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6.1 Overview

* In the previous chapters, we have discussed various methods to extract features and to retrieve
relevant documents. We have distinguished low-level features (close to signal information) and
high-level features (close to perceptual and context related interpretation of the user).

« The pyramid on the right side is valid for all
media types including text, image, audio, and
video. We have seen so far:

Low-level features for text with set-of-word
and bag-of-word description

Low-level features for images, audio files,
and videos with multi/high dimensional
data summarizing perceptual aspect of the
raw signal information like color moments,
spectral bandwidth, or optical flow

High-level features that extract terms,
assign class memberships, or cluster data

Various methods to retrieve text related
gueries and method to use link information
to rank documents

» But we have not yet discussed how to

Search for high-level features
Search for multi/high dimensional features

Context

Abstract Concept

Related Concepts / Objects

Event / Activity Facet

Temporal Facet

Spatial Facet

Abstract

Object Facet

Specific / Named

Meta Data

Perceptual Features

Raw Signal Information

— Search for documents/objects if several features (and objects) are given

| high-level
features

low-level
features

—

Multimedia Retrieval — 2018

6.1 Overview

Page 6-2




High-level features are often straightforward:

— Classification methods assign a set of class memberships (with probabilities) to an object. These
memberships can be used either as attributes (with predicates to search for) or as new terms
which provide further annotations next to the descriptions being given

— Clustering assigns objects to groups (or several groups with probabilities). Cluster membership
can be used to reduce the number of objects during retrieval (only look in the same cluster). In
contrast to classification, the semantics of clusters are unknown (or may not even exist)

— Neural network can return simple predicate values (face? yes or no) or class membership (one
class or membership with probabilities). In both cases, we can transform the output into either an
attribute value (with predicates to search for) or extract new terms (with probabilities interpreted
as occurrences)

In other words, we can map many of the high-level features back into a “term” domain and use any
of the known (text) retrieval methods to search for relevant objects. A term like “cat” may match to
the result of a neural network that can detect cats in images. A term like “jazz” can match the
classification of a decision tree that categorizes music plays.

— For term based queries, this closes the semantic gap between the user and raw signal
information. How would you otherwise define what “jazz” means in the time or frequency domain
of an audio signal?

— If reference objects are used (e.g., more like this), the high-level features provide a set of
keywords to look for. If several objects are given, occurrences of features work similar to term
occurrences within queries for traditional retrieval models

On the other side, if we map high-level features to attributes, queries define predicates on these
attributes. For instance, hasFace captures whether a face is visible in an image or not. Any
database provides capabilities to search for objects that fulfill several predicates on their attributes.
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« Things become more difficult, however, if low-level features are taken into account or if different
feature types are combined. Examples:

| want to find black horses

| want a pop-song with even emphasis of bass and high pitches
| look for videos with fast red cars

| look for an action scene of my favorite actress

| look for slow love songs from my favorite band

* In the following, we provide methods to search through multi/high dimensional feature data and to
combine different type of features to express a complex search. We mostly assume the presence of
a reference object (or several objects) and search for similar objects. In the most complex case, this
may include predicates on attributes and key-words for text based search
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6.2 High-dimensional Feature Search

Many low-level features extract multi or high-dimensional feature vectors. In the following, we
consider how to search for similar objects given only these low-level features.

We already discussed the use of distance measures to define what similarity means. The figure
below visualize this definition with different distance measures. Often the definition of the low-level

feature includes the “right” distance measure to use. But we can select arbitrary measures that best
match our information need.
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« Normalization

— Many low-level features compose different aspects (like moments, covariances) or are the
combination of different low-level features (e.g. spectral bandwidth and spectral flux). In such
cases, it is required to normalize the value ranges of each dimension to avoid that a single
dimension (=aspect) dominates the similarity definition. Example:

* In dimension d,, all values are between 0 and 1.
 In dimension d,, all values are between 100 and 200.

- If we do not normalize the two dimensions, then differences in d, will always dominate the
distance measure. It is like d; (=other aspect) has no influence at all on what is similar.

— Gaussian normalization is a simple method to achieve satisfactory results. To this end, we need
to compute the mean value and variance of values along each dimension. We do not require the
“correct” values, hence, it is sufficient to sample a large enough data set and then keep the
values constant. It is also not difficult to use incremental methods to adjust mean values and
variances whenever the data set changes.

— The transformation from the original vector p; to its normalized version p; is as follows:

~ Pij — Uj
p.' e ————

L] O_]
with ¢; and o; being the mean value and variance in dimension j, respectively. As we do the

same for the vector q of the reference object and distances are based on differences in each
dimension, the mean values drop out of the formula and the variances remain as scaling factor.

1
6(q,p:) = sz |aj =l with — w; =—
- j
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— Alternatively, we can normalize with the differences of the extreme values for each dimension:

1
miax pi,j — miln pi,j

« Quadratic distance functions are expensive to calculate and, as we will see, difficult to build an index
for them.

— Note that the matrix A in the quadratic function must be positive semi-definite, i.e., xTAx > 0, to
be considered as a useful distance measure. From linear algebra, we know that such matrices
define a hyper ellipse and have real eigenvalues. Its eigenvectors define the main axis in the
original space which then can be rotated and scaled to obtain a normalized space. Due to the
properties of the Eigenvalue decomposition, the original quadratic function becomes a (squared)
Euclidean distance measure.

— Hence, after extraction of the low-level features, a simple rotation and scaling yields normalized
features. We only keep these feature vectors so that we can apply a more efficient comparison.

