Density Estimation

e Parametric techniques
e Maximum Likelihood
e Maximum A Posteriori

e Bayesian Inference

e Gaussian Mixture Models (GMM)
- EM-Algorithm
e Non-parametric techniques

e Histogram

e Parzen Windows

e k-nearest-neighbor rule

GMM Applications
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GMM Applications

Density estimation

Observed data from a complex but unknown
probability distribution.

Can we describe this data with a few parameters ?

Which (new) samples are unlikely to come from this
unknown distribution (Outlier detection )?

GMM Applications

Clustering

Observations from K classes. Each class produces
samples from a multivariate normal distribution.
Which observations belong to which class ?

Sometimes Sometimes Often possible
easy impossible but not clear-cut




GMM: Definition

e Mixture models are linear combinations of densities:
K
p(x|©) = c;p(x|\;)
i=1

with icizl . [ p(x]1©)dx =1
i=1

X

— Capable of approximating almost any complex and
irregularly shaped distributions ( K might get big )!

e For Gaussian mixtures:

O ={u,Z} = pKX|[6)=N(x,Z)

Sampling a GMM

e How to generate a random variable according to a
K
known GMM pP(x)= E i Ci N(,%;)

Assume that each data point is generated according
to the following recipe:

1. Pick a component (i e[1..K] ) at random.
Choose component i with probability c; .

2. Sample data point ~ N(z,2)).

In the end, we might not know which data points came from which
component (unless someone kept track during the sampling process)!




Learning a GMM

Recall ML-estimation

We have:

A density function p(- ; ®) governed by a set of
unknown parameters 0.
A data set of size N drawn from this distribution

X={X{, ...y X}
We wish:
to obtain the parameters best explaining data X
by maximizing the log-likelihood function:
L(®) =Inp(X;0)
®" =argmax L(®)
®

Learning a GMM

e For a single Gaussian distribution this is simple to
solve. We have an analytical solution.

e Unfortunately for many problems (including GMM) it
is not possible to find analytical expressions.

» Resort to classical optimization techniques ?
» Possible but there is a better way:

EM - Algorithm (Expectation-Maximization)




Expectation Maximization ( EM ) i

e General method for finding ML-estimates in the case

of incomplete or missing data (GMM's are one
application).

e Usually used when:

e the observation is actually incomplete; some values are
missing from the data set.

e the likelihood function is analytically intractable but can be
simplified by assuming the existence of additional but
missing (so-called hidden/latent) parameters.

The latter technique is used for GMMs. Think of each data point as
having a hidden label specifying the component it belongs to.
These component labels are the latent parameters.

General EM procedure ’

The EM setting

Observed data set (incomplete): X
Assume a complete data set exists: Z = (X, Y)

Z has a joint density function:

p(z|®) =p(x,y|®) =p(y|Xx O)-p(x|®)

Define the complete-data log-likelihood function:
L(®|2) = L(O]|X,Y) =Inp(X,Y|B)

Our aim is to find a ® that maximizes this function.




11

General EM procedure
e But: We cannot simply maximize L(®|X,Y)=Inp(X,Y|®)
because Y is not known.
« L(O|X,Y) isin fact a random variable:

- Y can be assumed to come from some distribution
f(y|X,0)

- Thatis, L(®|X, Y) can be interpreted as a function where
X and ® are constant and Y is a random variable.

e The EM will compute a new, auxiliary function,
based on L, that can be maximized instead.

e Let's assume we already have a reasonable estimate
for the parameters: O |
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General EM procedure

e EM uses an auxiliary function:

Q(O,0)=E[In p(X,Y |©)| X, 0 ]

How to read this:
— X and /" are constants,
- © is a simple variable (the function argument),
- Yis a random variable governed by distribution f.

e The task is to rewrite Q and perform some calculations to make
it a fully determined function.

¢ Q is the expected value of the complete-data log-likelihood
w.r.t. to missing data (), observed data (X) and current
parameter estimates (6™").

