Pattern Recognition: Probability Theory

Dennis Madsen

Department of Mathematics and Computer Science University of Basel

Fall Semester 2018

Variability of a pattern - Dog

Variability of a pattern - Digit 4

Bishop 2009

Variability of measurement (noise)

Uncertainty in the model

Motivation

Why do we need probability theory??

Probability and Statistics

To model

- Variability of pattern itself

■ Variability of measurement (noise)
■ Uncertainty in our model

Motivation

Why do we need probability theory??

Probability and Statistics

To model
■ Variability of pattern itself

- Variability of measurement (noise)

■ Uncertainty in our model
\Rightarrow A short repetition of probability theory in the context of pattern recognition

■ First Part: Theory \rightarrow quick reference for you
■ Second Part: Multivariate Gaussian as an example

Discrete Random Variables

Random Variable X with possible Realisations $x \in\{1,2,3, \ldots\}$:

Discrete Random Variables

Random Variable X with possible Realisations $x \in\{1,2,3, \ldots\}$:
Cumulative Distribution Function (cdf)

$$
P[X<x]=F(x)
$$

Discrete Random Variables

Random Variable X with possible Realisations $x \in\{1,2,3, \ldots\}$:
Cumulative Distribution Function (cdf)

$$
P[X<x]=F(x)
$$

Probability Mass Function

$$
P[X=x]=P_{x}
$$

Discrete Random Variables

Random Variable X with possible Realisations $x \in\{1,2,3, \ldots\}$:
Cumulative Distribution Function (cdf)

$$
P[X<x]=F(x)
$$

Probability Mass Function

$$
P[X=x]=P_{x}
$$

Normalization and Positivity

$$
\sum_{x} P_{x}=1 \quad P_{x} \geq 0
$$

Discrete Random Variables - Examples

Binomial - A coin flip

$$
\begin{gathered}
x \in\{0,1\} \\
P_{0}=P[X=0]=p, \quad P_{1}=P[X=1]=q \\
p \in[0,1], \quad q=1-p
\end{gathered}
$$

Continuous Random Variables

Random Variable X with possible Realisations $x \in \mathbb{R}$:

Continuous Random Variables

Random Variable X with possible Realisations $x \in \mathbb{R}$:
Cumulative Distribution function (cdf)

$$
F(x): \quad P[X<x]=F(x)
$$

Continuous Random Variables

Random Variable X with possible Realisations $x \in \mathbb{R}$:
Cumulative Distribution function (cdf)

$$
F(x): \quad P[X<x]=F(x)
$$

Probability Density Function (pdf)

$$
p(x): \quad P[x<X<x+\mathrm{d} x]=p(x) \mathrm{d} x \quad=\mathrm{d} F(x)
$$

Continuous Random Variables

Random Variable X with possible Realisations $x \in \mathbb{R}$:
Cumulative Distribution function (cdf)

$$
F(x): \quad P[X<x]=F(x)
$$

Probability Density Function (pdf)

$$
p(x): \quad P[x<X<x+\mathrm{d} x]=p(x) \mathrm{d} x \quad=\mathrm{d} F(x)
$$

Normalisation and Positivity

$$
\int_{-\infty}^{\infty} p(x) \mathrm{d} x=1 \quad p(x) \geq 0
$$

Continuous Random Variables - Examples

Gaussian

$$
\begin{aligned}
& X \sim \mathcal{N}\left(\mu, \sigma^{2}\right), \quad x \in \mathbb{R} \\
& p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\
& \text { Mean } \mu, \text { Variance } \sigma^{2}
\end{aligned}
$$

Example: Gaussian

Mean

- The mean is a measure for central tendency

Expected Value, Mean, Expectation

$$
E[X]=\sum_{x} x P_{x} \quad E[X]=\int x p(x) \mathrm{d} x
$$

Variance

■ The variance is a measure for spread

Variance / Standard Deviation

$$
\begin{gathered}
V[X]=E\left[(X-E[X])^{2}\right] \\
\operatorname{sd}[X]=\sigma_{X}=\sqrt{V[X]}
\end{gathered}
$$