A A

main axis
(eigenvectors)

rotation
scaling

v
v

original space normalized space
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+ |f we want to obtain similarity values from the distances, we need a so-called correspondence
function h. Let g(q, p;) denote a similarity function between query vector g and a media vector p;.
The following properties must hold:

e g(q,p;) is in the range [0,1]

e g(q,p;) = 0 denotes total dissimilarity between query vector g and a media vector p;

e g(q,p;) = 1 denotes maximum similarity between query vector g and a media vector p;
— The correspondence function translates between distances and similarity values as follows

o(q,p;) = h(5(q,p))) 8(q,p;) = h"*(o(q,py)

It must fulfil the following constraints

e h(0) =1

e h(0) =0

e h'(x) <0 (h must be a decreasing function)

— The best method to build a correspondence function is to use the distance distribution ps. We
obtain the mapping by integrating the distribution function up to the given distance and subtract

that value from 1. This guarantees that all constraints hold true:
distribution pg

h(x) =1 —f ps(x)dx 08

0

Correspondence
function h

1 2
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6.2.1 Nearest Neighbor Search Problem

Searching for the most similar object translates to a search for the object with the smallest distance,
the so-called nearest neighbor. We note the reversed relationship between similarity values and

distances:

— large distances correspond to low similarity values

— small distances correspond to high similarity values

We can express similarity search as a nearest neighbor search:

Nearest Neighbor Problem:

* Given a vector g and a set P of vectors p; and a
distance function 6(q, p;)

* Find p; € P such that:
Vj,pj €EP:6(q,p;) <48(qp))

In the following, we consider a small number of index methods that were proposed to index multi-

and high-dimensional features and accelerate nearest neighbor search.

We further discuss a generic algorithm that can find the nearest neighbor in optimal time and space

given an index method and a distance measure.

Di
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6.2.2 Quadtree

* Finkel and Bentley described the Quadtree in 1974. Their goal was to develop an index structure in
main memory capable of storing and searching for 2-dimensional data points. As a consequence,
they have not considered an external storage format. Later on, the 2-dimensional Quadtree was
extended to more dimensions but did not succeed.

e Structure:

— The two dimensional space is divided with two orthogonal lines into four areas in the north-east
(NE), north-west (NW), south-east (SE), and south-west (SW). The common edge of the four
areas is the split point (intersection of the orthogonal lines). There were two method to define a
split center: a) use a newly inserted data point to split the regions, or b) split the region in the
center. The former had the advantage that the areas would naturally adapt to the distribution of
the data points in the space. The latter was more easy to implement.

— With each newly inserted data point, the Quadtree splits the region into four areas. After inserting
all data points, a hierarchical structure divides the space into ever smaller areas. The resulting
tree is not necessarily balanced but finding points is greatly accelerated over a brute-force linear
scan. It is possible to bulk load data points in such a way that a perfectly balanced Quadtree

results.
NW NE
insert all N
data points
SW SE
Point-Quadtree Hierarchy
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6.2.3 K-d-tree

« Bentley then developed the k-d-tree in 1975 refining the original idea of the Quadtree to index higher
dimensional spaces. Its extension, the k-d-B-tree was very popular given its additional balanced tree
characteristics and its design for secondary memory.

e Structure:

— The k-d-tree is a binary tree structure. Each node holds a point that divides space into two parts
along a selected dimension. Traversing the tree, the dimensions are alternated such that nodes
with the same depth level in the tree always use the same dimension to split the space.

— Newly inserted data points follow the unambiguous path to a leaf node. This leaf node is then
split into two new sub-regions using the data point and the dimension at this depth level. As with
the Quadtree, the k-d-tree usually leads to an unbalanced tree. Again, it is possible to bulk load
data points in such a way that a perfectly balanced k-d-tree results.

— Variants:
« Different splitting strategies were proposed (e.g., split in the middle, split at an arbitrary point)

« The k-d-B-tree was designed for secondary storage and improved insertion to obtain a
balanced tree for the representation on secondary storage.

z N
1 ANV
3 /\
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6.2.4 Gridfile

* Nievergelt and Hinterberger (ETH Zurich) developed in 1981/84 the Gridfile, a structure that was
later extended with space-filling curves and found its way into many relational database extension to
capture geo-information.

e Structure:

— The data space is divided by a gridlines along each dimension. The resulting cells are numbered
and indexed in a directory. Each directory entry points to a disk page that holds the data points of
the corresponding cell. To save storage, several cells can share the same disk page. If a cell
contains more points that fit into a disk page, a new gridline is added and a local re-organization
of the cells and the directory become necessary.

— Inserting and removal of data points is straightforward with the exception of over- and underflow
of disk pages. Optimized bulk loading strategies can minimize the directory as well as the number
of disk pages.

— Note that the disk storage consumption does grow linearly with the number of data points while
the directory grows super linearly (but not too fast). The grid acts like a quantization or hashing
method for data points allowing the Gridfile to find data points with exactly one disk page load.

[

N

w
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6.2.5 Voronoi Diagram

« Given a set of points, a Voronoi diagram partitions the space in such a way that each region holds
exactly the sub-space that is closest to the same given data point. In other words, each region
represents the pre-computed results of all nearest neighbor searches in the space.

e Structure:

— Instead of storing the data points, we compute the Voronoi diagram and index the regions. To
identify the nearest neighbor for a given query point, we identify the region it falls into and return
the corresponding data points as its nearest neighbor. Voronoi diagrams can be computed for
different distance metrics (not just Euclidean as in the picture below).

