

Pattern Recognition: Probability Theory

Dennis Madsen

Department of Mathematics and Computer Science
University of Basel

Fall Semester 2018

Variability of a pattern - Dog

Variability of a pattern - Digit 4

Bishop 2009

Variability of measurement (noise)

Uncertainty in the model

Motivation

Why do we need probability theory??

Probability and Statistics

To model

- Variability of pattern itself
- Variability of measurement (noise)
- Uncertainty in our model

Motivation

Why do we need probability theory??

Probability and Statistics

To model

- Variability of pattern itself
- Variability of measurement (noise)
- Uncertainty in our model

⇒ A short repetition of probability theory in the context of pattern recognition

- First Part: Theory → quick reference for you
- Second Part: Multivariate Gaussian as an example

Discrete Random Variables

Random Variable X with possible Realisations $x \in \{1, 2, 3, \dots\}$:

Discrete Random Variables

Random Variable X with possible **Realisations** $x \in \{1, 2, 3, \dots\}$:

Cumulative Distribution Function (cdf)

$$P[X < x] = F(x)$$

Discrete Random Variables

Random Variable X with possible Realisations $x \in \{1, 2, 3, \dots\}$:

Cumulative Distribution Function (cdf)

$$P[X < x] = F(x)$$

Probability Mass Function

$$P[X = x] = P_x$$

Discrete Random Variables

Random Variable X with possible Realisations $x \in \{1, 2, 3, \dots\}$:

Cumulative Distribution Function (cdf)

$$P[X < x] = F(x)$$

Probability Mass Function

$$P[X = x] = P_x$$

Normalization and Positivity

$$\sum_x P_x = 1 \quad P_x \geq 0$$

Discrete Random Variables — Examples

Binomial – A coin flip

$$x \in \{0, 1\}$$

$$P_0 = P[X = 0] = p, \quad P_1 = P[X = 1] = q$$

$$p \in [0, 1], \quad q = 1 - p$$

Continuous Random Variables

Random Variable X with possible Realisations $x \in \mathbb{R}$:

Continuous Random Variables

Random Variable X with possible **Realisations** $x \in \mathbb{R}$:

Cumulative Distribution function (cdf)

$$F(x) : \quad P[X < x] = F(x)$$

Continuous Random Variables

Random Variable X with possible **Realisations** $x \in \mathbb{R}$:

Cumulative Distribution function (cdf)

$$F(x) : \quad P[X < x] = F(x)$$

Probability Density Function (pdf)

$$p(x) : \quad P[x < X < x + dx] = p(x) dx \quad = dF(x)$$

Continuous Random Variables

Random Variable X with possible Realisations $x \in \mathbb{R}$:

Cumulative Distribution function (cdf)

$$F(x) : \quad P[X < x] = F(x)$$

Probability Density Function (pdf)

$$p(x) : \quad P[x < X < x + dx] = p(x) dx \quad = dF(x)$$

Normalisation and Positivity

$$\int_{-\infty}^{\infty} p(x) dx = 1 \quad p(x) \geq 0$$

Continuous Random Variables — Examples

Gaussian

$$X \sim \mathcal{N}(\mu, \sigma^2), \quad x \in \mathbb{R}$$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Mean μ , Variance σ^2

Example: Gaussian

Mean

- The mean is a measure for *central tendency*

Expected Value, Mean, Expectation

$$E[X] = \sum_x x P_x \quad E[X] = \int x p(x) dx$$

Variance

- The variance is a measure for *spread*

Variance / Standard Deviation

$$V[X] = E[(X - E[X])^2]$$

$$\text{sd}[X] = \sigma_X = \sqrt{V[X]}$$

Variance

- The variance is a measure for *spread*

Variance / Standard Deviation

$$V[X] = E[(X - E[X])^2]$$

$$\text{sd}[X] = \sigma_X = \sqrt{V[X]}$$

$$\text{Hint: } V[X] = E[X^2] - E[X]^2$$

Multivariate Case

Multiple Random Variables

Example

More than one Random Variable, e.g.

Length L and Weight W of an object

$$\vec{X} = [L, W]^T$$

Multivariate Case

Multiple Random Variables

Example

More than one Random Variable, e.g.