This is called the E-step (expectation-step) —




General EM procedure :

¢ Q can be rewritten by means of the marginal distribution f:

Ify is a continuous random variable:

Q0,0 ")=E[In p(X,Y |©)|X,00 |

=[Inp(X.y|©)- f(y| X, ©"?)dy
y

Think of this as
the expected
value of a

Ify is a discrete random variable: / function of Y
Q(©,0)=E[In p(X,Y |©) | X, 0 ] Elg(v)]

=2 Inp(X,y|©)f (y| X,0")

Evaluate f(y | X, ® ™), using the current estimate © 2.

Now Q is fully determined and we can use it!

General EM procedure B

e In a second step Q is used to obtain a better set of

parameters ©: . .
O" =argmaxQ(®,0"™)
(C)

This is called the M-step (maximization-step)

e Both E- and M-steps are repeated until convergence.

¢ In each E-Step, we find a new auxiliary function Q

e In each M-Step, we find a hew parameter set ©
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General EM algorithm

Summary of the general EM algorithm (see also Bishop, p.440)

1. Choose an initial setting for the parameters @ 7.

2. E-step: evaluate f(y| X, ® ¢V,
plug it into Q(©,0¥)=[ f(y|X,0"")In p(X,Y |©)dy

to obtain a fully determined auxiliary function

3. M-step: evaluate @ given by @ =argmaxQ(®,0®"'™)
(C)

4. Check for convergence of either the log likelihood or the
parameter values. If the convergence criterion is not
satisfied, then let ® ™ < ©® @ and return to step 2.
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General EM lllustration

Iterative majorisation L(®)
Aim of EM: Find local maximum \
of function L(®) by using

. Q©,0")+5,,
auxiliary function Q(®, ©®) .

How does this work? Q(©,0")+5

ov o @i
e Q touches L at point
[0M, L(®@")] and lies everywhere below L .

e Maximize auxiliary function.

e The position of the maximum ©/**) gives a value of L which is
greater than in the previous iteration.

¢ Repeat this scheme with new auxiliary function until
convergence.
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General EM Summary

e Iterative algorithm for ML-estimation of systems
with hidden/missing values.

e Calculates expectance for hidden values based on
observed data and joint distribution.

e Slow but guaranteed convergence.
e May get ,stuck™ in local maximum.

e There is no general EM implementation. The details
of both steps depend very much on the particular
application.
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Application: EM for Mixture Models

e Our probabilistic model is now:

p(x|®) = Zci pi(X | ei)

with parameters: ©®=(C,...,Cy,0,,...,0y)

M
such that: > ¢, =1
i=1

e Thatis, we have M component densities p; (of the
same family) combined through M mixing

coefficients C;.




EM for Mixture Models N

e The incomplete-data log-likelihood becomes
(remember we assume X is iid):

L©IX)=n] [p(x;10) =§ln(ic,~pj(xi | e,.)j

e Difficult to optimize with log of sum

e Now let's try the EM-trick:

- Consider X as incomplete.
- Introduce unobserved data Y = {yi _lehose values indicate which
component of the MM generated each data item.

- Thatis, y;€l,...,M and y;=K if the i-th sample stems from the
k-th component.

EM for Mixture Models ?

o If we knew the values of Y, the log likelihood would
simplify to:

L(©]X,Y) =Inp(X,Y |©)

N Could apply

= iln(p(xi 1Y, ©)p(y; |®))= Zln(cyipyi (x| eyi)) standard

: optimization

i=1

techniques

e But we don't know Y, so we follow the EM-procedure:
1. Start with an initial guess of the mixture parameters:
e =(c,...,c},,67,...,0%)

2. Find an expression for the marginal density function of the
unobserved data p(y|X, ©):

10
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EM for Mixture Models

Yi is the (unknown)

N
p(y | X1®g) = Hp(y, | Xi ) @9) component label of

i=1 data point X;.

Using Bayes's rule, we get:
0) = p(xi 1Yi,©°)p(y:)
p(x; | ©%)

p(y; | X;,

_ Cyipyi (Xi | egl) _ Cyipyi (X| | egl)
PG 107 3" cp(x;169)

¢ Using guessed parameters, we obtained the desired marginal
density function.

e This can now be substituted in Q (i.e. in the E-step).
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EM for Gaussian Mixtures

e For our mixture model, the E-step is:
Substituted

Q(©,0%)=Y In(L©O| X)) (Y| X, 0%) " idcen dats

density

e The M-step is to find a parameter set ®"" that maximizes Q.