— There are two fundamental challenges: computing the Voronoi diagram (especially in higher
dimensional spaces) and storing the cells in such a way that we can quickly identify the
containing cell of a data point. Consider the example below: some regions have six and more
lines that define their shape. Storage consumption is known to grow exponentially with the
dimensionality of the data points.

— To reduce storage costs, we can approximate a Voronoi cell with its minimal bounding rectangle.
Instead of a single region, we may have to look at several regions to identify the closest point.

Voronoi Cell: all points in the cell
are closest to blue center point
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6.2.6 R-tree and variants

« Guttman described the R-tree in 1984 as an index structure for 2-dimensional data points. It was
designed as a balanced tree with all leaves at the same level. In later years, numerous extensions
have further optimized the structure and adapted it for higher dimensions.

e Structure:
— The R-tree consist of two node types:

« The leaf nodes hold the data points at the bottom of the tree. They are described by minimal
bounding regions (MBR). The original R-tree used rectangles but other forms are possible.

 The inner nodes hold a set of inner nodes or leaf nodes at higher levels of the tree. Again, a
minimal bounding region encompasses the ones of all child nodes.

— Insertion of a point follows the typical algorithm for balanced trees: a path is identified from the
root to a leaf node (point must be contained in MBRs of nodes along the path). The point is
inserted into the leaf node and, if the node, overflows, it is split and the two new leaf nodes are
added to the parent node. The split may propagate all the way up leading to a new root.

- * 1 O [ R-Tree
[ ] ° .
[ ]

— o »
) [ ]
b C ° i I:' I:' I:' I:' I:' . .
Iy [ ]
| N e
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— Splitting nodes:
* Leaf nodes are straight forward: the data points are divided along a dimensions into two parts
(select the median value of points along this dimension). The split guarantees that the two new

leaf nodes do not overlap.

Option 1

Option 2

— Splitting an inner node is more difficult: the children are now minimum bounding regions which
we may not separate perfectly into two halves. In bad cases, the minimum bounding regions of

the two new inner nodes overlap.

good case

The minimum
bounding

regions are

overlapping

bad case

One region is
completely
contained

within the other
region
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— Overlap is a problem: when searching for data points, we must follow several paths to find the
point or ensure it does not exist. When inserting new points and if the data point falls into the
overlap of regions, we must select a ‘best’ path. In bad cases, the overlap continues to grow
(across leaf nodes) even if no new splitting occurs.

1 1
New
point to
° insert o

Which path to follow? good case: follow blue path bad case: follow green path

— R-tree Extensions: over the years, numerous extensions and optimizations for R-trees were
published. Key aspects of optimizations include:

Shapes of minimum bounding regions, i.e., rectangles, spheres, combinations of shapes
Splitting: reduce overlaps of leaf nodes, re-insert points, rebuild tree

Size of nodes: increase page size if split is not beneficial

Metric Tree: no need for dimensional data but only requires a metric between objects

Examples: R+-Tree (1987), R*-Tree (1990), P-Tree (1990), TV-Tree (1994), vp-Tree (1994),
GIST (1995), X-Tree (1996), SS-Tree (1996), SS+-Tree (1997), SR-Tree (1997),

M-Tree (1997), Pyramid-Tree (1998), DABS-Tree (2000), P-Sphere Tree (2000),

...and many more

— So what is so difficult about high-dimensional spaces?
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6.2.7 Nearest Neighbor Search Algorithm

« Hjaltson and Samet described a generic, optimal search algorithm to find the nearest neighbor in
hierarchical structures. Optimal means that the number of visited nodes is minimal to prove
correctness of the found nearest neighbor (cannot be done with less visits)

« The algorithm uses a priority queues for nodes and points. The priority corresponds to the distance
of the query point to the data point or to the minimal bounding region. The queue is ordered by
increasing distances. The algorithm works as follows for a given query object g

1. |Initialization: the root node is added to the queue with the distance of its MBR to g
2. As long as the queue is not empty, fetch the top element of the queue -2 p

a) If p is a data object, then p is the nearest neighbor to g

b) If p is a leaf node, insert all contained data points with their distances to g

c) If pis an inner node, insert all its child nodes with their distances to q

* Note that the algorithm only requires a distance measure between objects and between an object
and a node (e.g., the minimal distance of a point to a rectangle, if the node is represented by an
MBR of the form of a rectangle).

» Proof of correctness: The priority queue is organized by increasing distances. Due to the
construction of nodes with minimum bounding regions, the children (nodes, objects) of a node must
have equal or larger distances to the query object than their parent node. If a data object is at the
top of the queue, then all nodes not yet visited must have a larger distance to the query object and
recursively all their (grand-) children nodes and objects must lie farther away then the object at the
top of the queue.
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» Proof of optimality: assume we know the nearest neighbor to the query object q:
— The circle around g through this nearest neighbor is the so-called

Nearest Neighbor Sphere (NN-Sphere).
— To proof correctness, all nodes that intersect with the sphere (i.e., e, °
lie closer to g than the nearest neighbor) must be considered by o "
an algorithm as they may include a better answer. In the example
on the right, the red rectangle must be considered but the blue circle .ﬁE

Is not needed to proof correctness. This set of nodes is also the
minimal set of nodes that need to be checked.