Length L and Weight W of an object

$$\vec{X} = [L, W]^\top$$

Joint Probability

$$P[X = x \wedge Y = y] = P_{xy}$$

$$p(x, y)$$

Marginals and Conditionals

Marginalisation

$$P[X = x] = \sum_y P[X = x, Y = y]$$

$$p(x) = \int p(x, y) \, dy$$

Marginals and Conditionals

Marginalisation

$$P[X = x] = \sum_y P[X = x, Y = y]$$

$$p(x) = \int p(x, y) \, dy$$

Conditional Probability

$$P[X = x \mid Y = y] = \frac{P[X = x, Y = y]}{P[Y = y]} \quad P[Y = y] > 0$$

$$p(x \mid y) := \frac{p(x, y)}{p(y)}$$

Bayes' Rules

Use the factorization for the joint probability density / distribution:

$$p(x, y) = p(x | y) p(y)$$

$$p(x, y) = p(y | x) p(x)$$

Bayes' Rules

Use the factorization for the joint probability density / distribution:

$$p(x, y) = p(x | y) p(y)$$

$$p(x, y) = p(y | x) p(x)$$

$$P_{x|y} = \frac{P_{y|x} P_x}{P_y}$$

$$p(x | y) = \frac{p(y | x)p(x)}{p(y)}$$

Bayes' Rules

Use the factorization for the joint probability density / distribution:

$$p(x, y) = p(x | y) p(y)$$

$$p(x, y) = p(y | x) p(x)$$

$$P_{x|y} = \frac{P_{y|x} P_x}{P_y}$$

$$p(x | y) = \frac{p(y | x) p(x)}{p(y)}$$

$$\Rightarrow P(\underline{\omega}_i | \underline{x}) = \frac{p(\underline{x} | \underline{\omega}_i) P(\underline{\omega}_i)}{p(\underline{x})}$$

Bayes' Rules

Use the factorization for the joint probability density / distribution:

$$p(x, y) = p(x | y) p(y)$$

$$p(x, y) = p(y | x) p(x)$$

$$P_{x|y} = \frac{P_{y|x} P_x}{P_y}$$

$$p(x | y) = \frac{p(y | x) p(x)}{p(y)}$$

$$\Rightarrow P(\underline{\omega}_i | \underline{x}) = \frac{p(\underline{x} | \underline{\omega}_i) P(\underline{\omega}_i)}{p(\underline{x})}$$

- *Bayesian talk:* “Prior adapted to data leads to posterior”

Covariance and Independence

Covariance

$$\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]$$

$$\boldsymbol{\Sigma}(\mathbf{X}) = E[(\mathbf{X} - E[\mathbf{X}])(\mathbf{X} - E[\mathbf{X}])^T]$$

Covariance and Independence

Covariance

$$\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]$$

$$\boldsymbol{\Sigma}(\mathbf{X}) = E[(\mathbf{X} - E[\mathbf{X}])(\mathbf{X} - E[\mathbf{X}])^T]$$

Independence

$$p(x, y) = p(x)p(y) \iff X \text{ and } Y \text{ are independent}$$

Covariance and Independence

Covariance

$$\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]$$

$$\boldsymbol{\Sigma}(\mathbf{X}) = E[(\mathbf{X} - E[\mathbf{X}])(\mathbf{X} - E[\mathbf{X}])^T]$$

Independence

$$p(x, y) = p(x)p(y) \iff X \text{ and } Y \text{ are independent}$$

Covariance \neq Independence

$$X \text{ and } Y \text{ are independent, } X \perp Y \implies \text{Cov}(X, Y) = 0$$

Multivariate Gaussian Distribution

- This distribution occurs very frequently
- Simple enough to demonstrate these concepts

Multivariate Gaussian Distribution

- This distribution occurs very frequently
- Simple enough to demonstrate these concepts

Multivariate Gaussian Distribution

$$p(\vec{x}) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2} (\vec{x} - \vec{\mu})^T \boldsymbol{\Sigma}^{-1} (\vec{x} - \vec{\mu})\right)$$

$\vec{\mu}$ Mean

$\boldsymbol{\Sigma}$ Covariance Matrix ($d \times d$, positive definite, symmetric)

$|\boldsymbol{\Sigma}|$ Determinant of Σ

d Number of dimensions

$$\vec{X} \sim \mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma})$$

2D Gaussian — Surface Plot

2D Gaussian — Contour Plot

- Points on a contour have equal probability density - *equidensity* lines
- Contours are ellipsoids

