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Variability of a pattern - Dog
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Cute Dog Wallpaper
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Variability of a pattern - Digit 4

Bishop 2009
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Variability of measurement (noise)

B Bishop 2009
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Uncertainty in the model

. Bishop 2009
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Motivation
Why do we need probability theory??

Probability and Statistics
To model
m Variability of pattern itself
m Variability of measurement (noise)

m Uncertainty in our model
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Motivation
Why do we need probability theory??

Probability and Statistics

To model
m Variability of pattern itself
m Variability of measurement (noise)

m Uncertainty in our model

= A short repetition of probability theory in the context of pattern
recognition

m First Part: Theory — quick reference for you

m Second Part: Multivariate Gaussian as an example
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Discrete Random Variables

Random Variable X with possible Realisations x € {1,2,3,...}:
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Discrete Random Variables

Random Variable X with possible Realisations x € {1,2,3,...}:

Cumulative Distribution Function (cdf)

P[X < x] = F(x)
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Discrete Random Variables

Random Variable X with possible Realisations x € {1,2,3, ...

Cumulative Distribution Function (cdf)

P[X < x] = F(x)

Probability Mass Function

P[X = x] = Py
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Discrete Random Variables

Random Variable X with possible Realisations x € {1,2,3, ...

Cumulative Distribution Function (cdf)
P[X < x] = F(x)
Probability Mass Function
PIX = x] = P
Normalization and Positivity

Y B=1  B.z0
X
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Discrete Random Variables — Examples

Binomial — A coin flip

x €40,1}
Py = P[X =0] = p, P=PX=1=gq
pelf0.1], g=1-p
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Continuous Random Variables

Random Variable X with possible Realisations x € R:
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Continuous Random Variables

Random Variable X with possible Realisations x € R:

Cumulative Distribution function (cdf)

F(x) : P[X < x] = F(x)
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Continuous Random Variables

Random Variable X with possible Realisations x € R:

Cumulative Distribution function (cdf)

F(x) : P[X < x] = F(x)

Probability Density Function (pdf)

p(x) : Plx < X < x4+ dx] = p(x) dx = dF(x)
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Continuous Random Variables

Random Variable X with possible Realisations x € R:

Cumulative Distribution function (cdf)
F(x) : P[X < x] = F(x)
Probability Density Function (pdf)
p(x) : Plx < X < x4+ dx] = p(x) dx = dF(x)

Normalisation and Positivity

/oop<x>dx=1 p(x) > 0

—0o0
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Continuous Random Variables — Examples

Gaussian

X~N(u 0%, xeR
1 _(x—%)2

P = Jomoz®

Mean u, Variance o2
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Example: Gaussian
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Mean

m The mean is a measure for central tendency

Expected Value, Mean, Expectation

EIX] = ) xP E[X] =

UNIVERSITAT BASEL

/xp(x) dx
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Variance

m The variance is a measure for spread

Variance / Standard Deviation

VIX] = E[(X — E[X])’]

sd[X] = ox = V/V[X]
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13



Variance

m The variance is a measure for spread

Variance / Standard Deviation

VIX] = E[(X — E[X])’]

sd[X] = ox = v/ V[X]

Hint: V[X] = E[X?] — E[X]?
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Multivariate Case
Multiple Random Variables

Example

More than one Random Variable, e.g.
Length L and Weight W of an object
X =[Lw]"
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Multivariate Case
Multiple Random Variables

Example

More than one Random Variable, e.g.
Length L and Weight W of an object
X =[Lw]"

Joint Probability

p(x.y)
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Marginals and Conditionals

Marginalisation

PIX=x]=) PX=xY=y]

p(x) = /p(x. y) dy
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Marginals and Conditionals

Marginalisation

PIX=x]=) PX=xY=y]

p(x) = /p(x. y) dy

Conditional Probability

PX =x,Y =y]
PIY =yl

plx ) = )

PIX=x|Y =y]=
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PlY=y]>0
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Bayes' Rules

Use the factorization for the joint probability density / distribution:
p(x.y) = p(x|y) p(y)
p(x.y) = ply | x) p(x)
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Bayes' Rules

Use the factorization for the joint probability density / distribution:
p(x.y) = p(x|y) p(y)
p(x.y) = ply | x) p(x)

Pofiel P
Py = y’IDy
plx ) = P 0PL0)
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Bayes’' Rules

Use the factorization for the joint probability density / distribution:
p(x.y) = p(x|y) p(y)
p(x.y) = ply | x) p(x)

Pl
Py = y’IDy
plx ) = P 0PL0)
= P(coi|£>=—p(£|w‘)P(wf)
p(x)
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Bayes' Rules

Use the factorization for the joint probability density / distribution:

m Bayesian talk:
UNIVERSITAT BASEL

p(x,y) = p(x|y) p(y)
p(x,y) =p(y | x) p(x)

Pl
Py = y’IDy
plx ) = P 0PL0)
= P(coi|£>=—p(£|w‘)P(wf)
p(x)

“Prior adapted to data leads to posterior”
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Covariance and Independence

Covariance

Cov(X,Y) = E[(X — E[X]) (Y — E[Y])]
>(X) = E[(X — EX])(X — E[X])"]
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Covariance and Independence

Covariance

Cov(X,Y) = E[(X — E[X]) (Y — E[Y])]
>(X) = E[(X — EX])(X — E[X])"]

Independence

p(x,y) = p(x)p(y) <= X and Y are independent
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Covariance and Independence

Covariance

Cov(X,Y) = E[(X — E[X]) (Y — E[Y])]
>(X) = E[(X — EX])(X — E[X])"]

Independence
p(x,y) = p(x)p(y) <= X and Y are independent
Covariance # Independence

