training set 

(70-80% of data) and test set (20-30% of data). If the model has need to optimize some hyper-

parameters, we further partition the data to obtain the validation set (20-30% of data):

– The training set is used for learning, i.e., to fit the parameters/weights minimizing training error

– The validation set is used to tune hyperparameters (models, capacity) to prevent underfitting 

and overfitting issues. Validation data is not used for training and also not used for final testing

– The test set is used to assess the performance, i.e., the ability of the model to generalize

• Ideally, the three data sets are large enough to represent the true distribution equally well. If the 

data set is too small, however, validation and testing lack statistical certainty on average errors 

making it difficult to assess and compare performance. Cross-validation uses rotation schemes an 

multiple iterations to improve the accuracy of validation and testing.

– k-fold cross validation partitions the original data set into k equal sized subsamples. In each 

iteration, one subsample denotes the test set, and the remaining k-1 subsample form the training 

set. The k results are averaged to produce a single value. k=10 is a typical value. The same 

approach can be used for the validation set.

5.3 The Learning Proces

test set training set

1st iteration

2nd iteration

3rd iteration

4th iteration

5th iteration

The same 

applies for the 

validation set
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5.4 Methods

• Classification of Tasks (based on Input)

– Unsupervised

– Supervised

– Semi-Supervised

– Reinforcement Learning

• Classification of Tasks (based on Output)

– Regression

– Classification

– Clustering

– Density distribution of a distribution

– Topic Modelling / Dimensionality reduction

• Approaches considered in the following 

– Decision Trees (ID3, C4.5)

– Naïve Bayes

– Unsupervised Clustering (k-means / Expectation Maximization)

– Multi-layer Network

– Deep Learning

5.4 Methods
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• Classification is a key concept to obtain higher-level features. The usual approach is to extract low-

level features from the signal, normalize and transform the features, and deduce a mapping to pre-

defined categories. Let us consider an audio database with a simple classification as follows: 

• Decision tree learning is a simple but effective classification approach. We start with a data set that 

has discrete and continuous features and given labels (targets for objects), and then create the 

“optimal” decision hierarchy to map the features with a series of tests to their labels. The resulting 

classification tree is easy understandable by humans and machines and can create efficient rules for 

classification, i.e., predicting the class with a minimal number of tests.

5.4.1 Decision Tree Learning

5.4.1 Decision Tree Learning

Audio

Speech

Background

Music

Male

Female

Child

Silence

Noise

Classical

Rock

Pop

Jazz

Hard Rock

Soft Rock

…
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• The concept of classification trees is quite old. An early example is the 

classification scheme of Carl Linnaeus (1735) for plants (see right hand 

figure) and animals. Each node represents a test and each branch to

the right denotes a possible outcome of the test. Leaf nodes, finally,

contain the class labels. The tree does not have to be balanced and

different numbers of tests may be required to reach a leaf node.

• A node in a classification tree usually tests for a single feature only. If

the feature is discrete (a set of values), a node partitions the values

into distinct sets (or just individual values) each with a separate branch 

out. The test in the node checks which partition includes the feature value. 

If the feature is continuous, the branches are given by distinct ranges in the

feature domain. Features can be multi-dimensional but it is more common

to treat each dimension as an individual (“orthogonal”) feature achieved

through dimensionality reduction. A special case is the binary test node which yields “true” if a 

condition on the feature is met and otherwise no. In many cases, nodes branch always into exactly 

two children (binary decision trees) but actually any number of branches is possible. Examples:

5.4.1 Decision Tree Learning

equals?

𝑥 = 𝑎

𝑥 = 𝑏

𝑥 = 𝑐

discrete values

in range?

𝑥 < −10

−10 ≤ 𝑥 < 100

100 ≤ 𝑥

continuous values

included?

𝑥 ∈ {𝑎, 𝑏, 𝑐}

𝑥 ∈ {𝑑, 𝑒}

𝑥 ∈ {𝑓, 𝑔, ℎ}

discrete sets

f(x)?

true

false

binary test

(f(x) is the condition)
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• The leaf nodes denote the labels (or targets) associated with the objects. The series of test should 

deterministically lead to a leaf node and thus the label. Example:

• In order to create a decision tree, the machine learning approach must identify a set of tests against 

the features of the training data sets that lead to the observed labels with a minimal number of 

steps. Once the tree is learned, we can follow the decision hierarchy for a new data instance until a 

node is reached. The label in the node is our prediction for that new data instance. 

– Note: the condition “minimal number of steps” leads to the most simple tree that maps features to 

labels following Occam’s razor (i.e., prefer simple solutions over complex ones)

5.4.1 Decision Tree Learning

𝑎𝑔𝑒 < 25

25 ≤ 𝑎𝑔𝑒 <65

𝑎𝑔𝑒 ≥ 65

age?

student?

yes

credit

score?

credit

worthy?

no

yes

no

yes

true

false

𝑠𝑐𝑜𝑟𝑒 < 75

𝑠𝑐𝑜𝑟𝑒 ≥ 75

Note that this 

tree is not 

balanced
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• To construct decision trees, we will use a fundamental concept from information theory: information 

gain. In a nutshell, the information gain is the reduction of entropy given the observation that a 

random variable has a given value. With this in mind, we build test nodes in the decision tree such 

that they maximize the information gain, i.e., choose a feature and conditions on it that reduces the 

uncertainty of the outcome (here: label) as much as possible.

– Let 𝕋 be the training set of the form 𝒙, 𝑦 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀, 𝑦 where 𝑥𝑗 is the j-th feature value 

with values from 𝕍𝑗 and 𝑦 the target label. The expected information gain is then a function of 

entropy 𝐻. Let 𝕋𝑗,𝑣 = 𝒙 ∈ 𝕋 | 𝑥𝑗= 𝑣 be the subset of 𝕋 such that all elements have 𝑥𝑗= 𝑣: 

Entropy 𝐻 is defined on the probabilities of the target labels 𝑦𝑖. 𝑃 𝑦𝑖 denotes the probability that 

a randomly selected item from 𝕋 has the label 𝑦 = 𝑦𝑖. We can estimate these probabilities 

through simple counting of labels in the training set.

In summary, the idea of information gain is to measure whether the entropy (uncertainty about 

the distribution of the target labels) would decrease if we split the data set along the feature 𝑥𝑗

𝐼𝐺 𝕋, 𝑥𝑗 = 𝐻 𝕋 − ෍

𝑣∈𝕍𝑗

𝕋𝑗,𝑣

𝕋
𝐻 𝕋𝑗,𝑣

𝐻 𝕋 = −෍

𝑖

𝑃 𝑦𝑖 ∙ log2 𝑃 𝑦𝑖

𝐻 𝕋𝑗,𝑣 = −෍

𝑖

𝑃 𝑦𝑖 𝑥𝑗 = 𝑣 ∙ log2 𝑃 𝑦𝑖 𝑥𝑗 = 𝑣

Entropy is usually based on log2 but 

for the purposes here, the basis of 

the logarithm is irrelevant

5.4.1 Decision Tree Learning
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– Example: consider the table on the right hand side. There are 

four features 𝑥𝑗 in the first columns and a target 𝑦 (“can we 

play tennis?”) in the last column. Let us compute the information

gain if we choose 𝑗 = 𝑊𝑖𝑛𝑑𝑦. The entropy 𝐻(𝕋) is obtained as:

The entropy given the observation of 𝑥𝑗 = 𝑣 for 𝑗 = 𝑊𝑖𝑛𝑑𝑦

with 𝕍𝑊𝑖𝑛𝑑𝑦 = 𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸 is:

Leading to an information gain 𝐼𝐺 𝑇, 𝑥𝑗 of:

Outlook Temp. Humidity Windy Play

Sunny Hot High FALSE No

Sunny Hot High TRUE No

Overcast Hot High FALSE Yes

Rainy Mild High FALSE Yes

Rainy Cool Normal FALSE Yes

Rainy Cool Normal TRUE No

Overcast Cool Normal TRUE Yes

Sunny Mild High FALSE No

Sunny Cool Normal FALSE Yes

Rainy Mild Normal FALSE Yes

Sunny Mild Normal TRUE Yes

Overcast Mild High TRUE Yes

Overcast Hot Normal FALSE Yes

Rainy Mild High TRUE No

𝐻 𝕋 = − ෍

𝑦∈{𝑌𝑒𝑠,𝑁𝑜}

𝑃 𝑦 ∙ log2 𝑃 𝑦 = −
9

14
∙ log2

9

14
−

5

14
∙ log2

5

14
= 0.9403

𝐻 𝕋𝑗,𝑇𝑅𝑈𝐸 = − ෍

𝑦∈ 𝑌𝑒𝑠,𝑁𝑜

𝑃 𝑦|𝑥𝑗 = 𝑇𝑅𝑈𝐸 ∙ log2 𝑃 𝑦|𝑥𝑗 = 𝑇𝑅𝑈𝐸 = −
3

6
∙ log2

3

6
−
3

6
∙ log2

3

6
= 1

𝐻 𝕋𝑗,𝐹𝐴𝐿𝑆𝐸 = − ෍

𝑦∈ 𝑌𝑒𝑠,𝑁𝑜

𝑃 𝑦|𝑥𝑗 = 𝐹𝐴𝐿𝑆𝐸 ∙ log2 𝑃 𝑦|𝑥𝑗 = 𝐹𝐴𝐿𝑆𝐸 = −
6

8
∙ log2

6

8
−
2

8
∙ log2

2

8
= 0.8113

14 entries with 9 ‘Yes’ and 5 ‘No’ 

𝐼𝐺 𝑇, 𝑥𝑗 = 𝐻 𝕋 −෍
𝑣∈ 𝑇𝑅𝑈𝐸,𝐹𝐴𝐿𝑆𝐸

𝕋𝑗,𝑣

𝕋
𝐻 𝕋𝑗,𝑣 = 0.9403 −

6

14
∙ 1 −

8

14
∙ 0.8113 = 0.0481

8 FALSE entries with 6 ‘Yes’ and 2 ‘No’ 

14 entries with 6 ‘TRUE’ and 8 ‘FALSE’ 

6 TRUE entries with 3 ‘Yes’ and 3 ‘No’ 
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• A high-level pseudo code for constructing a decision tree is given as follows 

– We can re-write a decision tree as a set of rules where each rule denotes a path from the root to 

a leaf with all tests along the path and the label of the leaf. Depending on the programming 

context, the algorithm can produce native implementations with the high computational efficiency 

(while traversing the decision tree is sub-optimal). For instance:

5.4.1 Decision Tree Learning

Function DecisionTree(Features, Targets)
TrainingSet, ValidationSet, Attributes  CleanseData(Features, Targets)
Root  BuildTree(TrainingSet Attributes)
Rules  PruneTree(Root, ValidationSet)
Return Rules

𝑎𝑔𝑒 < 25

25 ≤ 𝑎𝑔𝑒 <65

𝑎𝑔𝑒 ≥ 65

age?

student?

yes

credit

score?

credit

worthy?

no

yes

no

yes

true

false

𝑠𝑐𝑜𝑟𝑒 < 75

𝑠𝑐𝑜𝑟𝑒 ≥ 75

Rule Set:
yes  (age<25) AND (student==‘true’)
no   (age<25) AND (student==‘false’)
yes  (25<=age) AND (age<65)
no   (age>=65) AND (score<75)
yes  (age>=65) AND (score>=75)

Note that ‘true’ and ‘false’ are labels 

and not Boolean values in the rules 

public boolean isCreditWorthy(Customer c) {
if c.getAge()<25  && c.isStudent() return true;
if c.getAge()<25  && !c.isStudent() return false;
if 25<=c.getAge() && c.getAge()<65 return true;
if c.getAge()>=65 && c.getCreditScore()<75 return false;
if c.getAge()>=65 && c.getCreditScore()>=75 return true;
return false; // default: false

}

rules compiler

Further optimizations of 

code generation possible 
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Additional information — not part of the exams

• Cleanse data: our running example from the previous page had unique rows, i.e., there are no two 

entries with the exact same feature values. In practice, however, there will be several observations 

with the same feature values, and more importantly, they may have conflicting labels. In addition, 

some feature values may be missing, or labels are not given. Not all features might be useful for 

classification. E.g., having a column “Date” in our running example would not help us to identify 

good rules for classification. Further transformations on the data are possible depending on the 

domain. This can include outlier and  noise elimination, or dimensionality reduction:

– Note: most of the data cleansing and feature selection is domain dependent. Although there are 

generic approaches for data preparation such as dimensionality reduction, clustering and outlier 

elimination, most of the manual work goes into a good feature design with the goal to have as 

few features as possible with minimal correlation between each other and the ability to separate 

target values. 

5.4.1 Decision Tree Learning

Function CleanseData(Features, Targets)
Features, Targets  eliminate entries with missing Targets (=NULL) and outliers
Features  predict missing Features (=NULL) with domain knowledge
Features  transform and normalize Features with domain knowledge
Attributes  select set of useful Features with domain knowledge

collapse entries that share the same Features
assign the most frequent label from Targets to the collapsed entry
keep Counts (=number of entries) for correct entropy calculations later on
Data  combine Features, Targets, and Counts into a structure

TrainingSet, ValidationSet  Split Data into distinct sets with given Ratio (e.g., 70:30)
Return TrainingSet, ValidationSet, Attributes
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• Build tree: Tree construction is recursive. At each iteration, a new node is inserted with a test on a 

selected attribute. The algorithm is called for each branch until the subset is empty or has one label

– We can observe that attributes are only used once during classification. We may relax this 

condition for continuous features to enable finer interval splits later in the tree.

