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►  Input Data: Measurements, Words, Fish lengths,..  
 Each pattern is represented as a set of features.  
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 
 

1 2
, , ...,

T

l
x x x x X 

► Pattern Recognition Machine  f : Predicts a label for  

    each input data .   
 ŷ xf

Pattern Recognition - The Formal Setting 

► Label: Fish type, Fish weight, Spam/Non-Spam……    
    The output label, the property we wish to predict. 

y Y

The Problem  

► Training set: N samples with known labels.  

 
1

,
N

i i i
D x y




1 

 The Problem:  

 Predict a label y of a new input data x not in the    

 training data. 

 

The Formal Setting (2) 

► Classification:  The label is discrete 

 

 

►  Regression:  The label is real-valued 

 0,1, 2, ....,y K

 There are two flavors of the labeling problem: 

 Regression and Classification 

 
Remark: For discrete 
labels many different 
notations are used. 
e.g. for different classes 

ci or ωi are common. 

𝑦 ∈ ℝ  
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Regression and Classification 

3 

The Formal Setting + Probability Theory 

► A way to formalize this is to model the feature vector as  

random variable X with a probability distribution  P (X = x). 

► Consider all data samples drawn independently from the  

same true distribution  (x, y) ~ P(x, y)   
( i.i.d. independent and identical distributed ) 

 
► P(x, y)  is usually unknown,  

only a training set with N samples might be available  !!!! 

 

 Decision Theory:  

     What is the best prediction we can make if we know P(x, y) . 

 

An inherent difficulty is the ever-changing appearance of input  
data samples, e.g. a sea bass is not always exactly 1.5 m long – 
this is what makes the problem challenging! 
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Generative and Discriminative Modelling 

► Generative Modelling 

 

 

 

 

 

►  Discriminative Modelling  
 

We need the posterior distribution  P( y | x ) to make a 

decision. There are two fundamental ways of getting there: 

 

( ) ( )
      ( )

( )

P x y P y
P y x

P x
 

   

     Use a conditional and prior probability in Bayes’s rule 

 

 

  Directly find an expression for P( y | x ) as a function 

  of   x and y.   (In practice this functional form is often relatively easy) 

5 
Generative and Discriminative Modelling 
An Example: Bishop 1.27 
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Bayes Decision Theory 

Bayes, Thomas (1763) An essay 
towards solving a problem in the 
doctrine of chances. Philosophical 
Transactions of the Royal Society of 
London, 53:370-418 

Bayes Rule 

                        P(A , B)       P(A|B) P(B) 

         P(B|A) = ----------- = --------------- 

                           P(A)              P(A) 

Remark: In some cases A and B are variables 
representing Cause and Symptom! Then the 
conditional probabilities represent: 

 

 a) P(C|S) the diagnostic direction and 

 b) P(S|C) the causal direction . 
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  Each pattern is represented by a feature vector  

                                   of a random variable X with a 

    probability distribution   P (X = x). 

 Assign pattern with feature vector     to the  
    most probable of the available classes 

 
That is, 

 

    if   ( )   ( )    
i i j

x P x P x i j     

x

M
 ,...,,

21

Bayes Decision Theory 

  Consider all data samples       drawn independently     
 from the same true distribution (i.i.d) 

   (x, y)   ~  P(x, y) 

x

So, how do we calculate             ? ( )
i

P x

 
 

1 2
, , ...,

T

l
x x x x X 
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 Computation of a-posteriori probabilities 
 

 We are looking for               , 

 known as the a-posteriori probability, or posterior, 

     of     given  

Bayes Decision Theory 

( )
i

P x

( )
i

P x

i
 .x

Uppercase P: a probability of a discrete variable 

 Lowercase p: a probability density function (pdf) 

1 2
( ), ( )..., ( )

M
P P P  

(   ),     1, 2...,
i

p x i M 

.      
i

torespectwithx 

.
i



 We assume as known   

  1.)   
       known as the a-priori probability, or prior, of 
  

 2.) 
 

   known as the likelihood of  

9 

 Two fundamental rules of probability theory: 

 sum rule  

 product rule  

( )    ( , )i

i

p x p x  

Derivation of the Bayes Rule 

 POSTERIOR = (LIKELIHOOD · PRIOR) / EVIDENCE 

( , )     ( ) ( ) ( ) ( )
i i i i

p x p x P x p x P    

( ) ( )
      ( )

( )

i i

i

p x P
P x

p x

 
 

where 

2

1

      ( ) ( ) ( )
j j

j

p x p x P 


 