Figure: Bishop 2009

2D Gaussian — Samples / Scatter

Equidensity lines are Ellipsoids

- The ellipsoids are determined by the quadratic form

$$(\vec{x} - \vec{\mu})^T \boldsymbol{\Sigma}^{-1} (\vec{x} - \vec{\mu})$$

Equidensity lines are Ellipsoids

- The ellipsoids are determined by the quadratic form

$$(\vec{x} - \vec{\mu})^T \boldsymbol{\Sigma}^{-1} (\vec{x} - \vec{\mu})$$

- $\boldsymbol{\Sigma}$ is positive definite and symmetric \Rightarrow Ellipsoid
- Center at $\vec{\mu}$

Equidensity lines are Ellipsoids

- The ellipsoids are determined by the quadratic form

$$(\vec{x} - \vec{\mu})^T \boldsymbol{\Sigma}^{-1} (\vec{x} - \vec{\mu})$$

- $\boldsymbol{\Sigma}$ is positive definite and symmetric \Rightarrow Ellipsoid
- Center at $\vec{\mu}$
- Eigenvectors and eigenvalues of $\boldsymbol{\Sigma}$

$$\boldsymbol{\Sigma} \vec{e}_i = \lambda_i \vec{e}_i$$

- Direction of semi-axes is determined by eigenvectors \vec{e}_i
- λ_i measures the variance along the corresponding eigendirection \vec{e}_i

Moments of a Multivariate Gaussian Distribution

Mean

$$E[\vec{X}] = \vec{\mu} \quad E[X_i] = \mu_i$$

Moments of a Multivariate Gaussian Distribution

Mean

$$E[\vec{X}] = \vec{\mu} \quad E[X_i] = \mu_i$$

Covariance

$$V[\vec{X}] = \boldsymbol{\Sigma} \quad \text{Cov}(X_i, X_j) = \Sigma_{ij}$$

Moments of a Multivariate Gaussian Distribution

Mean

$$E[\vec{X}] = \vec{\mu} \quad E[X_i] = \mu_i$$

Covariance

$$V[\vec{X}] = \boldsymbol{\Sigma} \quad \text{Cov}(X_i, X_j) = \Sigma_{ij}$$

Correlation

$$\text{Cor}(X_i, X_j) = \rho_{ij} = \frac{\text{Cov}(X_i, X_j)}{\sigma_i \sigma_j} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii} \Sigma_{jj}}}, \quad \sigma_i = \sqrt{\Sigma_{ii}}$$

Correlation and Covariance

- Correlation measures strength of **linear relations** between variables
- It does **not** measure independence
- It does **not** tell you anything about causal relations
- Correlation is normalized and dimensionless

Example

Marginals

- Marginal: *Randverteilung*
- Removing unknown variables — “*projection*”
- $p(x) = \int p(x, y) dy$

Marginals

- Marginal: *Randverteilung*
- Removing unknown variables — “*projection*”
- $p(x) = \int p(x, y) dy$

Marginal of a Gaussian

$$\vec{X} \sim \mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma})$$

$$\vec{X} = \begin{bmatrix} \vec{X}_a \\ \vec{X}_b \end{bmatrix}, \quad \vec{\mu} = \begin{bmatrix} \vec{\mu}_a \\ \vec{\mu}_b \end{bmatrix}, \quad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{bmatrix}$$

Marginals

- Marginal: *Randverteilung*
- Removing unknown variables — “*projection*”
- $p(x) = \int p(x, y) dy$

Marginal of a Gaussian

$$\vec{X} \sim \mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma})$$

$$\vec{X} = \begin{bmatrix} \vec{X}_a \\ \vec{X}_b \end{bmatrix}, \quad \vec{\mu} = \begin{bmatrix} \vec{\mu}_a \\ \vec{\mu}_b \end{bmatrix}, \quad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{bmatrix}$$

$$p(\vec{x}_a) = \mathcal{N}(\vec{x}_a \mid \vec{\mu}_a, \boldsymbol{\Sigma}_{aa})$$

Conditionals

- Conditional: *Bedingte Verteilung*
- Fixing a variable to a *certain* value — “slices”
- $p(x | y) = \frac{p(x, y)}{p(y)}$

Conditionals

- Conditional: *Bedingte Verteilung*
- Fixing a variable to a *certain* value — “slices”
- $p(x | y) = \frac{p(x, y)}{p(y)}$

Conditional of a Gaussian

$$\vec{X} \sim \mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma})$$

$$\vec{X} = \begin{bmatrix} \vec{X}_a \\ \vec{X}_b \end{bmatrix}, \quad \vec{\mu} = \begin{bmatrix} \vec{\mu}_a \\ \vec{\mu}_b \end{bmatrix}, \quad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{bmatrix}$$

$$p(\vec{x}_a | \vec{X}_b = \vec{x}_b) = \mathcal{N}(\vec{x}_a | \vec{\mu}_{a|b}, \boldsymbol{\Sigma}_{a|b})$$