– The scoring function determines how well an attributes helps us to decide quickly along the paths 

in the decision tree. In ID3 this is the information gain as introduced before; extensions such as 

C4.5 balance this with the ability of the attribute to generalize.

– We will discuss further details when we review concrete implementations like ID3 and C4.5.

5.4.1 Decision Tree Learning

Function BuildTree(Data, Attributes)
N  new Node and associate most common label in Targets with node N
If all Targets have same label Then Return N
If Attributes is empty OR Data too small Then Return N
A, Tests, Fitness  SelectBestAttribute(Data, Attributes)
If Fitness below Threshold Then Return N
ForEach T in Tests Do

B  add new branch to node N for test T
P  get partition of Data which fulfills test T
If P is empty Then add new (empty) node below branch B with same label as node N
Else C  BuildTree(P, Attributes – {A}); add node C below branch B

End
Return N

Function SelectBestAttribute(Data, Attributes)
ForEach A in Attributes

Tests[A], Partitions  split feature values for attribute A and determine partitions
Fitness[A]  determine a fitness/score for attribute A (e.g., information gain)

End
Abest  find A with Fitness[A]==max(Fitness)
Return Abest, Tests[Abest], Fitness[Abest]

The typical approach is to use an attribute only once 

on each decision path in the tree. Hence, tree height 

is limited by the number of selected attributes.

Additional information — not part of the exams
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• Prune tree: decision trees tend to overfit to the training set due to their recursive creation of nodes 

until no further attribute split is possible. As a consequence, generalization to new data sets may be 

poor. As we discussed earlier, a validation step allows a machine learning approach to compromise 

training errors with the ability to generalize. To do so, the pruning step eliminates tests that are not 

significantly improving performance against the validation set (remember Occam’s razor). Pruning 

can also be done during building time: in BuildTree(), if the data set is too small or if the split along 

an attribute is not significant enough (fitness too small), the algorithm stops the recursion. We 

illustrate a few pruning techniques:

– Elimination of branches: we assess the performance against the validation set, for instance, 

using accuracy (percentage of correct predictions). Then, we visit decision nodes and replace the 

subtree underneath them with leaf nodes if that improves overall accuracy

5.4.1 Decision Tree Learning

Function PruneTree(Root, ValidationSet)
Repeat

Accuracy  get total accuracy for ValidationSet
ForEach N underneath Root

If N is leaf Then Accuracy[N]=Accuracy
Else

replace subtree at node N with leaf (keep label of N = most common target)
Accuracy[N]  get total accuracy for ValidationSet
insert original N into the tree again

End
End
N  find node N with AccuracyNode[N]==max(AccuracyNode)
If AccuracyNode[N]>Accuracy Then replace subtree at node N with leaf

Until AccuracyNode[N]<=Accuracy

Return (Rules  create rule set given the tree underneath node Root)

This pseudo-code is obviously not 

optimized for speed but rather shows the 

steps that are necessary for pruning

Additional information — not part of the exams
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– Pruning rules:  Each rule contributes to the overall accuracy for the data items that pass through 

it. Initially, rules are not sorted because they are mutually exclusive (i.e., each data item can fulfill 

exactly one rule). The ‘pruning rules’ approach considers each condition in the rules and 

eliminates them if that improves overall accuracy. As a side effect, rules are no longer distinct 

and need to be sorted by their contribution to the overall accuracy.

5.4.1 Decision Tree Learning

Function PruneTree(Root, ValidationSet)
Rules  create rule set given the tree underneath node Root
Repeat

Accuracy  sort Rules by accuracy; get total accuracy for ValidationSet
ForEach R in Rules

ForEach condition C in R
remove condition C in R
AccuracyRule[R][C]  get total accuracy for ValidationSet
insert condition C into R again

End
END
R,C  find rule R and condition C with AccuracyRule[R][C]==max(AccuracyRule)
If AccuracyRule[R][C]>Accuracy Then remove condition C in R

Until AccuracyRule[R][C]<=Accuracy

Return (Rules  sort Rules by accuracy)

This pseudo-code is obviously not 

optimized for speed but rather shows the 

steps that are necessary for pruning

Additional information — not part of the exams
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• Implementations (selected examples):

– The ID3 algorithm was invented by Ross Quinlan in 1986. It only worked for attributes with 

discrete values and used the information gain to select attributes. For each attribute 𝑥𝑗 and each 

value in 𝕍𝑗, the training set 𝕋 is split into subsets 𝕋𝑗,𝑣 with 𝑣 ∈ 𝕍𝑗. The information gain is:

To compute the entropy 𝐻 𝕋 over the K labels 𝑦𝑘, we simply count the frequencies 𝑓𝑘 𝕋 of 𝑦𝑘
in the set 𝕋. Similarly, for the subsets 𝕋𝑗,𝑣, the frequencies are given by 𝑓𝑘 𝕋𝑗,𝑣 . This leads to:

The best attribute 𝑥𝑗∗ maximizes the information gain, hence:

If 𝕋𝑗,𝑣 is empty, the summand evaluates to 0 ∙ log2
0

0
= 0, i.e., empty partitions are simply ignored. 

Similarly, if 𝑓𝑘 𝕋𝑗,𝑣 = 0, the summand evaluates to 0 ∙ log2
0

𝕋𝑗,𝑣
= 0.

• Decision nodes only exists for discrete attributes. Partitioning is straightforward: for each 

possible value of the attribute, its partition contains all training items that have that value. 

Should a partition be empty (e.g., at that level of the tree no item has the value), prediction 

assume the most common label of the node.

5.4.1 Decision Tree Learning

𝐼𝐺 𝕋, 𝑥𝑗 = 𝐻 𝕋 − ෍

𝑣∈𝕍𝑗

𝕋𝑗,𝑣

𝕋
𝐻 𝕋𝑗,𝑣

𝐼𝐺 𝕋, 𝑥𝑗 = −෍

𝑘=1

𝐾
𝑓𝑘 𝕋

𝕋
∙ log2

𝑓𝑘 𝕋

𝕋
+ ෍

𝑣∈𝕍𝑗

𝕋𝑗,𝑣

𝕋
෍

𝑘=1

𝐾
𝑓𝑘 𝕋𝑗,𝑣

𝕋𝑗,𝑣
∙ log2

𝑓𝑘 𝕋𝑗,𝑣

𝕋𝑗,𝑣

𝑗∗ = argmax
𝑗

𝐼𝐺 𝕋, 𝑥𝑗 = argmax
𝑗

෍

𝑘=1

𝐾

෍

𝑣∈𝕍𝑗

𝑓𝑘 𝕋𝑗,𝑣 ∙ log2
𝑓𝑘 𝕋𝑗,𝑣

𝕋𝑗,𝑣

Since we are looking for the 

maximum value, the base of 

the logarithm is irrelevant. 
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– Ross Quinlan refined the ID3 algorithm and published the C4.5 algorithm in 1993. It got quite 

popular after ranking #1 in a Springer LNCS publication “10 top data mining algorithms (2008)”. 

C4.5 addresses many of the disadvantages of the original ID3 algorithm:

• The information gain measure favors attributes with many values increasing the risk of 

overfitting the training data. Quinlan improved selection of attributes with the so-called split 

information. It is given as the entropy with respect to the attribute values rather than with 

respect to the target values as usually in this section. For each attribute 𝑥𝑗 with discrete values 

𝑣 ∈ 𝕍𝑗, the training set 𝕋 is split into subsets 𝕋𝑗,𝑣. The split information 𝑆𝐼 𝕋, 𝑥𝑗 is:

The gain ratio is then the ratio between information gain and split information:

A practical issue, however, occurs if one 𝕋𝑗,𝑣 is almost as big a 𝕋. This leads to a split 

information that is close to zero and hence a very large gain ratio. Clearly, such attributes are 

not interesting for decision nodes as most entries lie in the same branch. To counter this 

anomaly, the attribute selection process works as follows:

5.4.1 Decision Tree Learning

𝑆𝐼 𝕋, 𝑥𝑗 = − ෍

𝑣∈𝕍𝑗

𝕋𝑗,𝑣

𝕋
∙ log2

𝕋𝑗,𝑣

𝕋

𝐺𝑅 𝕋, 𝑥𝑗 =
𝐼𝐺 𝕋, 𝑥𝑗

𝑆𝐼 𝕋, 𝑥𝑗

• compute 𝐼𝐺 𝕋, 𝑥𝑗 for all 𝑥𝑗
• select a threshold 𝐼𝐺𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, for example: 

▪ 𝐼𝐺𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = avg 𝐼𝐺 𝕋, 𝑥𝑗 (mean information gain)

▪ 𝐼𝐺𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑃50 𝐼𝐺 𝕋, 𝑥𝑗 (median information gain, 50-percentile)

• 𝑗∗ = argmax
𝑗; 𝐼𝐺 𝕋,𝑥𝑗 >𝐼𝐺𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐼𝐺 𝕋,𝑥𝑗

𝑆𝐼 𝕋,𝑥𝑗
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• To allow for continuous values in decision trees, C4.5 maps a continuous attribute 𝑥𝑗 to a 

Boolean attribute with a simple threshold value 𝜏. If 𝑥𝑗 < 𝜏, then the value is ‘true’, otherwise it 

is ‘false’. So how can we select the best threshold value? Consider the example 

Obviously, we want to select a threshold value that maximizes the information gain. By sorting 

the training set according to the attribute values, we only need to identify adjacent data items 

with different targets, and create threshold candidates in between their values. For the example 

above, the first candidate is between 48 (No) and 60 (Yes), so we select (48 + 60)/2 = 54. The 

second candidate is between 80 (Yes) and 90 (No), so it is (80 + 90)/2 = 85. This produces 

two decision criteria 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒<54 and 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒<85 for which we compute the 

information gain and select the better one. 

There are extensions that map a continuous attribute to several intervals instead of just two as 

proposed by the C4.5 algorithm. In such cases, a balance is required to avoid overfitting to the 

intervals of the training set (e.g., using the validation set and an alternate scoring).

• There are several strategies to address missing values: the most simple one is to dismiss the 

object further down the branch if a test cannot be performed. This, however, disables also 

predictions for new data sets with missing values. A better strategy is to assign the most 

common value for the attribute at the current node (either for all training items or for only those 

that share the same target) and continue with this new value. A more complex approach is to 

compute distributions across all values, and use fractions for each value when following the 

branch. For instance, if there are two values, and if 40% of the data items have value 1 and 

60% have value 0, a data item missing this attribute will be split and used in both branches but 

only counting for a fraction (0.4 in the branch for 1, 0.6 in the branch for 0).

5.4.1 Decision Tree Learning
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• Example: audio classification

– Decision trees are very simple and produce efficient classifiers that are more than sufficient for 

many tasks. An example is discussed here: classify audio signals into speech and music. 

– In the learning phase, we need to pre-process the audio signal, extract features, gather statistical 

information about features and their mapping to output classes (music, speech), and select the 

best features for classification. In this example, we use C4.5 to select features and derive rules.

5.4.1 Decision Tree Learning

Example with a combined feature extraction and statistical computation [Castan, 2010]

Audio

Signal

Framing
length=40ms

hop=20ms

C4.5 Rule

Set

features

targets

HZCRR

LSTER

AM Ratio

FFT

MFCC

VSF

𝐶0

𝐶1, … , 𝐶12

MET

VAR

F
e
a
tu

re
s
 (

6
 d

im
e
n
s
io

n
s
)

Feature 

Extraction

Segmentation
length=4s

hop=100ms

Statistical 

Computation




























































Page 5-39Multimedia Retrieval – 2018

– Framing and Segmentation: the audio signal is processed in overlapping frames and segments. 

Each frame and segment has the same length, and the hop distance specifies when the 

subsequent frame/segment starts. Typically, features are extracted per frame, and statistical 

measures are applied for the segment over its frame.

– Castan (2010) focused on a small number of characteristic features:

• HZCRR: The Zero-Crossing Rates (ZCR) measures how often the amplitude of the signal 

passes the 0-value within a frame. The High Zero-Crossing Rate Ratio (HZCRR) measures, 

per segment, the ratio (percentage) of ZCR values of frames in the segment that are 1.5 times 

higher than the average ZCR value of frames in the segment. 

• LSTER: The Short Time Energy (STE) is simple the sum of squared amplitude of the signal 

within the frame (a measure of energy in the frame). The Low Short Time Energy Ratio

measures, per segment, the ratio (percentage) of STE values of frames in the segment that are 

smaller than 50% of the average STE value of frames in the segment.

• AMR: The Amplitude Modulation Ratio (AMR) measures the low-pass energy of a frame, i.e., 

the sum of squared amplitude after applying a low-pass filter with cut-off at 25Hz. It then 

measure the ratio of highest energy over lowest energy over all frames in the segment. Speech 

has a much higher ratio than music due to gaps between vowels and consonants.

• VSF: The Spectral Flux (SF) is the Euclidean distance between subsequent frames over their 

fourier transformed signals (spectrum magnitudes). The Variation of Spectral Flux (VSF) 

measures the variance over the frames in the segment.

• MET & VAR: For each frame, we extract 13 Mel-Frequency Cepstrum Coefficients (MFCC) 

denoted as 𝐶0, … , 𝐶12. The Minimum-Energy Tracking (MET) measure how long 𝐶0 is above a 

threshold. Pauses in speech will result in short lengths. VAR sums the variance of all MFCC 

over the frames in the segment. Small VAR values indicate music.