— The algorithm visits nodes in increasing order of their distance to g. If finally an object is at the
top of the queue, this is the nearest neighbor. Only nodes with a smaller distance to g than the
nearest neighbor were visited. Nodes with larger distances may be in the queue but not visited
(they were added by their parent node).

« The algorithm works for any hierarchical structure and visits only (leaf) nodes that are required to
prove correctness of the result. It is a generic implementation that only requires a distance
measures but does not make any assumption about the internal structure except for hierarchy and
that nodes encompass all their (grand-) children (which means that minimal distance to a node is
smaller or equal to the minimal distance of any its child nodes and objects)

« Overlap of leaf nodes (as discussed in the R-tree) lead to a larger number of visited nodes in
general. This is because query objects that lie in the overlap area of leaf nodes must always visit all
these leaf nodes.
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6.3 Curse of High Dimensionality

« While the methods for indexing multi-dimensional spaces work reasonably well for 2 to 5
dimensional spaces, it was observed that they quickly degrade as dimensionality increases. One of
the common mistake made was the assumption that high-dimensional spaces just behave the same
as low-dimensional space. However, our minds have difficulties to ‘imagine’ how a high-dimensional
space behaves.

* In the following, we discuss the curse of high dimensionality. We want to understand why it is much
more difficult to index high-dimensional spaces. We first consider a few peculiarities of high-
dimensional spaces and then develop of mathematical understanding of what happens if we search
for nearest neighbors in higher dimensions.

« Assumptions: To simplify the mathematical considerations, we assume a closed data space of the
shape of a hyper cube Q = [0,1]¢. We further assume independent dimensions and uniform
distributions along the dimensions (otherwise eliminate them with dimensionality reduction)

- Observation: Given Q = [0,1]¢, the probability that a data point lies inside a subspace is given by
the volume of that subspace. The total volume of the space is 1 regardless of dimensionality.
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6.3.1 Peculiarity 1. Bad intuition for high-dimensional spaces

* Given
— data space: Q = [0,1]¢
— center of Q: ¢ =10.5,...,0.5]

— apointp =10.5,...,0.5]
— circle around p with radius 0.7

* In a 2-dimensional space (see figure), the
circle covers most of the data space. It also
follows that the center ¢ of the data space lies
inside this circle. In other words, circles with a
radius of 0.7 are large and cover most of the
data space Q if their center lies within (.

* In higher dimensions, this is not the case:
— Distance between p and c is § = 0.2Vd
— With d > 12, the distance is § > 0.7 and

the center c is no longer inside the circle

In very high-dimensional spaces, the circle
still touches all sides opposite of p but it
barely covers any space (volume goesto O
with growing d)
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6.3.2 Peculiarity 2: Partitioning does not make sense

Given
— data space: Q = [0,1]¢
— a limited number N of data points, e.g., N = 10°

In a 2-dimensional space, we can partition the data space by continuously splitting it along each
axis into two halves (see gridfile, k-d-tree). The number of partitions doubles with each split, and
we obtain 22 = 4 partitions if all axes are split once.

In higher dimensions, we still can split the data space into halves along an axis, but we can no
longer split along each axis as the number of partitions grows exponentially with dimensionality.
Consider the following table. Let d be the number of dimensions, N be the number of data points
(e.g., N = 10°). Then the number of cells M grows exponentially; if we split each dimension
exactly once, then M = 27d. Finally, m = N/M is the expected number of points per cell.

dimensionality [d] # cells [M = 2/d] # points per cell [m = N/M]

210 = 1024 976'563
50 250 =1.12-10%® 10° 89-1077
100 2100 — 1 27.103° 10° 7.9 - 10722

In higher dimensions, most of the cells are empty as the number of cells by far exceed the
number of data points. The volumes of the cells becomes so small that it is even not likely that
two points share the same cell (unless they are features from two extremely similar objects).
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6.3.3 Peculiarity 3: Where are all the data points?

Given
— data space: Q = [0,1]¢
— A hyper cube with side length s = 0.95

Q=1[0,1]¢

Consider the right hand figure: Where are the data
points more likely to be found? In the blue hyper cube
with side length s = 0.95 or in the red area of Q that is
not covered by the hyper cube?

In a 2-dimensional space, it is obvious that most points
must fall into the blue area. Its volume is s = 0.90 and 5
thus 90% of the points are contained by the blue area.

In a high dimensional space, most of the points lie

in the read area! The volume of the blue hyper cube is s¢

and with s = 0.95 this volume is shrinking exponentially to 0 as dimensionality grows:

— with d = 10, still 60% of the points lie in the blue hyper cube and 40% are in the red area
— with d = 50, only 8% of the points lie in the blue hyper cube and 92% are in the red area
— with d = 100, only 1% of the points lie in the blue hyper cube and 99% are in the red area

In other words, in higher dimensions, data points lie close to the edge of the data space. In at
least one dimension, the value is either very close to 0 or very close to 1.
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6.3.4 Peculiarity 4. The nearest neighbor is far away

« Given

data space: Q = [0,1]¢

a limited number N of data points,
e.g., N =10°

center of Q: ¢ =[0.5,...,0.5]
circle around ¢ with radius 0.5

* In a 2-dimensional space, we expect that
the nearest neighbor is close to the query
point (i.e., distances are small). The circle
around ¢ would surely contain the NN of c.

« This is no longer true for high dimensional space!
The volume of the d-dimensional sphere shrinks
towards 0 with increasing d.