X and Y are independent, X L Y = Cov(X,Y) =0
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Multivariate Gaussian Distribution

m This distribution occurs very frequently
m Simple enough to demonstrate these concepts
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Multivariate Gaussian Distribution

m This distribution occurs very frequently
m Simple enough to demonstrate these concepts

Multivariate Gaussian Distribution

. <—§ (- @) = (7 ﬁ))

o 1
PO = T

Mean

Covariance Matrix (d x d, positive definite, symmetric)
| Determinant of

Number of dimensions

QHM‘R

X~ N(i %)
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2D Gaussian — Surface Plot

Die zweidimensionale Normalverteilung
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2D Gaussian — Contour Plot

332‘

(a)

m Points on a contour have equal probability density - equidensity lines

m Contours are ellipsoids

Figure: Bishop 2009
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2D Gaussian — Samples / Scatter

=5
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Equidensity lines are Ellipsoids

m The ellipsoids are determined by the quadratic form

(x—@) T (x- @)
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Equidensity lines are Ellipsoids

m The ellipsoids are determined by the quadratic form
x-m)' T (xR

m X is positive definite and symmetric = Ellipsoid

m Center at &
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Equidensity lines are Ellipsoids

m The ellipsoids are determined by the quadratic form

xX—@)' = (X - Q)

2 is positive definite and symmetric = Ellipsoid

Center at @

Eigenvectors and eigenvalues of ¥

Direction of semi-axes is determined by eigenvectors €

A; measures the variance along the corresponding eigendirection &;
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Moments of a Multivariate Gaussian Distribution

Mean

EXI=F  E[X]=ui
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Moments of a Multivariate Gaussian Distribution

Mean
EXI=F  E[X]=ui

Covariance

V[)_(] =X COV(X,‘,XJ') Z,‘j
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Moments of a Multivariate Gaussian Distribution

Mean
EXI=0  EXi]=u
Covariance
VIX|=Z  Cov(X;, X)) =%
Correlation
Cor(X;, X)) = pij = COVSZ'-XJ) - zzuz o, =
" 712 jj
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Correlation and Covariance

m Correlation measures strength of linear relations between variables
m It does not measure independence

m |t does not tell you anything about causal relations

m Correlation is normalized and dimensionless

Example

UNIVERSITAT BASEL
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Marginals

m Marginal: Randverteilung

m Removing unknown variables — “projection”

m p(x) = /p(x,y)dy
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Marginals

m Marginal: Randverteilung

m Removing unknown variables — “projection”

m p(x) = /p(x,y)dy

Marginal of a Gaussian
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Marginals

m Marginal: Randverteilung

m Removing unknown variables — “projection”

m p(x) = /p(x,y)dy
Marginal of a Gaussian

X ~ N (i, X)
v )_( — /:‘:a:| [zaa
X = _.a , = - , z =
|:Xb] s [Mb 2pa

P()_(a) = N()_(a | /ja. zaa)

UNIVERSITAT BASEL

zab
2pp

|
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Conditionals

m Conditional: Bedingte Verteilung

m Fixing a variable to a certain value — ‘slices”
p(x,y)
mp(x|y)=
1) p(y)

UNIVERSITAT BASEL

26



Conditionals

m Conditional: Bedingte Verteilung

m Fixing a variable to a certain value — ‘slices”
p(x,y)
B pXx|y)=
1) P(y)

Conditional of a Gaussian

x=[z] L‘?ﬂ [zz: =]

p(%a | Xp = Xp) = N (X | Bajpr Zajp)

"El

Kl
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Conditionals

m Conditional: Bedingte Verteilung

m Fixing a variable to a certain value — ‘slices”
p(x,y)
B pXx|y)=
1) P(y)

Conditional of a Gaussian

x=[z] L‘?ﬂ [zz: =]

p(%a | Xp = Xp) = N (X | Bajpr Zajp)

"El

Kl

/ja\b = [a+ zabzt;b1 ()_(b - ﬁb)
za\b = 2o — zabz;blzba
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Marginal and Conditional of a Gaussian

Ty

0.5

p(zaﬁzb)

p(xaley = 0.7)

0.5 g
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Affine Transformations

m Gaussians are stable under affine transforms
m Affine transformation: Y = AX 4+ b (A and b are constant)
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Affine Transformations

m Gaussians are stable under affine transforms
m Affine transformation: Y = AX 4+ b (A and b are constant)

Affine Transform
X~N(@EE) XeR?
Y=AX+b VYeR" AcR™ pecR"

Y ~ N(7 | By, Zy)
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Affine Transformations

m Gaussians are stable under affine transforms
m Affine transformation: Y = AX 4+ b (A and b are constant)

Affine Transform

X~N@EE) XeR?
Y=AX+b YeR" AcR™ pecR"

Y ~ N(7 | By, Zy)

gy = AZ+b
5, = AXZAT
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Standard Normal

Univariate Standard Normal

X ~N(0,1)
w=20 o=1

Multivariate Standard Normal

X ~ N(0,1y)
E=0 T=I
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When to Stop using Gaussians

Gaussians are very handy and can be used in a lot of situations, but be
careful if one of the these points applies to your problem:
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When to Stop using Gaussians

Gaussians are very handy and can be used in a lot of situations, but be
careful if one of the these points applies to your problem:

m Gaussians do not have heavy tails

e In many real world (empirical) distributions extreme events occur far
more often than a Gaussian would allow
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When to Stop using Gaussians

Gaussians are very handy and can be used in a lot of situations, but be
careful if one of the these points applies to your problem:

m Gaussians do not have heavy tails

e In many real world (empirical) distributions extreme events occur far
more often than a Gaussian would allow

m Gaussians have only a single mode
e Can use a mixture of Gaussians here (see lecture)
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Heavy Talls
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