5.4.1 Decision Tree Learning
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– In the prediction phase, we need to perform the same pre-processing, windowing, feature 

extraction, and statistical computations as in the learning phase. In addition, we want to smooth 

the results over the entire duration of the song (voting based approach) or to segment a 

continuous audio signal (e.g., radio broadcast) to detect changes from speech to music. 

• Smoothing uses weighted sums over past predictions with exponentially smaller weighs to 

avoid fast alteration between targets. If enough support for a change is present, segmentation 

closes the current segment (not to be confused with the segments used for feature extraction) 

and labels it with the last class label. Then it marks the start of a new segment.

• Voting is rather simple: the single file is classified either by the label most frequently predicted 

for its segments, or classification returns probabilities for labels based on their frequencies in 

the predictions over all segments of the single file.

5.4.1 Decision Tree Learning
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5.4.2 Naïve Bayes

• Bayesian classifiers go back to 1950. It has been applied in many areas, and still is competitive in 
text classification and medical diagnosis. Especially, Naïve Bayes scales very well to large feature 
dimensions where other methods, like decision trees, struggle from the curse of dimensionality:

• Naïve Bayes uses a conditional probability model based on Bayes theorem:

where 𝒙 is a feature vector and 𝐶𝑘 the class (=target). 𝑃 𝐶𝑘 is the so-called “prior”, i.e., the 
knowledge (here a probability) about the distribution of classes 𝐶𝑘. 𝑃 𝒙 𝐶𝑘 is the likelihood to 
observe the feature 𝒙 for a given class 𝐶𝑘, and 𝑃 𝒙 is the evidence to observe 𝒙 (for any class). 
𝑃 𝐶𝑘 𝒙 is then the so-called “posterior”, i.e., the knowledge we gain (or better: predict) given the 
observation of feature 𝒙 to infer that it belongs to class 𝐶𝑘. 

• Let x be a high-dimensional vector, for instance, from a huge term space for documents. Due to the 
high-dimensionality and the limited set of training data, it is difficult to accurately describe the 
probability distribution function in such a sparse space. To simplify matters, naïve Bayes assumes 
conditional independence of features. This immediately leads to the following simplification:

• Given the probability model, we pick the hypothesis (here: class 𝐶𝑘∗) which is most probable. This 
selection rule is also known as the maximum a posteriori (MAP):

5.4.2 Naïve Bayes

𝑃 𝐶𝑘 𝒙 =
𝑃 𝒙 𝐶𝑘 ∙ 𝑃 𝐶𝑘

𝑃 𝒙
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∙ 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

𝑃 𝐶𝑘 𝒙 = 𝑃 𝐶𝑘 𝑥1, … , 𝑥𝑀 =
1

𝑃 𝒙
∙ 𝑃(𝐶𝑘) ∙ෑ

𝑗=1

𝑀

𝑃 𝑥𝑗 𝐶𝑘
Note that 𝑃 𝒙 is a constant over classes 

𝑐𝑘 and scales the probabilities. For our 

purposes, we do not need to know it. 

𝑘∗ = argmax
𝑘

𝑃 𝐶𝑘 𝒙 =argmax
𝑘

𝑃(𝐶𝑘) ∙ෑ

𝑗=1

𝑀

𝑃 𝑥𝑗 𝐶𝑘
That is it! The equation describes the decision rule 

of Naïve Bayes. The only thing left are the estimates 

for the probabilities on the right hand side 
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• To obtain the prior and the likelihood, we need to estimates the probability distributions based on the 

training set. And we need to address a number of practical issues such as numerical underflow due 

to the multiplication of many (small) probabilities, smoothing to address missing features, and 

feature selection. At the end, we apply the method to text classification

• Learning process

– Estimating 𝑃 𝐶𝑘 is the easy part: let 𝑁𝑘 bet the number of training items with label 𝐶𝑘 and let 𝑁
be the total number of training items. Then:

If the exact numbers are not clear (for instance, spam classifier: what is the ratio between spam 

and normal email?), the probabilities can be approximated with 𝑃 𝐶𝑘 = 1/𝐾 with 𝐾 denoting the 

number of classes, i.e., equiprobable classes. This is not accurate but works well.

– To find the probability distribution 𝑃 𝑥𝑗 𝐶𝑘 we first need to model the underlying distribution of 

values for 𝑥𝑗, and then learn the model parameters from the training set. The typical approach to 

learn estimators from training data is the maximum likelihood estimation (MLE), i.e., choosing 

model parameters that maximize the likelihood of making the observations given the parameters.

– Let 𝑥𝑗 be discrete with values from 𝕍𝑗. Let 𝑁𝑘 𝑥𝑗 = 𝑣 with 𝑣 ∈ 𝕍𝑗 be the number of training items 

with label 𝐶𝑘 that have 𝑥𝑗 = 𝑣. In other words, it denotes how often 𝑥𝑗 = 𝑣 is observed in the 

training set for items belonging to the class 𝐶𝑘. Naturally, we obtain

5.4.2 Naïve Bayes

𝑃 𝐶𝑘 =
𝑁𝑘
𝑁

𝑃 𝑥𝑗 = 𝑣 | 𝐶𝑘 =
𝑁𝑘 𝑥𝑗 = 𝑣

𝑁𝑘
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– What if a value 𝑣 is never seen for 𝑥𝑗 over a class 𝐶𝑘. Obviously, 𝑃 𝑥𝑗 = 𝑣 | 𝐶𝑘 = 0 and with that:

In other words, if 𝑣 was never observed for a class 𝐶𝑘, its presence in a new data item eliminates 

𝐶𝑘 as a prediction regardless how well the other features support 𝐶𝑘. To prevent 0-probabilities, 

we need to smooth the probability distribution, commonly using Laplace smoothing (add-1). 

The idea is that we “steal” probability mass and distribute it to the values with 0-probabilities:

Note: the sum of 𝑃 𝑥𝑗 = 𝑣 | 𝐶𝑘 over all values 𝑣 ∈ 𝕍𝑗 is still 1. But we got rid of 0-probabilities. 

Red indicates “stolen” probability mass and green denotes added probability mass.

5.4.2 Naïve Bayes

𝑃 𝐶𝑘 𝒙 = 𝑃 𝐶𝑘 𝑥1, … , 𝑥𝑗 = 𝑣,… , 𝑥𝑀 = 0

𝑃 𝑥𝑗 = 𝑣 | 𝐶𝑘 =
𝑁𝑘 𝑥𝑗 = 𝑣 + 1
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– A special case is a discrete Boolean value 𝑥𝑗 ∈ {0,1} denoting the presence (𝑥𝑗 = 1) or absence 

(𝑥𝑗 = 0) of a feature in the training data. In this case, the distribution follows a Bernoulli event 

model (or a multivariate Bernoulli event model if several values are Boolean). As the 

probabilities sum up to 1, only one parameter is required:

with 𝑝𝑘,𝑗 representing the probability that the feature is present, i.e., how often 𝑥𝑗 = 1 is observed 

in the training set for objects with label 𝐶𝑘. Hence:

Note that smoothing is done with stealing 1 only in the extreme case that all observations are the 

same (either all 𝑥𝑗 = 1 or all 𝑥𝑗 = 0).

– A final case for discrete values is the multinomial event model which is given by a feature 

vector 𝒙 = 𝑥1, … , 𝑥𝑀 representing a histogram with 𝑥𝑗 counting the number of times a feature or 

event 𝑗 was observed in the training set. We will see an example later on with 𝑥𝑗 denoting the 

number of occurrences of a term 𝑡𝑗 in a document. The probability distribution is given by:

Let 𝑛𝑘,𝑗 be the total number of occurrences of feature j in all training items with label 𝐶𝑘. Then:

5.4.2 Naïve Bayes

𝑃 𝑥𝑗 | 𝐶𝑘 = 𝑝𝑘,𝑗
𝑥𝑗
∙ 1 − 𝑝𝑘,𝑗

1−𝑥𝑗

𝑝𝑘,𝑗 =
𝑁𝑘 𝑥𝑗 = 1

𝑁𝑘
𝑝𝑘,𝑗 =

min 𝑁𝑘 − 1,max 1,𝑁𝑘 𝑥𝑗 = 1

𝑁𝑘
or smoothed: 

𝑃 𝒙 | 𝐶𝑘 =
σ𝑗 𝑥𝑗 !

ς𝑗 𝑥𝑗!
∙ෑ

𝑗

𝑝𝑘,𝑗
𝑥𝑗 Note that the factor to the left of the product symbol is a constant when 

looking for the best class 𝐶𝑘 and hence drops in the argmax equation

𝑝𝑘,𝑗 =
𝑛𝑘,𝑗
σ𝑙 𝑛𝑘,𝑙

𝑝𝑘,𝑗 =
𝑛𝑘,𝑗 + 1

σ𝑙 𝑛𝑘,𝑙 +𝑀
or smoothed: 
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– If feature values 𝑥𝑖 are continuous, we need to choose a model for the probability distribution 

𝑝 𝑥𝑖 𝐶𝑘 and then learn the parameters of the model using the training set. A common approach 

is assuming a Gaussian distribution with the two parameters 𝜇𝑘,𝑖 denoting the mean value, and 

𝜎𝑘,𝑖
2 being the variance. The probability distribution is defined as:

To estimate the two parameters, we need to use the unbiased estimators based on the 

observations from the training set. Let 𝑁𝑘 = 𝐶𝑘 be the number of training items with label 𝐶𝑘:

– Using a Gaussian mixture model, we can adopt to arbitrarily shaped distribution function. We 

overlay 𝐿 normal distributions 𝒩 𝜇𝑘,𝑖,𝑙 , 𝜎𝑘,𝑖,𝑙
2 with weights 𝑤𝑙:

To learn the parameters of the normal distributions, we can use the Expectation Maximization

approach (we will see this later for clustering methods). In addition, we should use a validation 

set to adjust the hyper-parameter 𝐿, i.e., if 𝐿 is large, we may fit the probability distribution for the 

training set very well, but cannot generalize well to the validation set due to overfitting. Using 

least mean squared errors over the validation set provides an instrument to control 𝐿.

5.4.2 Naïve Bayes

𝑝 𝑥𝑖 𝐶𝑘 =
1

2𝜋𝜎𝑘,𝑖
2

∙ 𝑒
−

𝑥𝑖−𝜇𝑘,𝑖
2

2𝜎𝑘,𝑖
2

𝜇𝑘,𝑖 =
1

𝑁𝑘
෍

𝒙∈𝐶𝑘

𝑥𝑖 𝜎𝑘,𝑖 =
1

𝑁𝑘 − 1
෍

𝒙∈𝐶𝑘

𝑥𝑖 − 𝜇𝑘,𝑖
2

When estimating variance from samples, we must 

account for the error in the estimated mean value, that 

is, we underestimate the variance because differences 

between values and the estimated mean are too small. 

𝑝 𝑥𝑖 𝐶𝑘 =෍

𝑙=1

𝐿
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• Prediction

– To predict the class 𝐶𝑘∗ to which a new data item with features 𝒙 belongs to, we apply the 

maximum a posteriori (MAP) selection: 

With moderate to large numbers for M, we run into practical issues due to the multiplications of 

small probabilities (numerical underflow). To provide a stable calculation of the probabilities, 

naïve Bayes algorithms compute log-probabilities as the logarithm does not change the ordering:

– To reduce the noise of a large number of features, we can focus on a few features only that are 

sufficient to classify data items. In general terms, we want to identify features whose presence or 

absence is correlated with the data item having or not having a label. This leads to 4 tests for 

each of the combinations of {“feature present”, “feature not present”} and {“item in class”, “item 

not in class”}. If there is a strong correlation for any combination of events, then the feature is 

discriminative for classification. Literature provides several approaches with Chi-square and 

mutual information being the most prominent ones. A much simpler approach is to select the 

most discriminative features, much like we have seen in classical text retrieval.

5.4.2 Naïve Bayes

𝑘∗ = argmax
𝑘

𝑃 𝐶𝑘 𝒙 =argmax
𝑘

𝑃(𝐶𝑘) ∙ෑ

𝑗=1

𝑀

𝑃 𝑥𝑗 𝐶𝑘

𝑘∗ = argmax
𝑘

log 𝑃 𝐶𝑘 𝒙 =argmax
𝑘

log𝑃 𝐶𝑘 +෍

𝑗=1

𝑀

log𝑃 𝑥𝑗 𝐶𝑘
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• Example: Text Classification – Naïve Bayes is quite popular due to its simplicity, its speed, and 

accuracy. Common applications include spam detection, author identification, age/gender 

identification, language identification, and sentiment analysis. With sentiment analysis, for example, 

we want to distinguish positive from negative movie reviews.

– There are two models for text classification: 1) set of words, and 2) bag of words. With the 

former, we consider only the presence of terms and apply a multivariate Bernoulli model. With 

the latter, we count term occurrences and use the multinomial model. Both approaches assume 

that the position of terms in the text does not matter and that terms are conditionally independent.