Conditionals

- Conditional: *Bedingte Verteilung*
- Fixing a variable to a *certain* value — “slices”
- $p(x | y) = \frac{p(x, y)}{p(y)}$

Conditional of a Gaussian

$$\vec{X} \sim \mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma})$$

$$\vec{X} = \begin{bmatrix} \vec{X}_a \\ \vec{X}_b \end{bmatrix}, \quad \vec{\mu} = \begin{bmatrix} \vec{\mu}_a \\ \vec{\mu}_b \end{bmatrix}, \quad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{bmatrix}$$

$$p(\vec{x}_a | \vec{X}_b = \vec{x}_b) = \mathcal{N}(\vec{x}_a | \vec{\mu}_{a|b}, \boldsymbol{\Sigma}_{a|b})$$

$$\vec{\mu}_{a|b} = \vec{\mu}_a + \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1} (\vec{x}_b - \vec{\mu}_b)$$

$$\boldsymbol{\Sigma}_{a|b} = \boldsymbol{\Sigma}_{aa} - \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1} \boldsymbol{\Sigma}_{ba}$$

Marginal and Conditional of a Gaussian

Bishop 2009

Affine Transformations

- Gaussians are stable under affine transforms
- Affine transformation: $\vec{Y} = \mathbf{A}\vec{X} + \vec{b}$ (A and \vec{b} are constant)

Affine Transformations

- Gaussians are stable under affine transforms
- Affine transformation: $\vec{Y} = \mathbf{A}\vec{X} + \vec{b}$ (\mathbf{A} and \vec{b} are constant)

Affine Transform

$$\vec{X} \sim \mathcal{N}(\vec{\mu}, \mathbf{\Sigma}) \quad \vec{X} \in \mathbb{R}^d$$

$$\vec{Y} = \mathbf{A}\vec{X} + \vec{b} \quad \vec{Y} \in \mathbb{R}^n, \quad \mathbf{A} \in \mathbb{R}^{n \times d}, \quad \vec{b} \in \mathbb{R}^n$$

$$\vec{Y} \sim \mathcal{N}(\vec{\mu}_Y, \mathbf{\Sigma}_Y)$$

Affine Transformations

- Gaussians are stable under affine transforms
- Affine transformation: $\vec{Y} = \mathbf{A}\vec{X} + \vec{b}$ (\mathbf{A} and \vec{b} are constant)

Affine Transform

$$\vec{X} \sim \mathcal{N}(\vec{\mu}, \mathbf{\Sigma}) \quad \vec{X} \in \mathbb{R}^d$$

$$\vec{Y} = \mathbf{A}\vec{X} + \vec{b} \quad \vec{Y} \in \mathbb{R}^n, \quad \mathbf{A} \in \mathbb{R}^{n \times d}, \quad \vec{b} \in \mathbb{R}^n$$

$$\vec{Y} \sim \mathcal{N}(\vec{\mu}_Y, \mathbf{\Sigma}_Y)$$

$$\vec{\mu}_Y = \mathbf{A}\vec{\mu} + \vec{b}$$

$$\mathbf{\Sigma}_Y = \mathbf{A}\mathbf{\Sigma}\mathbf{A}^\top$$

Standard Normal

Univariate Standard Normal

$$X \sim \mathcal{N}(0, 1)$$

$$\mu = 0 \quad \sigma = 1$$

Multivariate Standard Normal

$$\vec{X} \sim \mathcal{N}(0, \mathbf{I}_d)$$

$$\vec{\mu} = 0 \quad \boldsymbol{\Sigma} = \mathbf{I}$$

When to Stop using Gaussians

Gaussians are very handy and can be used in a lot of situations, but be careful if one of the these points applies to your problem:

When to Stop using Gaussians

Gaussians are very handy and can be used in a lot of situations, but be careful if one of the these points applies to your problem:

- Gaussians do not have **heavy tails**
 - In many real world (empirical) distributions extreme events occur far more often than a Gaussian would allow

When to Stop using Gaussians

Gaussians are very handy and can be used in a lot of situations, but be careful if one of the these points applies to your problem:

- Gaussians do not have **heavy tails**
 - In many real world (empirical) distributions extreme events occur far more often than a Gaussian would allow
- Gaussians have only a single mode
 - Can use a mixture of Gaussians here (see lecture)

Heavy Tails