— With d = 10, the volume is 0.002, i.e., 0.2% of the are inside the sphere

0.5

— With d = 100, the volume is only 1.9*10-79, i.e., next to ¢ with minimal probability no other point

lies within the sphere.

In higher dimensions, the circle around ¢ must be much larger to contain the nearest neighbor. In

other words, the distance between ¢ and its NN have to be larger than 0.5.

« So, how far away is the nearest neighbor in higher dimensional spaces?
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6.3.5 Cost Model for NN-Search

* In the following, we estimate the costs for NN-searches in hierarchical structures. To this end, we
first have to determine the expected distance between query point and its nearest neighbor. Then
we estimate how many leaf nodes, on average, are retrieved during the search.

— Since we are using the optimal NN- search algorithm, we can easily determine the leaf nodes to
be read: all the nodes that intersect with the NN-sphere around the query point.

« Expected NN-distance

— The expected NN-distance is given as the average distance between a query point and its
nearest neighbor

— Basic idea:

« For a given point in the data space and a radius r, determine the probability that the NN lies
within the sphere around the point with radius r

« With these probabilities, compute the expected value for r to obtain the expected NN-distance
for the given point

« Compute the mean expected NN-distance over all data points in the data space
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— The expected NN-distance depends on the metric and the dimensionality of the space. The
graphs below show the NN-distance for the metrics L,, L, und L,

Manhattan distance (L1)

350

300

250

200

150

100

50

Expected NN-distance

0 T T
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Number of dimensions (d)

Expected NN-distance
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04

0.2

Euclidean distance (L2)

Expected NN-distance

Maximum distance (L-infinity)

200 400 600 800
Number of dimensions (d)

200 400 600 800
Number of dimensions (d)

1000

1000
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 Number of leaf nodes to visit (simple consideration):

— Assume the tree uses rectangular MBRs. During splits, d' < d axes were split. Further we
assume that we always split in the middle. Hence, the MBRs of leaf nodes have the shape

depicted in the figure below.

— Let 4, be the maximum distance between a point in the space and a leaf node. Given the

shape of the MBR, the distance is given by: L., = 0.5 -Vd’

— If we compare this distance with the expected distance, we obtain the following surprising

results (see table):

» with d = 40, 1,,,,, IS about the expected NN-distance, with d = 100, ,,,,, IS much smaller
than the expected NN-distance. This is because of the limited number of splits we can

perform (ensuring we have non-empty leaves)

* with [,,,,, < NN — dist, each query points lies closer to
all leaf nodes than to its NN. Hence, the MBR of each
leaf intersects with the NN-sphere

« thus, an optimal NN-search must visit all leaves to find
the nearest neighbor to any point in the data space

— Why do we use a hierarchical structure if we need to
read all data anyway?

n-u

1.87 1.80
100 10° 15 1.94 3.00

Q = [0,1]¢

lmax

\

leaf node
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« Simple cost model —when is it better to simply brute-force NN-search

With spinning disks, access to leaf nodes results in a random access pattern on the disk which
is much slower than a sequential read pattern. To be efficient, we do not want to read more
than 10% of the leaf nodes; otherwise, a sequential scan through all data is faster. With SSD,
the threshold can be higher (no penalty on random access). Still, to be faster (and justify the
use of a complex structure), we want to read significantly smaller amounts of leaf nodes.

The figure on the right shows the percentage of leaf nodes that are required to determine the
nearest neighbor. The graphs “d’=10" and “d’=18" show the percentage of leaf nodes for
rectangular MBRs with splitting 10 and 18 dimensions, respectively. The graph “conservative”
Is an optimized structure with leaf nodes that contain only two points (which are nearest

neighbor to each other). Such a structure
has the minimal size for MBR, yet it still
degenerates with dimensions above 100

To be fast, the percentage of leaf
nodes to be read should be well below
10%. This limits hierarchical methods to
less than about 10 dimensions.

Note that real data often has correlations
between dimensions. In such cases, the
limits apply to the “true” dimensionality of
the underlying data. As a result, it is
possible that hierarchical methods work in
higher dimensions. But in such cases, it
would be better to apply a dimensionality
reduction to eliminate correlations.

1.2

Prob. of visiting block

Rectangular MBR

= d=10

- d=18 ]
-+ cohservative

0 50 100 150

Number of dimensions (d)
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6.3.6 The Vector Approximation File (VA-File)

« The Vector Approximation File (VA-File) was developed in 1997 at ETH Zurich. Its aim was to
accelerate the sequential scan through the data set through quantization. Typical speed-ups of
factor 4-8 over a brute-force method made it the fastest NN-search algorithm.

« The VA-File reverses the curse of high dimensionality to benefit from it. At its core and as shown
with the figure below, it quantizes the vectors with lower precisions (e.g., using 4-8 bits instead of
32/64 bits per dimension). The quantization error is rather small:

Consider a high dimensional space (d>50) and a data space with values in Q = [0,1]¢
If we use 8 bits per dimension, values are

quantized to the closest 1/256 steps leading vectors
to an average error of 1/512 1 0.6 0.8
Quantization error is rather small: the volume y data space 2 0.0 1.0
of the area with the same quantized I 3 1.0 0.0
representation shrinks with (1/256)¢ and 4| 0304
. . 0P P2 5 0.5 0.1
thus quickly to zero as dimensionality d 11 '< 5 0.
grows. With other words: the area becomes o P \\ 6 03 0.6
so small that quantization is unlikely to map 10 Pe L
two points to the same representation. o, approximations
Distance errors are proportional to the 01 1011
quantization error and grow at the same 22 ;g
rate with dimensionality as the expected 00 op
i > P3 R 0101
NN-distance. A
00 01 10 1.1 X 1000
01 10
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* The VA-File can operate in two modes

— Use only approximations to produce "a good enough" answer for the nearest neighbor search.
Error rates are small and if used on real features it cannot be noticed due to the fuzzy definition
of similarity. Note that features themselves are an approximation of the signal information and
are sensitive to small changes (e.g., illumination, sampling rate). So we have no “absolute” true
position of an object in the features space but more a region to which the object is mapped

— Produce correct results with a 2-phase filtering approach.