– Set of words and multivariate Bernoulli: like with Boolean text retrieval models, a binary 

feature vector 𝒙 denotes the presence of terms, taken from a defined vocabulary, in the given 

documents. The training documents have labels for classes 𝐶𝑘, and we use the training set to 

estimate the probabilities. Let 𝑁𝑘 bet the number of training items with label 𝐶𝑘, then

Let 𝑥𝑗 = 1 denote that term 𝑡𝑗 is present in the document represented by 𝒙. Then:

Prediction means finding the class that maximizes 𝑃 𝐶𝑘 𝒙 for a document with representation x:

Instead of using all terms of the vocabulary, we can reduce the features (see feature selection) or 

only take the terms present in the document (i.e., we only consider 𝑥𝑗 = 1). 

5.4.2 Naïve Bayes

𝑃 𝐶𝑘 =
𝑁𝑘
𝑁

𝑃 𝐶𝑘 =
1

𝐾
or if 𝑁𝑘 is not known: 

𝑝𝑘,𝑗 =
𝑁𝑘(𝑥𝑗 = 1)

𝑁𝑘
𝑝𝑘,𝑗 =

min 𝑁𝑘 − 1,max 1,𝑁𝑘(𝑥𝑗 = 1)

𝑁𝑘
or smoothed: 

𝑘∗ = argmax
𝑘

𝑃 𝐶𝑘 𝒙 =argmax
𝑘

log𝑃(𝐶𝑘) +෍
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𝑀

𝑥𝑗 log𝑝𝑘,𝑗 + 1 − 𝑥𝑗 log 1 − 𝑝𝑘,𝑗









Page 5-48Multimedia Retrieval – 2018

– Bag of words and multinomial: like with vector space retrieval models, a feature vector 𝒙
denotes the number of occurrences of terms, taken from a defined vocabulary, in the given 

documents. The training documents have labels for classes 𝐶𝑘, and we use the training set to 

estimate the probabilities. Let 𝑁𝑘 bet the number of training items with label 𝐶𝑘, then

Let 𝑛𝑘,𝑗 be the total number of occurrences of term 𝑡𝑗 in all training documents with label 𝐶𝑘:

Prediction means finding the class that maximizes 𝑃 𝐶𝑘 𝒙 for a document with representation x:

That is, we select the best class only with the terms that are present in the document.

• Summary: Naïve Bayes is not so naïve. Even though the strong assumption of independence does 

not always apply in practices, it excels due to high speed, low storage requirements, robustness to 

noise, and very good performance (accuracy). There are better methods but still naïve Bayes is an 

excellent baseline for text classification.

5.4.2 Naïve Bayes

𝑃 𝐶𝑘 =
𝑁𝑘
𝑁

𝑃 𝐶𝑘 =
1

𝐾
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or smoothed: 
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5.4.3 Unsupervised Clustering

• With unsupervised learning tasks, the machine learning algorithm observes data set without targets 

and infers a function that captures the inherent structure and/or distribution of the data. In a 

clustering scenario, that function is a set of clusters and the ability to assign new data items to one 

(or several) of the clusters. In this chapter, we study the k-means clustering and the Expectation 

Maximization over a Gaussian mixture to infer a mapping of features to clusters. In the context of 

multimedia data, typical applications are:

– Feature quantization, i.e., reducing a multivariate feature to a small number of discrete values. 

The quantized value serve as an approximated or smoothed version of the original ones much 

like histograms approximates the distribution of data values

– Cluster analysis, i.e., the validation of the cluster hypothesis and the extraction of clusters to infer 

labels for the clusters. 

– Image segmentation, i.e., the extraction of different areas in an image that “belong” to each other. 

In a first step, clustering reduces the number of features through quantization. In a second step, 

morphological operators build coherent regions for segmentation.

• As we do not know the number of clusters that are present in the data (we have no labels!), we need 

to guide clustering algorithms in the selection of the optimal number 𝐾 of clusters. Again,  poor 

choice for the number of clusters can lead to underfitting (extreme case is 𝐾 = 1) and overfitting 

(extreme case is 𝐾 = 𝑁 with 𝑁 being the number of training items). As we have no targets, we 

cannot use a validation set to measure accuracy of prediction. Instead, we utilize a target function

for the compactness of the clusters and the separation between clusters and must prevent, at the 

same time, an excessive number of clusters.

• We conclude this section with an example from image segmentation and a very early application 

called Blobworld.

5.4.3 Unsupervised Clustering
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• k-means clustering goes back to the 1960s as an approach to quantify vectors for signal 

processing. It subsequently became very popular in data mining for cluster analysis. k-means 

clusters the data set into 𝑘 clusters in such a way that each data point belongs to the cluster with the 

nearest centroid (or prototype of the cluster). The centroids are the mean position over all points in 

the cluster. The centroids divide the space into Voronoi diagrams defining the cluster shapes.

– Although the computation of the optimal 𝐾 centroids is a NP-hard problem, there are very

efficient heuristics that lead to a (local) optimum. We will first describe the classical approach 

using Lloyd’s algorithm and then re-interpret the approach with Expectation Maximization.

– Let 𝑁 be the number of data items with the 𝑑-dimensional representations 𝒙1, … , 𝒙𝑁. We then 

want to partition the data items into 𝐾 sets 𝕊 = 𝕊1, … , 𝕊𝐾 such that the within-cluster sum of 

squares (WCSS, also called the variance) become minimal, i.e.:

with 𝝁𝑘 denoting the mean of items in 𝕊𝑘, and 𝜎𝑘
2 being the variance of items in 𝕊𝑘. With Lloyd’s 

algorithm, we obtain a local optimum with a simple iterative algorithm:

5.4.3 Unsupervised Clustering

𝕊∗ = argmin
𝕊

෍

𝑘=1

𝐾

෍

𝒙∈𝕊𝑘

𝒙 − 𝝁𝑘 2
2 =argmin

𝕊
෍

𝑘=1

𝐾

𝕊𝑘 ∙ 𝜎𝑘
2

1. Select an initial set of centroids 𝝁1
(0)
, … , 𝝁𝐾

(0)
(see later how to select)

2. Assign each data point 𝒙 to the set 𝕊𝑘
(𝑡)

if it is closest to 𝝁𝑘, i.e., 𝒙 − 𝝁𝑘
(𝑡)

≤ 𝒙 − 𝝁𝑙
𝑡 ∀𝑙: 1 ≤ 𝑙 ≤ 𝐾

(if several centroids are closest, pick one randomly)

3. Calculate the new centroids for the next iteration (𝑡 + 1): 

𝝁𝑘
(𝑡+1)

=
1

𝕊𝑘
(𝑡)

෍

𝒙∈𝕊𝑘
(𝑡)

𝒙

4. Repeat steps 2 and 3 until algorithm has converged
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– Initial choice of centroids

• Random points: pick 𝐾 random items from the data set. This leads to a spread of centroids 

across the data space.

• Random partition: assign each data item to a random cluster (1 to 𝐾) and compute centroids 

over these random clusters. These centroids tend to be closer together near the center of the 

data set.

• k-means++: the first centroid is chosen randomly from the data set. Each subsequent centroid 

(up to 𝐾) is chosen from the remaining items with probabilities proportional to the their squared 

distance to closest centroid. Although more expensive, it leads to much smaller final errors and 

faster convergence during the iterative part.

• Expectation Maximization (EM) (and interpretation of k-means algorithm)

– Expectation maximization is an iterative method to estimate parameters in a statistical model 

than cannot be solved in closed form. It assumes that the observations (here: the training set) are 

obtained from probability distribution, typically a mixture of several distributions with a soft 

assignment. In k-means, we used a hard assignment, that is, every data point is assigned to 

exactly one cluster. In EM, soft assignment denotes that cluster assignment of a point follows a 

conditional distribution. Finally, the objective is to find the soft assignment and the parameters of 

the distributions (e.g., with Gaussian, these are the means and variances) that best explain the 

observations (maximum likelihood). 

– Solving above objective function in closed form is not always possible. The EM algorithm consists 

of two steps: in the expectation step, the distribution parameters are constant and we compute 

the best soft assignment. In the maximization step, we keep the soft assignment constant and 

choose the parameters that maximize the objective function. With each step, the objective 

function increases and eventually converges, but not necessarily to a global maximum.

5.4.3 Unsupervised Clustering
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– Let us start with a simple one dimensional example with a 

mixture of two (𝐾 = 2) Gaussian distributions 𝒩 𝜇𝑘 , 𝜎𝑘
2 . The 

picture on the right shows the two Gaussian distributions and 

their mixture. With an infinite number of Gaussians, a mixture 

can model any distribution. Each Gaussian represent a sub-

population (cluster) of the data items that follow its 

distribution. In addition, a prior 𝑃 𝐶𝑘 defines how likely data 

items come from 𝑘-the cluster with σ𝑃 𝐶𝑘 = 1. 

– Now, assume we make the observations 𝕋 = {𝑥1, … , 𝑥𝑁}. 
Further assume, we know that all 𝑥 ∈ 𝕊1 stem from the blue 

cluster 𝐶1, and all 𝑥 ∈ 𝕊2 = 𝕋 ∖ 𝕊1 stem from the red cluster 

𝐶2. We then can easily compute the parameters and the 

priors of the distributions using the (biased) estimators:

– On the other side, assume we know the parameters 𝜇𝑘 , 𝜎𝑘
2 of 

the distributions and the priors 𝑃 𝐶𝑘 , can we estimate the 

probability 𝑃 𝐶𝑘 𝑥𝑖 that a point 𝑥𝑖 is part of cluster 𝐶𝑘? 

5.4.3 Unsupervised Clustering

𝜇𝑘 =
σ𝑥∈𝕊𝑘

𝑥

𝕊𝑘
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𝑃 𝐶𝑘 =

𝕊𝑘
𝑁

𝑃 𝐶𝑘 𝑥𝑖 =
𝑃 𝑥𝑖 𝐶𝑘 ∙ 𝑃 𝐶𝑘
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with    𝑃 𝑥𝑖 𝐶𝑘 = 𝑓 𝑥𝑖; 𝜇𝑘, 𝜎𝑘
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∙ exp −

𝑥𝑖−𝜇𝑘
2

2𝜎𝑘
2

























































Page 5-53Multimedia Retrieval – 2018

– Given the probabilities 𝑃 𝐶𝑘 𝑥𝑖 that 𝑥𝑖 belongs to cluster 𝐶𝑘 we 

no longer have a hard assignment as above with 𝕋 = 𝕊1 ∪ 𝕊2, 

and 𝕊1 ∩ 𝕊2 = ∅, but utilize soft assignments. In other words,

we are not entirely sure from which sub-population the points 

come from but have a fairly good understanding how likely they 

stem from each cluster. To estimate the parameters and the 

priors, we need to take the soft assignments into account:

– Now we can summarize the EM algorithm: to this end, we introduce the responsibility 𝛾𝑖,𝑘 =

𝑃 𝐶𝑘 𝑥𝑖 denoting the soft assignment of data item 𝑥𝑖 to cluster 𝐶𝑘, and the weights 𝑤𝑘 = 𝑃 𝐶𝑘
representing the prior of cluster 𝐶𝑘. The algorithm runs as follows:

5.4.3 Unsupervised Clustering

𝜇𝑘 =
σ𝑖 𝑃 𝐶𝑘 𝑥𝑖 ∙ 𝑥𝑖
σ𝑖 𝑃 𝐶𝑘 𝑥𝑖

𝜎𝑘
2 =

σ𝑖 𝑃 𝐶𝑘 𝑥𝑖 ∙ 𝑥 − 𝜇𝑘
2

σ𝑖 𝑃 𝐶𝑘 𝑥𝑖
𝑃 𝐶𝑘 =

σ𝑖 𝑃 𝐶𝑘 𝑥𝑖
𝑁

1. Select initial values for 𝜇𝑘
(0)
, 𝜎𝑘

2(0) and 𝑤𝑘
(0)

for 1 ≤ 𝑘 ≤ 𝐾

2. E-step: evaluate new responsibilities 𝛾𝑖,𝑘
(𝑡)

for 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑘 ≤ 𝐾 using current parameters

3. M-step: evaluate new parameters 𝜇𝑘
(𝑡+1)

, 𝜎𝑘
2(𝑡+1) and 𝑤𝑘

(𝑡+1)
for 1 ≤ 𝑘 ≤ 𝐾 using current responsibilities

4. Repeat E-step and M-step until the parameters stop changing

𝛾𝑖,𝑘
(𝑡)

=
wk
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– Once convergence of EM is reached after 𝜗 iterations, we can (hard) assign a data item 𝑥𝑖 to its 

most likely cluster 𝐶𝑘∗ by solving the following equation:

– We can generalize this approach to 𝑑-dimensional spaces with 𝑑 = 𝑀 being the number of 

features. We create a mixture of 𝐾 multi-variate (or multi-dimensional) Gaussian distribution 

𝒩(𝝁𝑘 , 𝚺𝑘) with 𝝁𝑘 = E 𝒙 ∈ 𝕋𝑘 denoting the centroid of items of cluster 𝐶𝑘, and 𝚺𝑘 = E𝒙∈𝕋𝑘ሾ

ሿ

(

)

𝒙 −

𝝁 𝒙 − 𝝁 𝑇 the covariance matrix of items in cluster 𝐶𝑘.  