 From these, derive the BAYES RULE: 
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212

121

  )()( If

  )()( If









xxPxP

xxPxP

Bayes Classification Rule (M=2classes) 

 Given   ,  classify it according to the rule x

x

1 1 2 2
( ) ( )   ( )   ( ) ( )p x P p x P   

 Equivalently:  classify    according to the rule  

1 2
( )   ( )   ( )p x p x 

 For equiprobable (                  ) classes, the test is 
1 2

( ) ( )P P 

11 

)( and )(
2211

  RR

22

11

 in xRx If

 in xRx If









   Equivalently in words: Divide space in two regions R1, R2 

 

              If 

Bayes Classification Rule (M=2) 

 Graph for two equiprobable classes 1, 2, with decision line. 

Likelihood p(x|2) 

Decision line 

Likelihood p(x|1) 
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Bayes:  Probability of Error (M=2) 

    Bayesian classifier is OPTIMAL with respect to  
      minimizing the classification error probability!!!! 









0

0

)()()()(
1122

x

x

e
dxxpPdxxpPP 

  Total shaded area 

  

= total probability of assigning x to the wrong class 

Probability of assigning  

x to 2 when it belongs to 1 

Probability of assigning  

x to 1 when it belongs to 2 

13 

“Proof” :  If the threshold is moved, the total shaded area 
           INCREASES by the extra “dark” area. 

  
    Bayesian classifier is OPTIMAL with respect to  
      minimizing the classification error probability!!!! 

 

   “Proof ?” 
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  Given      classify it to         if: x
i



ijxPxP
ji

   )()( 

 Bayes Classification Rule (M>2) 

 This choice, too, minimizes the classification error 

    probability. 

  Now assume there are more than two classes (M>2).  

15 

Minimizing the Risk (Classification) 

 

  Assign penalty terms to weight each type of error 
 

    For M=2: 

 Define the loss matrix 

 

       penalty term for deciding class      , 
    although the pattern belongs to       ,  etc. 

1


2


)(

2221

1211




L

(usually             ,  and often          ;  

  correct decisions are much less penalized than incorrect ones) 

iiij
  0

ii


:
12



Some types of classification errors may be more serious than 

others. If so, we can modify Bayesian classification: 
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Minimizing the Risk 

 Risk with respect to 1


xdxpxdxpr

RR

)()(
1121111

21

  

2


xdxpxdxpr

RR

)()(
2222212

21

  

 Risk with respect to 

)()(
2211

 PrPrr  risk 

Probabilities of wrong decisions, 
weighted by the penalty terms 

 Define risk  r as the expected loss  

17 

 Classification under minimal risk 

 Choose regions  R1  and R2 so that r  is minimized 

 
 Assign x  to ω1 if  

11 1 1 21 2 2

12 1 1 22 2 2

( ) ( ) ( ) ( )

                       ( ) ( ) ( ) ( )

p x P p x P

p x P p x P

     

     





 11 12 1 1 22 21 2 2
( ) ( ) ( )   ( ) ( ) ( )p x P p x P         

 Equivalently:  
 

          assign x  to ω1  if  
1112

2221

1

2

2

1

12
)(

)(

)(

)(


















P

P

xp

xp


:  likelihood ratio 
12

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21

12

122

12

21

21 1

)()(  if 

)()(  if 











xPxPx

xPxPx





21 12
if    

risk minimization is equivalent to 

error probability minimization 
 

Now we have a classifier that is OPTIMAL with respect to 
minimizing the risk or expected loss. 

It is closely related to the Bayes classifier that optimally 
minimizes error probability. 

0 and
2

1
)()(

221121
  PPIf 

19 

Let’s compare a) error probability minimization and  

                     b) average risk minimization  






















00.1

5.00
   

2

1
)()(   

))1(exp(
1

)(   

)exp(
1

)(   

21

2

2

2

1

L

PP

xxp

xxp









 An Example: 

2

1
         

0
 x))1(exp()exp(   Solve

22
 xx

0
                         :

error
x Pa) Compute threshold        for minimum 
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b) Compute threshold        for minimum risk  r 
0

x̂

))1(exp(2)exp(  Solve
22

 xx

 An Example (2): 

0

(1 2) 1
ˆ            

2 2

ln
x


  

0
x̂   Thus,       lies to the left of  

2

1
    

0
x

21 

Minimizing the Risk for Regression 

     , ( ) ,E L L y f x p x y dx dy 

When solving a regression problem the risk/loss function is 

important: We can make infinitely many miss predictions: 

Again: Minimize expected loss, with respect to f(x). 