Variance

- The variance is a measure for spread

Variance / Standard Deviation

$$
\begin{gathered}
V[X]=E\left[(X-E[X])^{2}\right] \\
\operatorname{sd}[X]=\sigma_{X}=\sqrt{V[X]}
\end{gathered}
$$

Hint: $V[X]=E\left[X^{2}\right]-E[X]^{2}$

Multivariate Case

Multiple Random Variables

Example

More than one Random Variable, e.g.

$$
\begin{aligned}
& \text { Length } L \text { and Weight } W \text { of an object } \\
& \qquad \vec{X}=[L, W]^{\top}
\end{aligned}
$$

Multivariate Case

Multiple Random Variables

Example

More than one Random Variable, e.g.

$$
\begin{aligned}
& \text { Length } L \text { and Weight } W \text { of an object } \\
& \qquad \vec{X}=[L, W]^{\top}
\end{aligned}
$$

Joint Probability

$$
\begin{gathered}
P[X=x \wedge Y=y]=P_{x y} \\
p(x, y)
\end{gathered}
$$

Marginals and Conditionals

Marginalisation

$$
\begin{gathered}
P[X=x]=\sum_{y} P[X=x, Y=y] \\
p(x)=\int p(x, y) d y
\end{gathered}
$$

Marginals and Conditionals

Marginalisation

$$
\begin{gathered}
P[X=x]=\sum_{y} P[X=x, Y=y] \\
p(x)=\int p(x, y) \mathrm{d} y
\end{gathered}
$$

Conditional Probability

$$
\begin{gathered}
P[X=x \mid Y=y]=\frac{P[X=x, Y=y]}{P[Y=y]} \quad P[Y=y]>0 \\
p(x \mid y):=\frac{p(x, y)}{p(y)}
\end{gathered}
$$

Bayes' Rules

Use the factorization for the joint probability density / distribution:

$$
\begin{aligned}
& p(x, y)=p(x \mid y) p(y) \\
& p(x, y)=p(y \mid x) p(x)
\end{aligned}
$$

Bayes' Rules

Use the factorization for the joint probability density / distribution:

$$
\begin{aligned}
& p(x, y)=p(x \mid y) p(y) \\
& p(x, y)=p(y \mid x) p(x)
\end{aligned}
$$

$$
\begin{gathered}
P_{x \mid y}=\frac{P_{y \mid x} P_{x}}{P_{y}} \\
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
\end{gathered}
$$

Bayes' Rules

Use the factorization for the joint probability density / distribution:

$$
\begin{aligned}
& p(x, y)=p(x \mid y) p(y) \\
& p(x, y)=p(y \mid x) p(x)
\end{aligned}
$$

$$
\begin{gathered}
P_{x \mid y}=\frac{P_{y \mid x} P_{x}}{P_{y}} \\
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
\end{gathered}
$$

$$
\Rightarrow \quad P\left(\omega_{i} \mid \underline{x}\right)=\frac{p\left(\underline{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)}{p(\underline{x})}
$$

Bayes' Rules

Use the factorization for the joint probability density / distribution:

$$
\begin{aligned}
& p(x, y)=p(x \mid y) p(y) \\
& p(x, y)=p(y \mid x) p(x)
\end{aligned}
$$

$$
\begin{gathered}
P_{x \mid y}=\frac{P_{y \mid x} P_{x}}{P_{y}} \\
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
\end{gathered}
$$

$$
\Rightarrow \quad P\left(\omega_{i} \mid \underline{x}\right)=\frac{p\left(\underline{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)}{p(\underline{x})}
$$

■ Bayesian talk: "Prior adapted to data leads to posterior"

Covariance and Independence

Covariance

$$
\begin{gathered}
\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])] \\
\boldsymbol{\Sigma}(\mathbf{X})=E\left[(\mathbf{X}-E[\mathbf{X}])(\mathbf{X}-E[\mathbf{X}])^{\mathrm{T}}\right]
\end{gathered}
$$