– Again, we obtain a hard assignment for a data item 𝒙𝑖 to its most likely cluster 𝐶𝑘∗ as follows:

5.4.3 Unsupervised Clustering
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– Where does the name Expectation Maximization come from? Let 𝕏 = 𝒙𝑖 be the set of data 

items and 𝕐 = 𝑤1, 𝜇1, 𝜎1, … , 𝑤𝑘 , 𝜇𝐾 , 𝜎𝐾 be the set of unknown parameters of the mixture of K 

Gaussian distributions. In addition, we have the latent unobserved data items ℤ = 𝛾𝑖,𝑘 denoting 

the soft memberships of 𝑥𝑖 to cluster 𝐶𝑘. Given, 𝕏 we want to find the parameters 𝕐 that 

maximize the probability that the data items in 𝕏 are observations from the mixture using these 

parameters. This is called the maximum likelihood estimate (MLE):

In other words, if 𝕐 is known, how likely is it that data items in 𝕏 follow the mixture of the K 

Gaussian distributions. Adding the soft memberships ℤ, 𝑝(𝕏|𝕐) is given by the marginal 

probability of 𝑝(𝕏, ℤ|𝕐) over all possible sets of ℤ. This equation, however, is often not solvable in 

closed forms. Instead, an iterative method is used, that improves log 𝑝(𝕏|𝕐) with each iteration. 

EM uses a so-called Q-function that indirectly improves log 𝑝(𝕏|𝕐) given current estimates 𝕐 𝑡 :

The right hand side is the expectation function over log 𝑝(𝕏, ℤ|𝕐) given the conditional distribution 

of ℤ given 𝕏 and the current estimates 𝕐 𝑡 . Now, the E-step generates this expectation function 

by computing the probabilities 𝑃 𝐶𝑘 𝑥𝑖 for ℤ (soft assignment) given 𝕏 and the current estimates 

𝕐 𝑡 and uses Bayes’ rule as we have done above. Then, given ℤ, the M-step maximizes the Q-

function over all possible 𝕐 to obtain a new estimate 𝕐 𝑡+1 . With log-probabilities and Gaussian 

distributions, we can cancel log and exp in the equation, and solutions are found by solving for 

the maximum (partial derivative is zero). We omit proof for solutions and convergence.

5.4.3 Unsupervised Clustering

𝕐∗ = argmax
𝕐

𝑝(𝕏|𝕐) = න

ℤ

𝑝(𝕏, ℤ|𝕐)𝑑ℤ

𝑄 𝕐 𝕐 𝑡 = 𝐸ℤ|𝕏,𝕐 𝑡 log 𝑝(𝕏, ℤ|𝕐)

Additional information — not part of the exams
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– Let us reconsider the k-means algorithm as an EM problem. We can re-write the objective 

function (within-cluster sum of squares, WCSS) as follows:

𝛾𝑖,𝑘 are the hard assignments of 𝑥𝑖 to 𝐶𝑘, i.e., for each 1 ≤ 𝑖 ≤ 𝑁 exactly one 𝛾𝑖,𝑘 = 1 and all 

others are 0. We can transform k-means to an EM algorithm over a mixture of K Gaussian 

distributions with hard assignments as follows:

5.4.3 Unsupervised Clustering
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• For both k-means and EM, we need to control then number 𝐾 of clusters. If the number is too small, 

the error value is high and the algorithms suffer from underfitting. If we select a large 𝐾, we can 

reduce the error but at risk of overfitting. Let 𝕊𝑘 be the set of data items 𝒙 that are assigned to 

cluster 𝐶𝑘. To control K, we determine the sum of squared errors 𝑆𝑆𝐸 over all clusters: 

If we plot this SSE as a function of K, we obtain a graph like on the right side below. As we increase 

the number 𝐾, the SSE decreases. However, we cannot simply solve for 𝐾 that minimizes the SSE 

function as 𝐾 = 𝑁 would have an 𝑆𝑆𝐸 = 0 but clearly overfits the data. Rather, we look for the so-

called elbow point as highlighted in the figure where the SSE-functions “abruptly” levels out as is 

decreasing much slower than before the elbow. We can obtain an optimal 𝐾 in two ways:

a) Vary 𝐾 from 2 to an upper bound (here 20) and determine the point that lies farthest away 

from the line between the start and the end of the curve.

b) Start with 𝐾 = 2 and determine the distance to the point

(2,0). While increasing 𝐾 observe the distance. Stop if

the distance starts growing.

Method b) has the advantage of iterating less over 𝐾. For both

variants to work, we need to normalize the two dimensions, for

instance with a min/max scaling, to obtain a meaningful result.

5.4.3 Unsupervised Clustering
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• Example: Image Segmentation (Blobworld)

– Blobworld was a project at the University of Berkeley and published first in 1999. It was using 

segmentation to divide an image into distinct regions and used descriptors on these regions to 

retrieve objects embedded in images. The right hand side shows an example of the segmentation

a) The original image contains  too many edges and 

corners yielding a large number of potential regions

b) A rough Gaussian filter smooths the image and

eliminates finer structures

c) Color is transformed into the L*a*b* space. For

each pixel, Blobworld extract additional texture

features describing the polarity (clear direction

of edges in a neighborhood), edgeness, and

texture contrast. The feature vector consists

of the pixel position (𝑥, 𝑦), the 3 color and the 

3 texture values at that position.

d) Apply the EM algorithm on a Gaussian mixture

model over the 8 feature values. This is

computed for 2, 3, 4, and 5 clusters.

e) To steer the number of clusters, a special 

objective function based on the Minimum 

Description Length (MDL) was applied.

f) Blobworld hard assigns pixels to a cluster and 

selects a unique color for each cluster.

5.4.3 Unsupervised Clustering
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5.4.4 Multi-Layer Network

• Artificial neural networks are machine learning models that are inspired by how the brain works. Indeed, 

brain research has frequently led to new approaches like the use of connections between neurons of 

different layers rather than adjacent ones (multi-layer approach). Neural network, on the other hand, are 

often employed to model the brain and its learning algorithms.

• The first wave of neural network research started in the late 1950s and was focusing on a single 

perceptron (in hardware). It was possible to use multiple perceptrons in parallel, but they were only 

connected to input and output states. The problem of perceptrons was articulated in its famous inability to 

learn a simple XOR function. Even though it was shown that a two-layer network could indeed encode an 

XOR function, the limitations were obvious and a first AI winter began.

• The second wave started with research in the 1960s with the introduction of hidden layers. Several 

researchers were developing similar ideas but the credits usually go the Rumelhart, Hinton, and Williams 

and their 1986 paper on backpropagation which describes the approach with such clarity that it is still the 

basis for many descriptions in text books. The area revived quickly and lead to convolutional networks, 

recurrent networks, belief networks with many of the concepts found today in deep learning. However, the 

field suffered from calculation issues (vanishing and exploding gradients) and the computational limitations 

in the 1980s and 1990s.

• At the beginning of the 2000s, almost no research was published or cited and funding was very sparse. 

However, the Canadian government funded a small research team around Hinton that first rebranded the 

field into “Deep Learning” and then published in 2006 a break-through paper with a  fast learning algorithm 

for deep belief nets. In parallel, compute power has significantly grown. Inspired by the Canadian research 

team, the field arose again and soon it was found that GPUs were up to 100 times faster than CPUs. This 

allowed the training of deep networks within hours and days rather than weeks and months. Google started 

in 2011 its Google Brain research project to connect thousand of CPUs for a network with 1 billion weights. 

Since then, research has generated an enormous amount of improvements and efficient learning 

frameworks leading to an overwhelming success story of AI with many applications.

5.4.4 Multi-Layer Network
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source: https://www.nvidia.com/en-us/data-center/dgx-server/

source: ttps://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

source: https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-

googles-first-tensor-processing-unit-tpu

https://www.nvidia.com/en-us/data-center/dgx-server/
https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html
https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
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• We first consider the original perceptron idea: in principle, it is a binary classifier mapping a real-

valued input vector 𝒙 ∈ ℝ𝐾 to a binary output value 𝑓 𝒙 :

where 𝒘 ∈ ℝ𝐾 are the weights and 𝑏 is the bias. From this definition we derive that the perceptron is 

splitting the space with a hyperplane given by 𝒘𝑇𝒙 + 𝑏. In a more general setup, 𝐿 perceptrons with 

weights 𝒘𝑙 and bias 𝑏𝑙 are connected to the 𝐾 input value 𝑖𝑘 and produce 𝐿 binary output values 𝑜𝑙. 
We can visualize this general setup as follows:

The learning algorithm is then as follows:                  (demo: https://www.cs.utexas.edu/~teammco/misc/perceptron/)

Convergence is only reached if the data set is linearly separable. Otherwise, the algorithm may fail 

completely. A number of variants address this later issue.
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0
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• Calculate that actual output: 𝑜𝑙 = 𝑓 σ𝑘=1
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• Intuitively, the perceptron learning algorithm only adjust weights (and bias) if the target differs from 

the output. If the output is 0 but the target is 1, then weights and bias are incremented, otherwise 

they are decremented (assuming 𝑥𝑙 ≥ 0). We also note that the algorithm does not aim to optimize 

any objective function but merely is a heuristic approach to learn the weights. If data is separable, it 

converges to binary partition of the space with a hyperplane (one of many that partition the space).

• In contrast, the support vector machine (SVM) computes an optimal solution for the hyperplane 

that separates the sets and maximizes the margin (the distance of marginal points to the 

hyperplane). SVM even works if the data is not separable; it then finds a solution that minimizes the 

partitioning error. We are not considering here how SVMs are computed. 

• In any case, a binary classifier can be used to learn multiclass outputs as well. The “one-vs-all” 

approach learns a binary classifier for each of the 𝐿 classes to separate a class 𝐶𝑙 from the rest. In 

other words, we use 𝐿 perceptrons and the binary target vector 𝒕 has 𝑡𝑙 = 1 and all other 

components are 0. For prediction, the output with the highest value denotes the “winning” class. 

Alternatively, the “one-vs-one” strategy uses 𝐿(𝐿 − 1)/2 perceptrons to separate two classes from 

each other learning the perceptrons individually. For prediction, the output with the highest value 

indicates the “winning” class.

5.4.4 Multi-Layer Network

Perceptron SVM

possible

solutions
exactly one 

optimal solution
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• The linear classification approach of SVM seems rather limiting (like for perceptron). However, SVM 

has the “kernel trick”: the idea is that data points are mapped to a higher dimensional space that 

enables better separability of the data by a hyperspace. The mapping to this higher dimensional 

space is typically non-linear. The “kernel-trick” now means that we do not explicitly compute the 

mapping to the high-dimensional space, but rather only compute the inner product between data 

points that is required for the SVM calculations. For instance, the kernel 𝐾 𝒙, 𝒚 = 1 + 𝒙⊤𝒚 2 with 

𝒙, 𝒚 ∈ ℝ2 is an efficient way to compute the inner product of two mapped values 𝜑 𝒙 and 𝜑 𝒚 in a 

6-dimensional space. With a Gaussian kernel 𝐾 𝒙, 𝒚 = exp −𝛾 𝒙 − 𝒚 2 we obtain an infinite-

dimensional mapping function 𝜑.

• The “kernel trick” is often considered as a human intervention into the machine learning process. 

SVM classification works very well and is efficient but we need to design an appropriate kernel 

function for the problem at hand.

5.4.4 Multi-Layer Network
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• Multilayer networks introduce a number of changes to the original perceptron

– several “hidden” layers between input and output

– different activation functions to “fire” a neuron, and not necessarily only binary output

– objective functions to define an optimal state for all network parameters

– a new algorithm to learn the weights (the so-called backpropagation)

• Let us start with a simple two-layer network to understand the fundamentals with a concrete 

example, and then we generalize the concepts to arbitrary shaped networks. 

• The network consists of two input neurons 𝑖1, 𝑖2, two hidden neurons ℎ1, ℎ2 and two output neurons 

𝑜1, 𝑜2. We have two (shared) biases, 𝑏1 for the hidden neurons and 𝑏2 for the output neurons. Note 

that we modeled the bias as a weight from a neuron that always has the state 1.  𝑤1, … , 𝑤8 denote 

the weights on the connections. Even though we have 6 neurons, the connections are only from one 

layer to the next one and especially, there are no inter-layer connections or cycles. This is an 

important topological constraint that will simplify our learning algorithm. Finally, we added nodes to 

capture the training error: 𝐽1 and 𝐽2 measure the error between the first and the second target 

component 𝑡1 𝒙 and the computed output of the network. 𝐽 denotes the training error.

5.4.4 Multi-Layer Network
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• Feed-Forward: given a data sample 𝒙 from the training set 𝕋, the network is computing the state of 

each neuron using a simple model:

We use s to indicate the result of the summation, and  we employ the logistic activation function 𝜑
also known as soft step. With this, we can determine every state of a neuron, given the input 𝒙 ∈ 𝕋:

The calculations are straightforward. The term feed-forward denotes that we “feed” the data sample 

first into the input layer, and then forward the results from one layer to the next one. Each layer can 

be computed concurrently.

Later on, we will see different activation functions and also different approaches to connectivity and 

sharing of weights between subsequent layers. The principle model for neurons remain the same for 

most deep networks. We will also encounter special dropout neurons, that set input elements to 

zero with a certain probability to prevent overfitting of the network.

5.4.4 Multi-Layer Network
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• Error function: we want to measure how well the network is able to predict the targets for all given 

data samples in the training set 𝕋. As a starting point, we use the mean square error (MSE):

where 𝜽 denotes the parameters of the network. In our example: 𝜽 = (𝑤1, … , 𝑤8, 𝑏1, 𝑏2). Learning a 

network means finding parameters 𝜃∗ that minimizes the error function:

– Due to the size of networks and the number of data items, it is generally not feasible to solve the 

equation in closed form. Instead, we use the gradient descent method to find a (local) optimum 

through an iterative approach. Let 𝛁𝐽(𝜽) be the gradient of 𝐽 𝜃 for the parameters 𝜃 of the 

network. The gradient descent method defines the learning strategy for the network:

– Gradient descent is relatively slow close to the minimum and often “zigzags”  for poorly 

conditioned convex functions. In addition, for large-scale data sets and networks, gradient 

descent requires enormous computational and storage requirements to determine the gradient 

(which we can derive in closed form for the network as we will see later).