Here the loss function is not a table anymore, it‘s a function of the 

continuous label y and its predicted value f(x). 

We need variational calculus to minimize this expression with 

respect to the function  f(x)….. More in the Machine Learning course! 

On the next slide we will show the results for some  

very common loss functions (without proofs)! 
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Loss Functions: Some Examples 
( proof Bishop 1.5.5 ) 

• The conditional expectation value of the label, given the data, is the  

   best possible prediction if we assume a quadratic loss function 

• The function  f(x) = E[y|x] is called the Regression function.   

• The Median is a robust estimator. 

• The 0/1 loss function assigns the single most probable label  

• Compare the last case with classification -> is also a 0/1 loss function 

In the Gaussian distribution the mean, the mode and the 

median coincide!! 

23 

The median 
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Mean, Median, Mode 

 

25 

Discriminant Functions 

Examples of Classifiers seen so far: 

a) Bayesian minimum error classifier, in various equivalent forms 

        gi(x) = p(i | x)             or 

       gi(x) = p(x | i ) P(i)        

                 

b) Bayesian minimum risk classifier, see slide 17 

gi(x) =  ( jj – ji) p(x|j)  P(j) 

General form of a pattern classifier: 

       Assign x  to i  if  gi(x) > gj(x)     i  j        j = 0, ..., M 

          

For each class i, there is a discriminant function gi(x) 
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Discriminant Functions (2) 

    Discriminant functions are never unique.  

    Equivalent functions always exist that produce the same 
classification result. 

      

 

 

 

gi(x) > gj(x)  can be replaced by   f (gi (x) )  >  f (gj (x) ) 

          if  f  is a monotonically increasing function 

Taking the logarithm often  

makes computations easier 

Example: ln(.) is monotonically increasing.     

=>  The discriminant function gi(x)  = P(x | i ) P(i)  

       can be replaced by            gi(x)  = ln(P(x | i ) P(i))     

              = lnP(x | i )  + ln P(i) 

 

27 

 

Space is divided into regions R1,..., RM  by the discriminant 

functions gi (x) = P(i|x) ,        i = 1...M. 

If regions Ri, Rj are contiguous, the surface separating them is 

 

 

Decision Surfaces (1): Bayes classifier 

( ) ( ) ( ) 0
i j

g x P x P x   

On one side of the surface, g(x) is positive (+),  

on the other negative (-). 

+  - 0)( xg
)()(  : xPxPR

jii
 

:  ( ) ( )
j j i

R P x P x 

ii
Rxx    if assign 

Decision Surface 
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Decision Surfaces (2): general case 

 General form of a decision surface (two-class case): 

 

 

 

 Now we can use g(x) to rewrite the classification rule.   

0)()()(
21

 xgxgxg

    where g1(x), g2(x)   are discriminant functions  

x   1   if     g(x) > 0  , 

x   2    if     g(x) < 0 

0)( xg
+ 

 - 

Decision Surface 

29 

Discriminant functions can also be defined 
independently of the Bayesian rule.   

 

 This leads to `suboptimal´ solutions, with no guarantee to 
minimize the classification error probability. 

 

 Yet if chosen appropriately, can be computationally 
more tractable, especially when the pdf´s can not be 
computed correctly. 

 

 Examples will follow in subsequent lectures. 
 

 

Discriminant Functions (3)  



16 

30 Bayesian Classifier  
for Normal Distributions 

  Often, the correct pdf  p(x|ωi) for a dataset is not  
     known.  
 

( )
i

p x  

x 

     

( )( )    

i

i i i

E x

E x x



 




    
   l x l  matrix called covariance matrix 

1

1

2 2

1 1
exp ( ) ( )

2
(2 )

ii i

i

x x 



  
    

 


  Let’s assume a multivariate Gaussian distribution: 
 

ℝ 

31 

  ln(  )  is a monotonic function.   

 

    We define: 
 

   
)  )()(  ln(   )(

iii
Pxpxg  

iiii

T

ii
cPxxxg 


)(ln)()(

2

1
   )(

1


   ln ( )   ln ( )
ii

p x P  

ii
c  ln)

2

1
(2ln)

2
( 


iii

T

iii

T

iii

T

i

T

i
cPxxxxxg 


)(ln

2

1

2

1

2

1

2

1
   )(

1111


Bayesian Classifier  
for Normal Distributions 
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iiii

i

ii

ii

i

cP

xxxxxg





)(ln)(
2

1
                                      

)(
1

)(
2

1
)(

2

2

2

12

22112

2

2

2

12






















2

2

0

0
   and   2

i

i

i






That is,  gi(x)  is quadratic and surfaces  gi(x) - gj(x) =  0   are 
quadrics, ellipsoids, parabolas, hyperbolas, pairs of lines. 