Covariance and Independence

Covariance

$$
\begin{gathered}
\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])] \\
\boldsymbol{\Sigma}(\mathbf{X})=E\left[(\mathbf{X}-E[\mathbf{X}])(\mathbf{X}-E[\mathbf{X}])^{\mathrm{T}}\right]
\end{gathered}
$$

Independence

$$
p(x, y)=p(x) p(y) \Longleftrightarrow X \text { and } Y \text { are independent }
$$

Covariance and Independence

Covariance

$$
\begin{gathered}
\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])] \\
\boldsymbol{\Sigma}(\mathbf{X})=E\left[(\mathbf{X}-E[\mathbf{X}])(\mathbf{X}-E[\mathbf{X}])^{\mathrm{T}}\right]
\end{gathered}
$$

Independence

$$
p(x, y)=p(x) p(y) \Longleftrightarrow X \text { and } Y \text { are independent }
$$

Covariance \neq Independence
X and Y are independent, $X \perp Y \Longrightarrow \operatorname{Cov}(X, Y)=0$

Multivariate Gaussian Distribution

- This distribution occurs very frequently

■ Simple enough to demonstrate these concepts

Multivariate Gaussian Distribution

- This distribution occurs very frequently

■ Simple enough to demonstrate these concepts

Multivariate Gaussian Distribution

$$
p(\vec{x})=\frac{1}{\sqrt{(2 \pi)^{d}|\boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2}(\vec{x}-\vec{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\vec{x}-\vec{\mu})\right)
$$

$\vec{\mu} \quad$ Mean
$\boldsymbol{\Sigma}$ Covariance Matrix ($d \times d$, positive definite, symmetric)
$|\boldsymbol{\Sigma}| \quad$ Determinant of Σ
d Number of dimensions

$$
\vec{X} \sim \mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma})
$$

2D Gaussian - Surface Plot

2D Gaussian - Contour Plot

■ Points on a contour have equal probability density - equidensity lines
■ Contours are ellipsoids

Figure: Bishop 2009

2D Gaussian - Samples / Scatter

Equidensity lines are Ellipsoids

■ The ellipsoids are determined by the quadratic form

$$
(\vec{x}-\vec{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\vec{x}-\vec{\mu})
$$

Equidensity lines are Ellipsoids

■ The ellipsoids are determined by the quadratic form

$$
(\vec{x}-\vec{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\vec{x}-\vec{\mu})
$$

■ $\boldsymbol{\Sigma}$ is positive definite and symmetric \Rightarrow Ellipsoid

- Center at $\vec{\mu}$

Equidensity lines are Ellipsoids

■ The ellipsoids are determined by the quadratic form

$$
(\vec{x}-\vec{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\vec{x}-\vec{\mu})
$$

■ $\boldsymbol{\Sigma}$ is positive definite and symmetric \Rightarrow Ellipsoid

- Center at $\vec{\mu}$
- Eigenvectors and eigenvalues of Σ

$$
\boldsymbol{\Sigma} \vec{e}_{i}=\lambda_{i} \vec{e}_{i}
$$

■ Direction of semi-axes is determined by eigenvectors \vec{e}_{i}
$\square \lambda_{i}$ measures the variance along the corresponding eigendirection \vec{e}_{i}

Moments of a Multivariate Gaussian Distribution

Mean

$$
E[\vec{X}]=\vec{\mu} \quad E\left[X_{i}\right]=\mu_{i}
$$

Moments of a Multivariate Gaussian Distribution

Mean

$$
E[\vec{X}]=\vec{\mu} \quad E\left[X_{i}\right]=\mu_{i}
$$

Covariance

$$
V[\vec{X}]=\boldsymbol{\Sigma} \quad \operatorname{Cov}\left(X_{i}, X_{j}\right)=\Sigma_{i j}
$$