5.4.4 Multi-Layer Network
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– Instead of gradient descent, neural network algorithms use the stochastic gradient descent 

(SGD) often in combination with a momentum method to prevent the afore mentioned zigzag 

issue. SGD approximates the true gradient of 𝐽 𝜽 with a single data sample (instead of over all 

data samples). As we will see with backpropagation, this allows us to quickly update the weights 

with minimal storage overhead. SGD still suffers from slow convergence especially towards the 

end of the iterations. Momentum is one method to accelerate the descent. We keep the gradient 

of the past iteration and re-apply some fraction 𝛾 of it in the descent:

The momentum 𝛾 defines how long a previous gradient is still used. Generally, we start with

𝛾 = 0.5 and then increase it after the initial learning stabilizes to 𝛾 = 0.9 or even higher.

– The above algorithm defines the overall learning strategy. Each batch (step 2) runs against the 

entire training set and for each data samples, the weights and biases in the network are adjusted 

for each data sample. What remains to do is to compute the gradient 𝛁𝐽(𝒙; 𝜽) for the current data 

sample and the current set of parameters of the network. 

5.4.4 Multi-Layer Network
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• Gradient computation: before we consider the backpropagation algorithm, let us re-consider our 

example network from the beginning with two input nodes, two hidden nodes, and two output nodes. 

For the stochastic gradient descent, we need to compute the gradient. Note that in our example, we 

have 𝜽 = (𝑤1, … , 𝑤8, 𝑏1, 𝑏2). The gradient is then given as the partial derivatives over 𝐽 𝒙; 𝜽 :

with given targets 𝑡1 and 𝑡2 for data sample 𝒙, and 𝑜1 and 𝑜2 as given previously as a function of 𝒙
and the weights 𝑤1, … , 𝑤8 and the biases 𝑏1 and 𝑏2.

– Let us start simple: consider 𝑤5. It only occurs in 𝑜1 but not in 𝑜2. Thus the partial derivative is:

5.4.4 Multi-Layer Network
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– Similarly, we obtain the other partial derivatives 
𝜕𝐽

𝜕𝑤6
, 

𝜕𝐽

𝜕𝑤7
, 

𝜕𝐽

𝜕𝑤8
, and 

𝜕𝐽

𝜕𝑏2
. Altogether, we have:

We already note the recurring patterns in the calculations: the derivatives on the error function 

are multiplied by the derivative on the activation function and are multiplied by the derivative on 

the summation. For the gradients, we require the results (=states) from the feed-forward step and 

can the efficiently compute the gradients (see backpropagation).

– Now to the remaining partial derivatives (see next page how to derive for 𝑤1):

5.4.4 Multi-Layer Network
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– Let us now consider 𝑤1: we note that 𝑤1 only occurs in ℎ1 which in turn is part of both 𝑜1 and 𝑜2.
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all together:

𝜕𝐽

𝜕𝑤1
= 𝑡1 − 𝑜1 ∙ 𝑜1 ∙ 1 − 𝑜1 ∙ 𝑤5 ∙ ℎ1 ∙ 1 − ℎ1 ∙ 𝑥1 +

𝑡2 − 𝑜2 ∙ 𝑜2 ∙ 1 − 𝑜2 ∙ 𝑤7 ∙ ℎ1 ∙ 1 − ℎ1 ∙ 𝑥1

𝜑 𝑠 =
1

1 + 𝑒−𝑠

𝜑′ = 𝜑 ∙ 1 − 𝜑

𝜕𝑜2
𝜕𝑤1

= 𝑜2 ∙ 1 − 𝑜2 ∙
𝜕𝑠𝑜2
𝜕𝑤1

𝜕𝑠𝑜2
𝜕𝑤1

= 𝑤7 ∙
𝜕ℎ1
𝜕𝑤1
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• Evidentially, it is possible to compute all partial derivatives for the gradient, but it seems tedious 

work to do so (and error prone). Can we do it simpler? Yes, we can. Backpropagation is an 

astonishingly simple scheme that computes the gradient starting at the error node and working back 

towards the input nodes. It does not provide us with the closed forms of the derivatives, but it 

computes the gradient avoiding multiple computations of the same sub-expressions. 

– Let us look again at the chain rule from calculus:

In graphical notation, we obtain the forward path to compute the composite function:

Now to compute the derivative 
𝑑𝑧

𝑑𝑥
for 𝑥 we move backwards. We first compute 𝑓′(𝑦) and then 

multiply it with 𝑔′(𝑥). To this end, we need to keep track of intermediate results and use them on 

the back path to calculate the derivative:

5.4.4 Multi-Layer Network

𝐹 𝑥 = 𝑓 ∘ 𝑔 = 𝑓 𝑔 𝑥 𝐹’ 𝑥 = 𝑓′ 𝑔 𝑥 ∙ 𝑔′(𝑥)

or in Leibniz notation with 𝑧 = 𝑓(𝑦) and 𝑦 = 𝑔(𝑥):  
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦
∙
𝑑𝑦

𝑑𝑥
= 𝑓′(𝑦) ∙ 𝑔′(𝑥)

𝑔 𝑓𝑥 𝑧
𝑦 = 𝑔(𝑥)𝑥 𝑧 = 𝑓(𝑦)

𝑔 𝑓𝑥 𝑧
𝑦 = 𝑔(𝑥)𝑥 𝑧 = 𝑓(𝑦)

𝑔′ 𝑓′
𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
∙
𝑑𝑦

𝑑𝑥
1

𝑑𝑧

𝑑𝑦
= 𝑓′(𝑦)

𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
∙ 𝑔′(𝑥) 1

𝑥 𝑦
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– Similarly, we can look at multivariable chain rules

In graphical notation, we obtain the forward path to compute the function:

Now to compute the derivative 
𝑑𝑧

𝑑𝑥
for 𝑥 we move backwards similarly as before:

5.4.4 Multi-Layer Network

𝐹 𝑥 = 𝑓 𝑔 𝑥 , ℎ(𝑥) 𝐹’ 𝑥 = 𝑓′ 𝑔 𝑥 , ℎ(𝑥) ∙ 𝑔′(𝑥) + 𝑓′ 𝑔 𝑥 , ℎ 𝑥 ∙ ℎ′ 𝑥

or in Leibniz notation with 𝑧 = 𝑓 𝑦 , 𝑦 = 𝑔(𝑥) and𝑤 = ℎ(𝑥)

𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
∙
𝑑𝑦

𝑑𝑥
+
𝑑𝑧

𝑑𝑤
∙
𝑑𝑤

𝑑𝑥
= 𝑓′ 𝑦,𝑤 ∙ 𝑔′ 𝑥 + 𝑓′ 𝑦,𝑤 ∙ ℎ′ 𝑥

𝑔

𝑓𝑥 𝑧

𝑦 = 𝑔(𝑥)𝑥

𝑧 = 𝑓(𝑦,𝑤)

𝑑𝑧

𝑑𝑦
= 𝑓′(𝑦,𝑤)

𝑦,𝑤

ℎ𝑥 𝑤 = ℎ(𝑥)

𝑔

𝑓𝑥 𝑧

𝑦 = 𝑔(𝑥)𝑥

𝑧 = 𝑓(𝑦,𝑤)

ℎ𝑥
𝑤 = ℎ(𝑥)

𝑔′

𝑓 1

1

ℎ′ 𝑑𝑧

𝑑𝑦
= 𝑓′(𝑦,𝑤)

𝑥

𝑥
𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
∙ 𝑔′(𝑥)

𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
∙ ℎ′(𝑥)

𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
∙
𝑑𝑦

𝑑𝑥
+
𝑑𝑧

𝑑𝑤
∙
𝑑𝑤

𝑑𝑥
+
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• Let us apply the chain rule to our neural network. Let start with the output neurons. To simplify the 

structure, we introduce a node 𝑎0 which always has the state 1, and the weight 𝑤0 = 𝑏 which 

represents the bias. All formulas become a bit simpler. The visualization for the forward and 

backward path are given below:

– Every layer outputs the 𝛿-values that are propagated back to the inputs and are used to adjust 

the parameters in every layer. Above, we used a separate bias 𝑏𝑙 for each node. If we would 

share the bias across the layer like in the example, we need to simply sum up the deltas over the 

nodes using the same bias, i.e.: 

5.4.4 Multi-Layer Network

Σ 𝜑

𝑠𝑙 = ෍
𝑘
𝑎𝑘 ∙ 𝑤𝑘,𝑙

𝑎𝑘 𝐽𝑙 𝐽

𝑜𝑙 = 𝜑 𝑠𝑙 𝐽𝑙 =
1

2
𝑡𝑙 − 𝑜𝑙

2

𝑡

𝑡𝑙

𝐽 =෍
𝑙
𝐽𝑙

𝑤𝑘,𝑙 , 𝑤0,𝑙 = 𝑏𝑙

Σ′ 𝜑′

𝛿𝑙 = 𝑜𝑙 ∙ 1 − 𝑜𝑙 ∙ 𝑡𝑙 − 𝑜𝑙

𝐽𝑙 ′ 𝐽

(𝑡𝑙 − 𝑜𝑙) 1
1

𝑡𝑙 , 𝑜𝑙 𝐽𝑙𝑜𝑙𝑎𝑘

𝜕𝐽

𝜕𝑤𝑘,𝑙
= 𝑎𝑘 ∙ 𝛿𝑙

𝛿𝑙

𝑎0 = 1

𝑤𝑘,𝑙
𝑛𝑒𝑤 = 𝑤𝑘,𝑙 − ∆𝑘,𝑙∆𝑘,𝑙= 𝛾 ∙ ∆𝑘,𝑙 + 𝜂 ∙

𝜕𝐽

𝜕𝑤𝑘,𝑙

𝜑 𝑠 =
1

1 + 𝑒−𝑠

𝜑′ = 𝜑 ∙ 1 − 𝜑

1

Σ1

Σ𝑘

Σ𝐾

𝑏 Σ′1 𝛿1

𝜕𝐽

𝜕𝑏
=෍

𝑘
𝛿𝑘

𝛿𝑘

𝛿𝐾

𝑏𝑛𝑒𝑤 = 𝑏 − ∆𝑏∆𝑏= 𝛾 ∙ ∆𝑏 + 𝜂 ∙
𝜕𝐽

𝜕𝑏
𝑏

𝑏
Σ′𝑘

Σ′𝐾

1

1

1

𝑎𝑘

1
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– Hidden layers are calculated similarly, however, there are 𝐿 incoming edges from the subsequent 

layer during backpropagation. The visualization for the forward and backward path are as follows:

– Let us sum up the backpropagation algorithm: during the stochastic gradient descent, we search 

for the optimal parameters (weights, biases, etc.) of the network. To compute the gradient for 

these parameters with respect to an error function 𝐽, we first use the network in forward mode to 

predict the output with the current set of parameters. At the same time, we keep track of 

intermediate values that are required on the backward path. We then compute the error with 

regard to a single sample and propagate the partial derivatives backwards to the previous layers. 

At each layer, we compute the ∆-values for the weights to obtain new estimates for them. Note 

that the old weights are still required for the preceding layer to compute its partial derivative (see 

figure above, the (+)-node requires weights 𝑣𝑙 , 𝑚 from the subsequent layer). 

5.4.4 Multi-Layer Network

Σ′ 𝜑′

𝛿𝑙 = 𝑜𝑙 ∙ 1 − 𝑜𝑙 ∙෍
𝑚
𝑣𝑙,𝑚 ∙ 𝛿𝑚 ෍

𝑚
𝑣𝑙,𝑚 ∙ 𝛿𝑚

𝑜𝑙𝑎𝑘

𝜕𝐽

𝜕𝑤𝑘,𝑙
= 𝑎𝑘 ∙ 𝛿𝑙

𝛿𝑙

𝑤𝑘,𝑙
𝑛𝑒𝑤 = 𝑤𝑘,𝑙 − ∆𝑘,𝑙∆𝑘,𝑙= 𝛾 ∙ ∆𝑘,𝑙 + 𝜂 ∙

𝜕𝐽

𝜕𝑤𝑘,𝑙

𝜑 𝑠 =
1

1 + 𝑒−𝑠

𝜑′ = 𝜑 ∙ 1 − 𝜑

Σ 𝜑

𝑠𝑙 = ෍
𝑘
𝑎𝑘 ∙ 𝑤𝑘,𝑙

𝑎𝑘

𝑜𝑙 = 𝜑 𝑠𝑙

𝑤𝑘,𝑙 , 𝑤0,𝑙 = 𝑏𝑙𝑎0 = 1

𝑎𝑘

1

Σ

𝑣𝑙,𝑚

Σ′+

𝛿𝑚

𝑜𝑙
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• Generic implementation of multilayer networks: let us model a dense multilayer network. We 

assume 𝑁 layers 𝐿𝑖 and we denote  𝐿0 to be the input layer and 𝐿𝑁 to be the output layer. Each 

layer has 𝑀𝑖 neurons with states 𝑜𝑖,𝑘 with 0 ≤ 𝑖 ≤ 𝑁 and 0 ≤ 𝑘 ≤ 𝑀𝑖 whereby 𝑜𝑖,0 = 1 (used for the 

bias). Further we use weights 𝑤𝑖,𝑘,𝑙 with 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑘 ≤ 𝑀𝑖 and 1 ≤ 𝑙 ≤ 𝑀𝑖−1 to connect the 𝑙-th

node of Layer 𝐿𝑖−1 with the 𝑘-th node of Layer 𝐿𝑖. In addition, we keep track of the increments ∆𝑖,𝑘,𝑙

for the computation of the gradients 
𝜕𝐽

𝜕𝑤𝑖,𝑘,𝑙
. 