Phase 1: * lbnd; < 6; < ubnd,; defines the bounds for a distance between a query point (query is not quantized)
and the rectangular region spanned by the quantized approximation of p;

¢ If lbnd; > ubnd,, it follows that §; = lbnd; > ubnd; = §; and thus §; > §; and data point p; cannot be
the nearest neighbor as data point p; must lie closer to the query point

» The above filtering is very effective due to the small ranges [lbnd;, ubnd;]. Typical results are that 99%
of points can be excluded just with this filtering step

Phase 2:

To identify the correct NN, we compute true distances between the query point and the candidates left

from Phase 1. We do this in increasing order of their lower bounds, i.e., the point with the smallest

lower bound is the most likely candidate to be the nearest neighbor

+ We can stop as soon as we have found a true distance §; such that for all remaining lower bounds
Ibnd; it holds: §; < lbnd; < §;

» This filtering step is effective and only 0.001% of the points are considered for distance computation

« The key benefit of the VA-File is to reduce the amount of data to be read. Given the quantization
scheme, it is possible to accelerate distance computations with precomputed (squared) differences
along all dimensions for a current query point. This provides a significant acceleration for in-memory
search (no multiplications for Euclidean distances required, only additions)

« Given the sequential structure, it is also much simpler to evaluate complex queries over several
features if the feature files are sorted in the same way.
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6.4 Complex Similarity Search

* In the following, we consider three extensions to the similarity search
— queries with multiple reference objects
— queries using different features (e.g., text and color)
— queries using features and predicates (e.g., large image)
« Example queries:
— All audio files similar to song B and song C
— All images that are similar to image A according to color and shape
— All images similar to image D that contain the terms ,dolphin® and ,wale”
— All video clips similar to clip E which are for free (price=0) and contain a ,car®

« We first discuss the evaluation schemes to compute a score given a complex queries. Then, we
look into methods that help to evaluate such queries. While multi-reference queries are
straightforward, multi-features and predicate search require additional methods.
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6.4.1 Multi-reference Queries

- A multi-reference query takes two or more reference object 1 reference object K
reference objects for the search. Let q4, ..., gx
be the features of the K reference objects

di1 | ... | 91,d dk1 | ... | dk.d
* Note: we consider only a single feature =Q= _ =§>= | __ % _ g):
* The right hand diagram shows the evaluation

Pi1 Pida Pi1\ - |/Pid

scheme from the top (feature vectors) to the
bottom (score) for the i-th object with feature
representation p;

— The top part (blue boxes) evaluates a
distance between the features p; of the i-th
object and q;, of each reference object. We L L
use the distance measure L as defined for
the feature.

— The bottom part combines distances with a
distance combination function D and
applies a correspondence function h to map
distance to scores. Examples for distance
combining functions are: h

* Dona: 5(1’1’) = maxy L(p;, qx)
Doy ¢ 5(1’1’) = mkinL(pir qx)

1
° Davg: 5(py) = EZRL(pi» qx)

[0,1]
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* Interpretation: assume we have two reference objects in a

dm1 ,
2-dimensional feature space: 0§ © oo Lo Dana
— Each reference object spans a neighborhood in the 50828 §8 o 3
feature space that contain similar objects o o 6 g oo 80 Bofe,
— Depending on the query semantics, the neighborhoods o 8 8)‘8 e °
are merged in different ways: e o8 oot o
« AND-semantics: all reference objects must be matched dim 2
as good as possible, i.e., the maximum distance to a
reference object must be as small as possible. This Tl A
corresponds to the intersection of the neighborhoods 0§ © o0 o Dor
around the reference objects "0 g g o Bosoes SR
- OR-semantics: object must be close to at least one °° §°°°8 °§ § X: : ec. : 538: .
reference object, i.e., the minimum distance to a o 8 %00 g0 K 0%, ’
reference object must be as small as possible. This e e SRt
corresponds to the union of the neighborhoods around - - s
the reference objects
« AVERAGE-semantics: all reference objects matters
and we need a good compromise, i.e., the sum of dim1 , D
distances to reference objects must be as small as B AP °° 2y
possible. This corresponds to an elliptical area with the "8 go °°§ai:°°82 oo o
two reference objects being its focal points s ST 88 3282 >
— Other semantics and definitions for a distance combining LBt B S e
function are possible e ot oees® e
dir; 2
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« Evaluation: Ciaccia (1998) demonstrated how to evaluate queries with several reference objects

In order to be applicable, the distance combining function must be monotonic

x>x"and y>y": D(x,y) > D(x',y")

This is not a hard constraint but rather natural: if the distance x and y are larger than their
counterparts x" and y’, then the combined distance for x and y also must be larger than the one
of x" and y'. All the functions we considered before fulfill this constraint.