 

 

   Example with : 

 

Bayesian Classifier for Normal Distributions 

33 


ij

 Decision Hyperplanes    gi(x) - gj(x) =  0  

  Case:   
 

iiii

T

ii

T

iii

T

i

T

i
cPxxxxxg 


)(ln

2

1

2

1

2

1

2

1
   )(

1111


iiiiii

io

T

ii

Pww

wxwxg


1

0

1

2

1
)(ln  and    ith            w

       )(






=>   If  Σi = Σj   ,  the discriminant functions are LINEAR 

Bayesian Classifier for Normal Distributions 

xx
1

i

T 


  
 

ALL the quadratic terms                 and   ci   are  
not of interest.  They are not involved in the comparisons.   
Then we can write equivalently: 
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2

2
   ) 

)(

)(
 ln()(

2

1
               

  ,               

    with          

)()(

ji

ji

j

i

jio

ji

o

T

ij

P

P
x

w

xxwxg






















 Subcase A:                              (multiple of  the identity matrix)                             
 

 Disciminant function: 

iiii

T

ii

T

iii

T

i

T

i
cPxxxxxg 


)(ln

2

1

2

1

2

1

2

1
   )(

1111


02

1
)(     

i

T

ii
wxxg  



002
   )(

1
)(     

ji

T

j

T

iij
wwxxg  



Bayesian Classifier for Normal Distributions 

)(  )(
ij

PP  

  
2
I

ji


0)()()(      xgxgxg
jiij

Decision Hyperplane: 

wi
T 
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 again subcase A:   
 

  

 

 Then  

  .
2
I

ji


)(

)(1111

)(

)(1111

ln
2

1

2

1
)- (  )(
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2

1

2

1
-   )(

j

i

j

i

P

P

i

T

ij

T

j

T

j

T

iij

P

P

i

T

ij

T

j

T

j

T

iij

xxg

xxxg





















0)()()(      xgxgxg
jiij

Bayesian Classifier for Normal Distributions 
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T
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P
x
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






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


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 Subcase B:                    (arbitrary nondiagonal matrix) 
 

  Then  

 

 

• Decision hyperplane 


2


ji

0)()(
0

 xxwxg
T

ij

1

not norm al to  
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 

 




 
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w  



1
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0 2
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1 2
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2 ( )
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i ji

i j

j

i j

T

P
x

P

x x x

 
 


 











  



 

Bayesian Classifier for Normal Distributions 
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 subcase A:   
 

         if the Euclidean Distance                           is smaller. 

 

 

i
xI   Assign   :

2

iE
xd 

Different interpretation: Minimum Distance Classifiers 

 
  Case :   equiprobable                     and  

)()(
2

1
)(    

1

i

T

ii
xxxg  



1
( )

i
P

M
  
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 subcase B:  

        if the Mahalanobis Distance       is smaller. 

i
xI    Assign      :

2

2

1

1
))()((

i

T

iM
xxd  



1
M i

d x 




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iE
xd 

2

1

1
))()((

i

T

iM
xxd  



  

Subcase B 

Use Mahalanobis Distance:  

1


i
M xd 

  

Subcase A  

Use Euclidian Distance:  
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Example:   

1 2

1 1

2 2

1 2

1 2

        w ith P ( ) P( )

        and  ( ) ( ,  )

           ( ) ( ,  )

0 3 1.1 0.3
                              ,   ,   

0 3 0.3 1.9

G iven tw o classes  , :  

    

p x N

p x N

 

 

 

 

 



 

 

     
        
     

1.0
    classify the vector             

2 .2

    using Bayesian classification:

T ask:

x
 

  
 

 

 

1

2

1 2

-1

2 1

2 1

2 1

  C om pute M ahalanobis D istance  from  , 

0 .95 0.15
     w ith      

0 .15 0.55

    ( , ) ( ) ( )

1.0
     1 .0, 2.2 2.952

2.2

2.0
    2 .0, 0.8

0.8

Solution: 

M

T

M i i i

M

M

d

d x x x

d

d

 

  








 
   

 

   

 
    

 


    



2 11

3.672

   classify  x .                   O bserve that 
E E

d d


 



  
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