– Example with 3 layers:

– Feed Forward is then given as:

So far we have used the logistic activation function 𝜑 𝑠 =
1

1+𝑒−𝑧
and the mean square error 

(MSE) with 𝐽 𝜃 =
1

2∙ 𝕋
σ𝒙∈𝕋 𝑡 𝒙 − 𝑜 𝒙; 𝜽 2

2 such that 𝐸𝑘 𝑜𝑁,𝑘; 𝑡𝑘 =
1

2
𝑡𝑘 − 𝑜𝑁,𝑘

2
. We will 

see further activation functions and error (or loss) functions in the deep learning section. 

5.4.4 Multi-Layer Network

𝑜0,0 = 1

𝑜0,1

𝑜0,𝑀0

…

𝑜1,0 = 1

𝑜1,1

𝑜1,𝑀1

…

𝑜2,0 = 1

𝑜2,1

𝑜2,𝑀2

…

𝑜3,1

𝑜3,𝑀3

…

𝐽1

𝐽𝑀3

…

𝐽
𝑤1,𝑘,𝑙 𝑤2,𝑘,𝑙 𝑤3,𝑘,𝑙

1. Initialize 𝑜𝑜,𝑘 = 𝑥𝑘 from the current data sample 𝒙 ∈ 𝕋 ⊂ ℝ𝑀0 with target 𝒕 ∈ ℝ𝑀𝑁

2. For each layer 𝐿𝑖 with 𝑖 iterating from 1 to 𝑁:

• Compute 𝑜𝑖,𝑘 = 𝜑(σ𝑙𝑤𝑖,𝑘,𝑙 ∙ 𝑜𝑖−1,𝑙) with a selected activation function 𝜑 for all 1 ≤ 𝑘 ≤ 𝑀𝑖

3. Compute 𝐽𝑘 = 𝐸𝑘(𝑜𝑁,𝑘; 𝑡𝑘) with a selected error function 𝐸 for all 1 ≤ 𝑘 ≤ 𝑀𝑁

4. Compute training error 𝐽 𝑥; 𝜃 = σ𝑘 𝐽𝑘 = 𝐸(𝑜𝑁,𝑘; 𝑡𝑘) for current sample
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– Backpropagation is finally (e.g., with logistic activation function and mean square error):

Note: it is tempting to update the weights in the inner loop (step 4). However, we need the old 

weights in the preceding layer (next iteration in step 4) to compute 𝛿𝑖,𝑘. 

• While multilayer networks are still used in later layers in deep learning scenarios, the original 

approaches in 1980s and 1990s suffered from a number of issues (we will discuss them in the deep 

learning section). Essentially, the main issues involved numerical problems while computing the 

gradients (vanishing and exploding values) and the vast compute power necessary to learn 

moderate to large network. The smaller networks, on the other hand, did not work too well on typical 

classification scheme, and with SVM and kernel functions superior alternatives emerged.

5.4.4 Multi-Layer Network

1. Given target 𝒕 and assume output 𝒐𝑁 from feed forward step; assume learning rate 𝜂 and momentum 𝛾

2. Initialize ∆𝑖,𝑘,𝑙= 0

3. Compute 𝛿𝑁,𝑘 = 𝜑′ 𝑜𝑁,𝑘 ∙ 𝐸𝑘
′ 𝑜𝑁,𝑘; 𝑡𝑘 = 𝑜𝑁,𝑘 ∙ 1 − 𝑜𝑁,𝑘 ∙ 𝑡𝑘 − 𝑜𝑁,𝑘 for all 1 ≤ 𝑘 ≤ 𝑀𝑁

4. For each layer 𝐿𝑖 with 𝑖 iterating from 𝑁 − 1 down to 1:

• Compute  𝛿𝑖,𝑘 = 𝜑′ 𝑜𝑖,𝑘 ∙ σ𝑙𝑤𝑖+1,𝑙,𝑘 ∙ 𝛿𝑖+1,𝑙 for all 1 ≤ 𝑘 ≤ 𝑀i

• Compute ∆𝑖,𝑘,𝑙= 𝛾 ∙ ∆𝑖,𝑘,𝑙 + 𝜂 ∙ 𝑜𝑖−1,𝑙 ∙ 𝛿𝑖,𝑘 for all 1 ≤ 𝑘 ≤ 𝑀i

5. Update weights 𝑤𝑖,𝑘,𝑙 = 𝑤𝑖,𝑘,𝑙 − ∆𝑖,𝑘,𝑙






Page 5-77Multimedia Retrieval – 2018

• Example: Face Detection

– Rowley, Baluja, Kanade [1998], Carnegie Mellon University, defined an elaborated algorithm for 

detecting faces at any scale and direction. To keep the neural network small, their approach was 

to first learn only normalized faces, and to then apply an exhaustive search for faces on images. 

The detection network is based on a 20x20 input network (preprocessed image window). In a first 

layer, 3 types of receptive fields are created: a) four 10x10 areas, b) 16 5x5 areas, and c) six 

overlapping 20x5 areas. Each area is fully connected to a hidden unit which is fully connected to 

an output. An output of 1 denotes a face, and an output of -1 denotes no face. 

– A second network (router network) was trained to estimate the direction of a face within a 

window. The 20x20 input network (preprocessed image window) is fully connected to hidden 

units which in turn are fully connected to 36 output values representing an angle of 𝑖 ∙ 36°. The 

angle can be used in the predication phase to normalize the face before application of the 

detection network.

5.4.4 Multi-Layer Network
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– Once trained, we can find faces in an image as follows: first, we build a pyramid of images by 

subsampling to smaller and smaller sizes. This allows us to find faces of different sizes. Then, a 

20x20 windows is sliding across the image and for each location, the network tests whether the 

window contains a face. Due to the usage of normalized faces, the algorithm can return the 

location and direction of faces as well as estimating the position of the eyes.

5.4.4 Multi-Layer Network
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5.4.5 Deep Learning

• The second wave of neural network research died very quickly after discovering more structural 

issues with how the learning algorithm works. Even though it was proven that neural networks can 

learn any function, that theory often would not materialize in practice. Especially, it was observed 

that adding additional hidden layers does not lead to better results, and bigger networks were 

becoming increasingly instable to operate. The famous notion of vanishing and exploding 

gradients and the competition of support vector machine (SVM) with elaborated kernels drove a 

whole research field into a dead end. Only the Canadian government continued to fund neural 

network research: Geoff Hinton and team published in 2006 a paper on deep belief network where 

they showed how they could learn a network layer wise overcoming the issues of early 

backpropagation learning. In parallel, the massive amount of labeled data sets (a prerequisite to 

start learning) and the massive parallelism of GPUs greatly accelerated the success of what is know 

simply called deep learning (although the concepts are much older).

• Let us first consider the vanishing gradient problem. In the network of the previous section, we had a 

input layer, a hidden layer, and an output layer and were optimizing the networks parameters by 

minimizing a quadratic cost function. The backpropagation algorithm computes gradients and would 

update a weight on the first layer with:

The gradient is the sum of two multiplications, each with factors of the form 𝑥 ∙ (1 − 𝑥) due to the 

usage of the sigmoid activation function. Note that 𝑥 stands for the outcome of a neuron after the 

activation function, hence 𝑥 = 𝜑 𝑠 =
1

1+𝑒−𝑠
. In addition, the multiplications include the weights of the 

last layer. If we add more hidden layers to the network, more factors of the form 𝑥 ∙ (1 − 𝑥) and more 

weights of later layers appear in the gradients of weights and bias of the first layer. 

5.4.5 Deep Learning

𝜕𝐽

𝜕𝑤1
= 𝑡1 − 𝑜1 ∙ 𝑜1 ∙ 1 − 𝑜1 ∙ 𝑤5 ∙ ℎ1 ∙ 1 − ℎ1 ∙ 𝑥1 + 𝑡2 − 𝑜2 ∙ 𝑜2 ∙ 1 − 𝑜2 ∙ 𝑤7 ∙ ℎ1 ∙ 1 − ℎ1 ∙ 𝑥1
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– The derivative of the sigmoid function 𝜑 𝑠 =
1

1+𝑒−𝑠
is plotted 

on the right hand side. We note that the maximum value is

¼ and that values quickly drop on both sides. If we initialize

weights between 0 and 1, the gradient computation turns into

a series of multiplications of small values yielding very small

updates weights and biases even if they a significantly wrong.

This requires a huge number of iterations to move weights and 

biases towards their optimal values, hence, learning is very slow and expensive.

As a consequence, gradients are reduced to a fourth for each layer in the backpropagation 

making it very slow to train networks with lots of layers (GoogLeNet used ~20 layers). 

– On the other hand, if we scale the weights and input values beyond the typical −1,1 range, the 

gradients will explode as we a now multiply several numbers larger than 1. With only a few 

layers, gradients become exponentially larger as we propagate back, and with that the weights 

and biases grow in absolute values, resulting in potentially even larger gradients in the next 

iteration. Several attempts for deeper networks failed due to instable gradient computations.

• Deep learning addressed these issues with backpropagation friendly activation functions (ReLu), 

improved architecture (convolution, pooling, inception modules, residual networks), and improved 

regularization techniques (dropout, ReLu, L1, L2). We consider some of these concepts 

subsequently.

5.4.5 Deep Learning

𝜑′ =
1

1 + 𝑒−𝑠
∙ 1 −

1

1 + 𝑒−𝑠

𝑡1 − 𝑜1 ∙ 𝑜1 ∙ 1 − 𝑜1 ∙ 𝑤5 ∙ ℎ1 ∙ 1 − ℎ1 ∙ 𝑥1 ≤ 1/16

≤ 1/4 ≤ 1/4≤ 1
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• The rectified linear unit (ReLU) is a simple activation function replacing 

the sigmoid function used previously. There are now many alternative 

activation functions, but the ReLU marked an important step towards 

more stable gradient computations. It is defined as

The function is plotted on the right hand side. What is so special about this function? First, its is 

closer to the way biological neurons works while the sigmoid function (and its counterpart the 

hyperbolic tangent) were inspired by probability theory. Second, its gradient is either 0 or 1:

Hence, the gradients of the activation function do not accelerate the vanishing and exploding effects 

as described before. ReLU have become the standard activation function for deep learning despite 

some of the challenges that come with them:

– The output is no longer in the range ሾ0,1ሿ. If we train classifiers, how can we map the output of 

the last layer to class labels? The softmax function can be used to convert output values to class 

probabilities. It is often used together with the cross-entropy loss function to simplify gradient 

calculations as follows. Let 𝑜𝑘 be the 𝑘-th output value, and 𝑦𝑘 be the target label. Then:

5.4.5 Deep Learning

𝜑 𝑠 = max 0, 𝑠

𝜑′ 𝑠 = ቊ
0, 𝑠 < 0
1, 𝑠 ≥ 0

𝑝𝑘 =
𝑒𝑜𝑘

σ𝑘 𝑒
𝑜𝑘

𝜕𝐽

𝜕𝑜𝑘
= 𝑝𝑘 − 𝑦𝑘

𝐽 𝜽 = −෍

𝑘

𝑦𝑘 ∙ log𝑝𝑘

that is 

simple!

𝑱 is defined as the cross-entropy 

loss function. 𝜽 contains all 

parameters of the network, i.e., 

weights and biases.
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– The derivative of the ReLU can become 0 which means that back 

propagation stops at this unit and predecessors are not adjusted. 

While some see this as a regularization of the network by thinning 

out the connections (much like neurons in the brain are also not 

fully connected), others are concerned that an initial selection of 

weights and biases may randomly close paths and the network 

can only slowly recover from that (if at all). Instead, a common extension is the leaky ReLU

which is defined as (including its derivative):

The advantage is that the derivative is never becoming 0; it is small for negative values allowing 

a network to recover a closed path

• To overcome the vanishing and exploding gradient, deep learning improved the architecture of the 

network: instead of fully connected, cascading layers, deep networks uses convolution, pooling, 

inception, residuals, and regularizations to structure the network. Convolution, for instance, uses a 

few weights and biases that feed into several thousands output neurons. Hence, during 

backpropagation, even though the gradients may have become small, thousands of updates are 

summed up in one iteration. Regularizations, as another example, reduces the number of active 

connections. Similar to convolutions, this reduces the number of (active) parameters in the network 

making it more efficient to train and faster to learn. We look at these individual measure first in 

isolation and then put all together for a truly deep learning network.
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𝜑 𝑠 = ቊ
0.01 ∙ 𝑠, 𝑠 < 0

𝑠, 𝑠 ≥ 0
𝜑′ 𝑠 = ቊ

0.01, 𝑠 < 0
1, 𝑠 ≥ 0
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• Convolution

– So far, we considered layers that were fully connected with the 

previous layer. Each connection had its own weight, and neurons

hat either their own bias or a shared bias.