Moments of a Multivariate Gaussian Distribution

Mean

$$
E[\vec{X}]=\vec{\mu} \quad E\left[X_{i}\right]=\mu_{i}
$$

Covariance

$$
V[\vec{X}]=\boldsymbol{\Sigma} \quad \operatorname{Cov}\left(X_{i}, X_{j}\right)=\Sigma_{i j}
$$

Correlation

$$
\operatorname{Cor}\left(X_{i}, X_{j}\right)=\rho_{i j}=\frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\sigma_{i} \sigma_{j}}=\frac{\Sigma_{i j}}{\sqrt{\sum_{i i} \Sigma_{j j}}}, \quad \sigma_{i}=\sqrt{\Sigma_{i i}}
$$

Correlation and Covariance

■ Correlation measures strength of linear relations between variables

- It does not measure independence
- It does not tell you anything about causal relations
- Correlation is normalized and dimensionless

Example

Marginals

■ Marginal: Randverteilung
■ Removing unknown variables - "projection"
■ $p(x)=\int p(x, y) d y$

Marginals

■ Marginal: Randverteilung
■ Removing unknown variables - "projection"
■ $p(x)=\int p(x, y) d y$
Marginal of a Gaussian

$$
\begin{gathered}
\vec{X} \sim \mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma}) \\
\vec{X}=\left[\begin{array}{l}
\vec{X}_{a} \\
\vec{X}_{b}
\end{array}\right], \quad \vec{\mu}=\left[\begin{array}{c}
\vec{\mu}_{a} \\
\vec{\mu}_{b}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right]
\end{gathered}
$$

Marginals

■ Marginal: Randverteilung
■ Removing unknown variables - "projection"
■ $p(x)=\int p(x, y) d y$
Marginal of a Gaussian

$$
\begin{gathered}
\vec{X} \sim \mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma}) \\
\vec{X}=\left[\begin{array}{l}
\vec{X}_{a} \\
\vec{X}_{b}
\end{array}\right], \quad \vec{\mu}=\left[\begin{array}{c}
\vec{\mu}_{a} \\
\vec{\mu}_{b}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right] \\
p\left(\vec{x}_{a}\right) \\
=\mathcal{N}\left(\vec{x}_{a} \mid \vec{\mu}_{a}, \boldsymbol{\Sigma}_{a a}\right)
\end{gathered}
$$

Conditionals

- Conditional: Bedingte Verteilung

■ Fixing a variable to a certain value - "slices"

- $p(x \mid y)=\frac{p(x, y)}{p(y)}$

Conditionals

- Conditional: Bedingte Verteilung

■ Fixing a variable to a certain value - "slices"

- $p(x \mid y)=\frac{p(x, y)}{p(y)}$

Conditional of a Gaussian

$$
\begin{gathered}
\vec{X} \sim \mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma}) \\
\vec{X}=\left[\begin{array}{l}
\vec{X}_{a} \\
\vec{X}_{b}
\end{array}\right], \quad \vec{\mu}=\left[\begin{array}{c}
\vec{\mu}_{a} \\
\vec{\mu}_{b}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right] \\
p\left(\vec{x}_{a} \mid \vec{X}_{b}=\vec{x}_{b}\right)=\mathcal{N}\left(\vec{x}_{a} \mid \vec{\mu}_{a \mid b}, \boldsymbol{\Sigma}_{a \mid b}\right)
\end{gathered}
$$

Conditionals

- Conditional: Bedingte Verteilung

■ Fixing a variable to a certain value - "slices"