The evaluation of multi-reference objects is an extension of the underlying search algorithm (e.g.,
the optimal NN-search algorithm or the brute-force scanning with the VA-File): whenever a
distance between query and data point, a lower/upper bound on such a distance, or distances to
minimum bounding regions is required, then replace that function with

« compute distances/bounds to each reference object
« combining the distances/bounds with the distance combining function
« continue this value in the algorithm

In other words, only the function to compute distances changes but the algorithm stays the same.
It is straightforward to write such a generic NN-search algorithm for all the methods we
considered so far.

The proof of correctness is straightforward based on the constraint above. Monotonicity ensures
that, for instance, bounds are still under/over estimating real distances and that the stop criteria
in the NN-search of Hjaltson an Samet still holds true.

Experience shows that the number of reference objects does have a small impact (next to
additional computational efforts for distances) on search performance: the more reference
objects we select, the more data points/leaves need to be visited to find the nearest neighbor
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6.4.2 Multi-feature Queries

« A multi-feature query asses similarity values
with two or more features. Let gV, ..., g™ be
the M features of the reference object

* The right hand diagram shows the evaluation
scheme from the top (feature vectors) to the
bottom (score) for the i-th object with feature

representations p'", ..., p™”

— The top part (blue boxes) evaluates a

distance between pl@ and gV for each of
the feature. We use the distance measure
LU) as defined for the feature j.

— The bottom part combines normalized

distances (~-function) with a distance
combination function D and applies a

correspondence function h to map distance
to scores. Examples for distance combining

functions are:

* Dyna: 5(1’1’) = mjax L/G)(ng), q(j))
e« Doy : 6(py) = mjinL@(p?),qU))

1w iy () (i
* Dayg: 5(p;) = MZ} L(])(pgj): q(J))

feature 1

1
s

(1)
da,

feature M

M
%

/{9(1)
. | Pia,

&

(M)
da,,

LD

(M)
2.

/A(M)
i,dy

(M)
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* Interpretation: assume we have two features

— Each feature has its own space and may have different
dimensionality. Unlike with multi-reference queries, we
cannot visualize the combined space. Instead, the diagrams
on the right show the data objects in a two dimensional
diagram with each dimension corresponding to the distance
between data objects and query object along a feature

— Depending on query semantics, the shown areas contain the

best matches:

 AND-semantics: distances for both features must be small,
I.e., the maximum distance over features must be as small
as possible. This is the area close to the left lower corner

 OR-semantics: distances for at least one feature must be
small, i.e., the minimum distance over features must be as
small as possible. This corresponds to union of the areas
that lie close to an axis.

« AVERAGE-semantics: distances of both features matter
and contribute to the result, i.e., the sum of distances for
the features must be as small as possible. This is the
triangle shaped area in the left lower corner.

— Other semantics and definitions for a distance combining
function are possible
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« Evaluation:
— Before we can apply a distance combining function, we need to normalize the distances:

* Note that this was not necessary with multi-reference queries as the sub-queries compute
distance in the same space and hence already yield comparable distances

« With multi-feature queries and if the features come from different spaces, distances can vary
greatly from feature to feature. If we do not apply a normalization function, a distance
combining function like D, is likely to prefer one feature over others, if that one feature yields
smaller distances.

« Normalization includes Gaussian normalization (estimate mean and standard variance through
sampling per feature) or a min-max normalization. Other normalization schemes that make
distances comparable are feasible as well

— For index structures with sequential organization, we can order data points in each feature file in
the same order. As we scan through all feature files in parallel, we can apply the same method
as discussed for multi-reference queries

— If at least one feature is not organized sequentially, we need to somehow combine the results of
sub-queries over a single feature. Consider the search for text with an inverted file and the
search for color with an R-tree.

« OR-semantics: if distances are made comparable, first compute all queries for each feature
and then take the object with the smallest distance for any of the features

« This approach is not possible for AND-semantics and AVERAGE-semantics. In such cases, we
need to scan through the results of all sub-queries until we find a data objects for which we can
prove that it is better than all other objects. Fagin has defined in 1996 a generic algorithm that
can handle queries with arbitrary distance combining functions as long as monotonicity applies.
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* Fagin (1996): given a monotonic distance combining function D fulfilling

x>x"and y>y': D(x,y) > D(x',y")

— The algorithm operates in three phases:

« 1st Phase (sorted access): each sub-query produces a stream of data objects ordered by
increasing distances. We read from each stream a number of elements and all the objects
retrieved form the set A. Let L. be the set of objects that was returned for all sub-queries. As
soon as L is non-empty, the first phase ends (for k-NN search we stop if I. contains k objects).

« 2nd Phase (random access): Determine for each object in A the remaining unknown
distances for all sub-queries

« 3rd Phase (computation): Compute overall distances with the distance combining function D
for all objects in A and return the object with the smallest overall distance

color shape texture
a, 04 a, 0.6 d, 0.1 _
b 05 107 5. 0.2 1st Phase: read the first three
> P entries of each stream; b was
¢,0.7 b, 0.8 e, 0.7 returned by all streams
d, 0.9 z,0.9 z, 0.8 L = {b}, A = {a, b,c,d, e}
2nd Phase: determine missing 3rd Phase: compute overall distances
distances of objects in A. and determine the best object from A.
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— Proof of correctness: as soon as we have found an object o in the result stream for all sub-
queries (L. = {0}), we have a first overall distance using the distance combining function.