– In contrast, the visual perception of nature works with receptive

fields that extract features from a spatial neighborhood. The fields

work the same across the entire visual range. In the traditional

learning, hence, images were pre-processed using different

algorithms (Gaussian, Sobel, HOG). However, that also limited the ways a network can learn.

– Deep learning introduced a new layer, the convolutional layer. As depicted above, it connects 

only a small spatial neighborhood (here 5x5 input neurons) to a hidden neuron. This occurs for all 

locations in the matrix, creating an identically sized hidden layer (using padding at the 

boundaries). The output of the neuron is given as:

An interesting aspect is that the weights 𝑤𝑘,𝑙 and the bias 𝑏 are shared across the neurons of the 

new layer. In fact, the above formula correspond to the convolution approach we have seen in 

the previous chapter (hence the name). Only, here we task the network to learn the best 

convolution for the task at hand.

– In addition, we can define an arbitrary number of such filters within a single convolution layer. 

The output at the hidden neuron is then not only a single value, but a 𝑁-dimensional vector which 

can be used as the input for the next layer.
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𝑜𝑖,𝑗(𝒙) = 𝜑 𝑏 +෍

𝑘,𝑙
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– As the output of a convolution can be 𝑁-dimensional, so can the input be an 𝑀-dimensional 

vector. In fact, when processing images, we typically start with three channels. These three 

channels can then be mapped through convolution to an arbitrary number 𝑁 of output features (𝑁
is often called the depth of the output). The more general convolution functions is hence a 

mapping of an 𝑀-dimensional input vector 𝒙 to an 𝑁-dimensional output vector 𝒐. For a pixel 

location 𝑖, 𝑗 , we obtain:

For example, let us assume a 5x5 convolution on three (𝑀 = 3) input channels, and we want to 

convolute to 𝑁 = 20 output feature. The above formula contains shared biases 𝑏𝑛 for each output 

feature 1 ≤ 𝑛 ≤ 𝑁, and shared weights 𝑤𝑘,𝑙,𝑚,𝑛 for each of the 5x5 positions of the window, for 

each channel 1 ≤ 𝑚 ≤ 𝑀 and each output feature 1 ≤ 𝑛 ≤ 𝑁. Hence, we have 20 biases and 

5x5x3x20=1500 weights. The shared parameters are then used for all pixel locations in the 

image. If we started with a 256x256 input image with 3 channels, the output of the convolution is

now a 256x256x20 arrays. Interestingly, we do not need to map the color spaces as the network 

now can also learn the best linear combination of the channels.
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𝑜𝑖,𝑗,𝑛 𝒙 = 𝜑 𝑏𝑛 + ෍
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– The special case of a 1x1 convolution is often used to reduce the dimensionality of the input 

values. Assume we want to learn a 5x5 convolution with 20 output features and we have 20 input 

features: we would need to learn 5x5x20x20=10’000 weights and 20 biases (in total 10’020 

parameters). A 1x1 convolution can reduce the number of parameters to learn as follows:

• We can first apply a 1x1 convolution to generate 3 output features (from the 20 input features). 

We require 1x1x20x3=60 weights and 3 biases for this layer (63 parameters in total).

• We then feed the 3 features from the 1x1 convolution into a 5x5 convolution with 20 output 

features. We require 5x5x3x20=1’500 weights and 20 biases (1’520 parameters in total)

• Overall, the new network structure has 1’583 parameters compared to the 10’020 with the 

naïve, straightforward mapping.

– An interesting aspect of convolution is that its complexity (number of parameters) is independent 

of the input size of the network. However, computational complexity (forward and backward 

steps) depend on the number of input values. For instance, an input sizing for 256x256 is 4 times 

faster than for a 512x512 sizing. If images are the input, the typical approach is to scale them 

down to a reasonable size that can be fed into the network. We will see later techniques to deal 

with scale variance, e.g., recognizing objects at different scales.

– Strides: convolution uses a sliding window which is applied at each location to compute an 

output value. In addition, it is also possible to define how far apart two subsequent windows must 

lie. A stride of (2,2) means that only every other value in both dimensions is used as the starting 

location of the window. Thus, only half as many rows and columns are created in the output. 

Strides can be used to reduce the initial size of the network. A (2,2) stride will lead to 4 times less 

output neurons. For images, this allows to scale down the size and compute features at various 

scales.
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• Convolution layers are often followed by Pooling Layers. Pooling reduces the number of neurons 

and thus simplify the overall information. 

– A pooling layer is again a spatially organized structure. It 

summarizes the values of a window in the previous layer. For

example consider the picture on the right hand side: a 2x2 

max-pooling layer outputs the maximum value of the 2x2 window.

If we additionally use a stride of (2,2), this reduces the “feature

map” by 4 times. If the input consists of multiple channels, then

the pooling operator is applied at each channel individually. Here,

we do not apply an activation function:

– Next to max pooling, other summarization functions are possible. Typical examples include 

average pooling and 𝐿2-Norm pooling. 

– In deep learning, for instance image object recognition, pooling layers are an important control 

mechanism to reduce the spatial size of the representation and with that the number of 

parameters in the network model. This not only greatly reduces the amount of computation but 

also reduces the risk of overfitting. Recall that the best model is the simplest one among equally 

good methods. Also note that pooling only reduce spatial dimensions if the stride is larger than 1. 

It does, however, not reduce the number of features (depth). For that, a 1x1 convolution is 

required as described before.
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𝑜𝑖,𝑗,𝑛 𝒙 = max
𝑙,𝑘

𝑥𝑖+𝑘,𝑗+𝑙,𝑛
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• Regularization is an important element in deep learning to prevent overfitting to the training data. 

– As we discussed earlier, overfitting occurs if the model has too many

parameters and hence memorizes the data rather than generalizing

rules from it. The picture on the right hand shows a simple example

of what overfitting means. While the models on the right side may use

dozens of parameters, a deep neural network can have several

millions of parameters. Hence, how do we prevent the network

from simply memorizing the input to target mapping, and how can

we detect an overfitting problem.

– Overfitting is the lack of generalization and will become evident if we apply a trained to new data 

items that were not used during training. The validation set can be used to detect overfitting. 

Overfitting can be recognized as follows:

• Almost perfect accuracy for the training set at the end of the learning

• Significant lower accuracy for the validation set at the end of the learning

• The gap between training accuracy and validation accuracy is growing over the learning time

5.4.5 Deep Learning
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– We have several options for regularization

• Adjust the network structure and reduce the number of parameters—not really an option 

given that we want to learn complex tasks. The success of small networks was rather limited.

• Expand the training set—not always feasible, but we can modify and alter the existing data 

set. For instance, small rotations, varying brightness, adding noise, Gaussian filters, etc. With a 

few such modifications, we can create 10 to 100 times more training data without any additional 

labelling costs.

• Adjust the cost function to prefer simpler models. A simple method is to add a penalty to the 

cost functions for the use of large weights. Smaller weights (preferably 0) reduce the 

complexity of the model. This way we can balance overfitting to the training with a penalty for 

more complex models. Our cost function looks now as follows (L2 regularization):

With 𝕋 being the number of training samples and 𝜆 > 0 the regularization parameter. Note 

that we only add penalties for the weights but not for the biases. With this, we have a new 

update for 𝑤𝑖 during back propagation. Let ∆𝑖 be the update for 𝑤𝑖 without regularization, then:

Regularization adds a weight decay factor 1 −
𝜂𝜆

𝕋
for each weight, making them gradually 

smaller unless the gradient compensates enough to increase weights in the learning step. This 

was shown to greatly reduce the risk of overfitting.
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• The Dropout technique heuristically adjust the network structure during the learning phase. At 

any point in time during the learning phase, only parts of the network are active (with a random 

selection of nodes). This selection can change over time: 

– At each training step, nodes are dropped out with a probability of 1 − 𝑝. Over the learning 

time, different sets of active nodes learn the training example

– Feed forward: if a node is dropped out, its output value is set to 0. We keep weights and 

biases as the node may become active in a subsequent training step

– Back propagation: if a node is dropped out, it does no longer propagate changes. The 

weights of connection to/from such a node do not receive an update.

– The final model for prediction uses all nodes but compensates their weights with (1 − 𝑝). 

We can interpret the dropout technique as learning many different networks at the same time.

Finally, we combine all the individual networks into a single, bigger network. This helped with 

overfitting as each individual subset of the network has adapted differently to the training set. 

By “averaging” the networks for prediction, the impact of overfitting in one such sub-network is 

evened out the other sub-networks (which may have overfitted other aspects of the training set)

5.4.5 Deep Learning
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• Putting all together

– Let us start with a simpler example: the MNIST 

database (see next page) consists of 28x28 

images depicting hand written digits (0, 1, 2, …, 9)

– The conventional approach with neural network 

used fully connected hidden layers like in the 

picture on the top right. Its performance was ok 

but methods like SVM and k-NN classification 

proved to be better.

– The deep learning approach: use of convolution 

and pooling greatly improved performance. The 

picture on the bottom right show a possible 

architecture. The first 5x5 convolution produces 

20 features with a ReLU activation (here, no 

padding is applied hence the size of the network 

reduces to 24x24). A subsequent 2x2 max-pooling 

layer reduces the spatial dimension to 12x12 (with 

20 features). These 12x12x20=2880 elements are 

fully connected to 100 neurons. Finally, a softmax

layer reduces the 100 neurons to 10 classes. The 

output neuron with the highest value denotes the 

class for prediction.
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• The original black and white images from NIST 

were size normalized to fit in a 20x20 pixel box 

while preserving their aspect ratio. The 

resulting images contain grey levels as a result 

of anti-aliasing. The images were centered in a 

28x28 image by computing the center of mass 

of the pixels and moving the 20x20 image.

• The data set consists of 60’000 training items 

and 10’000 test items. The algorithms must 

learn a prediction method to map an image to 

one of the 10 classes 0, 1, 2, …, 9. The error 

rate is computed against the test data.

• The best method currently (a convolutional 

network) has an error rate of 0.23%. It is 

noteworthy to comment that some of the 

wrongly labelled images are also a challenge 

for humans to read correctly.

• List of further datasets for machine learning

– https://en.wikipedia.org/wiki/List_of_dataset

s_for_machine_learning_research
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• GoogleLeNet for image classification

– GoolgLeNet was the winner of the ILSVRC 2014 Classification Challenge. The contest consisted 

of 500k images with object labeling in 200 classes. 

– A key ingredient of their network architecture included the use of inception modules which are 

building blocks for the network as shown below:

• The inception module applies different operators on the output of a previous layer. In the 

example below, 1x1, 3x3, 5x5 convolutions and a 3x3 max pooling are all applied in parallel. 

Their output is then concatenated to produce the output features. The idea is that the network 

should learn itself, which of the operator works best for certain scenarios. 

• To control the complexity of the model, 1x1 convolutions (marked in yellow) are added to 

reduce the number of features. As previously discussed, this greatly helps to reduce the 

computational complexity of a 3x3 or 5x5 convolution.
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• The full architecture of GoogleLeNet for 

image classification

– Input: 224x224 RGB images

5.4.5 Deep Learning

Type size/stride output #params #ops

convolution 7×7/2 112×112×64 2.7K 34M

max pool 3×3/2 56×56×64

convolution 3×3/1 56×56×192 112K 360M

max pool 3×3/2 28×28×192

inception (3a) 28×28×256 159K 128M

inception (3b) 28×28×480 380K 304M

max pool 3×3/2 14×14×480

inception (4a) 14×14×512 364K 73M

inception (4b) 14×14×512 437K 88M

inception (4c) 14×14×512 463K 100M

inception (4d) 14×14×528 580K 119M

inception (4e) 14×14×832 840K 170M

max pool 3×3/2 7×7×832

inception (5a) 7×7×832 1072K 54M

inception (5b) 7×7×1024 1388K 71M

avg pool 7×7/1 1×1×1024

dropout -40% 1×1×1024

linear 1×1×1000 1000K 1M

softmax 1×1×1000
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• Tensorflow

– Tensorflow was developed by the Google Brain team, initially for Google internal use only. But 

meanwhile the framework is openly available under Apache 2.0 license and provides a simple to 

use Python programming front end to its core.

– The term tensor stands for an arbitrary dimensional array holding the data values (often float32). 

– Tensorflow has two elements

• Nodes are operators on input tensors and produce an output tensor

• Data edges combine nodes and connect outputs with inputs

– The Python front-end provides a simple way of building these

graphs based on constants, variables and a rich set of defined

operators. In the context of deep learning, most known methods

have been implemented into tensorflow allowing for an efficient

way of learning and applying a network

– Another aspect of tensorflow is the distributed execution of the graph

and the support for CUDA (GPU based operations) and parallel

execution of operations. The largest networks can span hundreds of

machines and can run against thousands of CUDA cores accelerating

computations of large graphs. All this is transparent to the end-user,

i.e., the user only must define the graph and tensorflow considers the

fastest way to compute the graph.

– For more information see: www.tensorflow.org

5.4.5 Deep Learning

http://www.tensorflow.org/
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• In this chapter, we only looked at deep learning for 

spatial data sets (images, videos). But there is a 

great number of further architecture extensions to 

support, for instance, natural language processing, 

memorization of facts and data, and so on.

• The Asimov Institute published in 2016 a map 

outlining the neural network zoo

http://www.asimovinstitute.org/neural-network-zoo/

5.4.5 Deep Learning
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