- $p(x \mid y)=\frac{p(x, y)}{p(y)}$

Conditional of a Gaussian

$$
\begin{gathered}
\vec{X} \sim \mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma}) \\
\vec{X}=\left[\begin{array}{c}
\vec{X}_{a} \\
\vec{X}_{b}
\end{array}\right], \quad \vec{\mu}=\left[\begin{array}{c}
\vec{\mu}_{a} \\
\vec{\mu}_{b}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right] \\
p\left(\vec{x}_{a} \mid \vec{X}_{b}=\vec{x}_{b}\right)=\mathcal{N}\left(\vec{x}_{a} \mid \vec{\mu}_{a \mid b}, \boldsymbol{\Sigma}_{a \mid b}\right) \\
\vec{\mu}_{a \mid b}=\vec{\mu}_{a}+\boldsymbol{\Sigma}_{a b} \boldsymbol{\Sigma}_{b b}^{-1}\left(\vec{x}_{b}-\vec{\mu}_{b}\right) \\
\boldsymbol{\Sigma}_{a \mid b}=\boldsymbol{\Sigma}_{a a}-\boldsymbol{\Sigma}_{a b} \boldsymbol{\Sigma}_{b b}^{-1} \boldsymbol{\Sigma}_{b a}
\end{gathered}
$$

Marginal and Conditional of a Gaussian

Bishop 2009

Affine Transformations

■ Gaussians are stable under affine transforms

- Affine transformation: $\vec{Y}=\mathbf{A} \vec{X}+\vec{b} \quad$ (\mathbf{A} and \vec{b} are constant)

Affine Transformations

- Gaussians are stable under affine transforms
- Affine transformation: $\vec{Y}=\mathbf{A} \vec{X}+\vec{b} \quad$ (\mathbf{A} and \vec{b} are constant)

Affine Transform

$$
\begin{aligned}
\vec{X} \sim \mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma}) & \vec{X} \in \mathbb{R}^{d} \\
\vec{Y}=\mathbf{A} \vec{X}+\vec{b} & \vec{Y} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{n \times d}, \vec{b} \in \mathbb{R}^{n} \\
\vec{Y} & \sim \mathcal{N}\left(\vec{y} \mid \overrightarrow{\mu_{Y}}, \Sigma_{Y}\right)
\end{aligned}
$$

Affine Transformations

- Gaussians are stable under affine transforms
- Affine transformation: $\vec{Y}=\mathbf{A} \vec{X}+\vec{b} \quad$ (\mathbf{A} and \vec{b} are constant)

Affine Transform

$$
\begin{aligned}
& \vec{X} \sim \mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma}) \vec{X} \in \mathbb{R}^{d} \\
& \vec{Y}=\mathbf{A} \vec{X}+\vec{b} \quad \vec{Y} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{n \times d}, \vec{b} \in \mathbb{R}^{n} \\
& \vec{Y} \sim \mathcal{N}\left(\vec{y} \mid \vec{\mu}_{Y}, \Sigma_{Y}\right) \\
& \vec{\mu}_{Y}=\mathbf{A} \vec{\mu}+\vec{b} \\
& \Sigma_{Y}=\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\top}
\end{aligned}
$$

Standard Normal

Univariate Standard Normal

$$
\begin{gathered}
X \sim \mathcal{N}(0,1) \\
\mu=0 \quad \sigma=1
\end{gathered}
$$

Multivariate Standard Normal

$$
\begin{gathered}
\vec{X} \sim \mathcal{N}\left(0, \mathbf{I}_{d}\right) \\
\vec{\mu}=0 \quad \boldsymbol{\Sigma}=\mathbf{I}
\end{gathered}
$$

When to Stop using Gaussians

Gaussians are very handy and can be used in a lot of situations, but be careful if one of the these points applies to your problem:

When to Stop using Gaussians

Gaussians are very handy and can be used in a lot of situations, but be careful if one of the these points applies to your problem:

■ Gaussians do not have heavy tails

- In many real world (empirical) distributions extreme events occur far more often than a Gaussian would allow

When to Stop using Gaussians

Gaussians are very handy and can be used in a lot of situations, but be careful if one of the these points applies to your problem:

- Gaussians do not have heavy tails
- In many real world (empirical) distributions extreme events occur far more often than a Gaussian would allow
■ Gaussians have only a single mode
- Can use a mixture of Gaussians here (see lecture)

Heavy Tails