» For objects in A, we do not know yet in Phase 1 whether they are better or worse than the
object in LL; hence, we compute all remaining distances for objects in A and return the best

 For all objects not in A, we know that their distances must be larger for all features than for the
object 0. Due to the monotonicity constraint for distance combining function, we also know that
their overall distance must be larger than the one of 0. Hence, we can safely exclude them
from further calculations.

* QuickCombine from Giintzer (2000) is an extension of Fagin’s algorithm which reduces the number
of computations in the 2" and 3" phase.

— For objects in A (and not in L), we need to evaluate all missing distances and apply the distance
combining function. Assume a € A has no distance for feature j. Instead of computing the real
distance, we can first use the largest distance for feature j as seen in its stream. This is a lower
bound on the real distance for feature j (a follows later in the stream and must have a larger
distance as the stream is ordered by increasing distances).

— Applying the monotonicity constraint for distance combining function, we can compute a lower
bound on the real overall distance. If this distance is larger then the currently best overall
distance, we can dismiss the object a. If the distance is smaller, then a remains a candidate and
we need to compute real distances for each feature

— QuickCombine further optimizes the order to read from the streams to increase the pruning of
candidates in phase 2 and 3. Evaluations have shown a speed-up of a factor of 100

« The algorithms work sufficiently well under “good” conditions. It is, however, possible to construct
examples where large fractions of objects are in A with little options to prune. The algorithm
performs sub-linearly in the number of objects, but easily can take several minutes to compute.
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6.4.3 Queries with Predicates

» Queries with predicates filter the results and let only objects pass
through that fulfill the predicate. In other words, if the predicate
evaluates to false, the score is set 0, otherwise the score is
passed on as is

« There are two evaluation schemes depending on how selective the
predicate is

— If the majority of the objects passes the predicate test, the best
approach is to evaluate predicates as a last step (see right
upper image). The scores are adjusted based on the outcome
of the predicate test. Since the predicate is not selective, we
may have to go through a few objects only to find the best
match that fulfills the predicate

— If a minority of the objects passes the predicate test, we better
first evaluate the set of objects that fulfill the predicate (e.g.,
SQL gquery against the meta data of objects). Then we compute
similarity scores for each of these objects. Since the predicate
IS not selective, applying the test at the end is not effective as
we have to produce hundreds (or even thousands) of results
before a first object fulfills the predicate

« We can also consider Boolean retrieval over terms as a special
form of a predicate

unselective predicate

selective predicate

s

[0,1]

!
)
Q

[0,1]
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6.4.4 Weighting Features and Reference Objects

« When composing a complex query, we want to weight individual features and reference objects
differently. However, weighting is only straightforward with average distance combining function but
not with maximum/minimum:

— Consider two features with normalized distances with a mean value of 10 and a standard
deviation of 1. That is, almost all distances lie between 6 and 14.

— Let us now weigh feature 1 with 0.8 and feature 2 with 0.2. Distances of feature 1 now range
between 4.8 (6*0.8) and 11.2 (14*0.8), while distances of feature 2 range between 1.2 (6*0.2)
and 2.8 (14*0.2). What happens if we apply the maximum and minimum function?

— If we apply AND-semantics (maximum), feature 2 dominates the results. Since its distances are
mostly above 4.8 and distances for feature 1 seldom exceed 2.8, the score is in almost all cases
derived only from feature 2. It is as if feature 1 is not taken into account at all. However, our
weighting does prefer feature 1 but not to such an extend

— If we apply OR-semantics (minimum), feature 1 dominates the results. This is because distances
for feature 1 are rarely below 4.8 while the distance for feature 1 are mostly below 2.8. In this
case, feature 2 does not contribute much to the result, contrary to our intention to give it more
weight than feature 1.

« From these observations, we conclude that, in general, the weighted distance combining function
DY (x4, ..., xg) with weights w cannot be simply derived from its unweighted form with weighted input
distances:

D% (xq, ..., xg) # D(x1 - Wy, oo, Xg - Wg)
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« Fagin (1997) described a generic way how to solve the dilemma; his approach works for any
distance combining function that fulfills the monotonicity constraint.

— Fagin postulated that the weighted combining function D% (x4, ..., xx) must fulfill the monotonicity
constraint and, in addition, must be steady if distances or weights change (no “jumps”)

— Without loss of generality, distances are ordered by increasing value of their weights.
Furthermore, we add a sentinel weight wi,; = 0 to simplify the formula.

— Fagin was showing that the only weighted distance combining function that fulfills the above
criteria is given as follows:
K

D% (x4, ..., xg) = Z i (Wi —wipq)  D(xq, .r, x;)

i=1

Written out
D% (xy, ..., xg) = (Wy —wy) - D(x1) + 2+ (Wy —w3) - D(xq,%2) + -+ K - wg - D(xy, ..., Xg)

— Let us now apply it to our example from before with weights w = [0.8,0.2]
« AND: D} ,c(xq1,x5) = (0.8 —0.2) - max(x;) + 2 0.2 - max(xy,x,) = 0.6 - x; + 0.4 - max(xq, x,)
* OR: DY .. (x1,x3) = (0.8 —0.2) - min(x;) + 2 - 0.2 - min(x4,x3) = 0.6 - x; + 0.4 - min(xq, x;)
* AVG: DY, (x1,x;) = (0.8—10.2) - x; +2-0.2- 2222

— As we see, in all forms x; and x, can contribute to the overall result. With OR/AND semantics, x;
Is always taken into account, while x, only contributes if it is smaller/larger than x;.

=08-x1+0.2-x,
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