* But for Gaussian mixtures, there is no need to deal with Q in the
above form!

- Here it is not

O -argmax 2 LOIXpKIX.0%  feE
S y directly

e Instead, a set of simple formulas for updating ®
can be used.

11
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EM for Gaussian Mixtures

3. Compute parameters @"" , using update formulas
(perform E- and M-step simultaneously):

Update formulas

”ew_i 9 new Z.N X@
TR RO T e

oo _ 2 >k | X, O — )% — ™)’
2.5RtkI%.00)

Plug in the expression
found in previous step

(k = label of the k-th component)

These formulas are derived from Q(G,0°) .
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EM for Mixture Models

Derivation of the update formulas

Q in its initial form: Subst_itulted
margina

Q(©,0%) =) In(L®|X,y))p(y| X, ©°) hidden data
y - density

o After a lot of simplification we arrive at an equation where the ¢,
and 0, are expressed independently: ot £ |
etrormula
N / for ¢, from
Q(o, @g) ZZM(CK) p(k | XI,®g) this part

k=1 i=

Get formulas

N
Z In( Py (Xi | Hk )) p(k | X, @g) ' for 0, from

1ol this part

Mz

+

=
Il

Formula for ¢, 1 &
after further - with ¢ = ﬁz p(k|x,®°%)

simplification

12



EM for Gaussian Mixtures

e Formula for ¢, (previous slide) is valid for any mixture model,
not just Gaussian.

e Formulas for 6, will be specific to the Gaussian mixture.
e For a d-dimensional Gaussian component, use

_1(x— Ts—1(y_
0=(1D) (XI5, = O
@) [z, |

AN Plug this into the
expression on the
previous slide

* Take the derivatives of the resulting expression with respect to
u, and X, (very technical).

e Set the derivatives to zero, then solve for y, and %,.

- The results are the update formulas for w."¢" and X, "ev,

25

EM for Gaussian Mixture Models

Summary of the algorithm for GMM (see Bishop, p.438):
1.

Initialize the parameters @ = (C,... Cy, M. dyy 21.-.20)

2. E-step: evaluate the responsibilities of each component
for all data points:

p(k|x,0%0) = Pl

Responsibility of the k-th component
for the i-th data point

No need to compute Q(®,0%7) explicitly!

26
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EM for Gaussian Mixture Models

3. E-step/M-step: Update the parameters

N
1l «n Z-, p(k | %, 0%)x

Cnew - = . k X, ®old new _ i=1
k N ZI:l p( | L ) Hi Z:\il p(k | Xi,®°|d)

> pk | %, ©°)(x — ) (% — ™)'
> plk|x,©")

new __
X =

4. Evaluate the log likelihood
N M
In p(X |© ):Zi:j_ln(Zkzlck P (% | 24, Z))

and check it for convergence. If the convergence criterion is
not satisfied, return to step 2.
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Relation to k-means

e Llet Cy=1/M and X =0°I
e k-means procedure:
1. Random initialize M cluster centers.

2. Assign each data point to a cluster according to the
minimum distance criterion:

1 if vjl| Xi =y 1] % — U I
0 otherwise

p(kIXi)={

3. Re-calculate cluster centers:
N
e D PKIX)X,
k T <N,
> p(k|x;)

4. Go to step 2 until no change in cluster centers.




Relation to k-means

e GMM is referred to as soft clustering

- Probability p( k| X;,® ) indicates the responsibility of
the k-th component for the i-th observation (i.e. the
posterior prob. that the i-th observation comes from
the k-th component).

- For each point X;, GMM produces smooth posterior.
From these, one can find cluster label

for each  x;: C(x;) = argmax p(Kk|x;,®)
k

e k-means is a hard clustering method
- The responsibility of can only be 1 or 0 .
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GMM: Open questions

e How many components are required ?
- Answer is highly problem dependent.

- One possibility: Try different numbers, then choose model
(number) which gives best performance on a validation
data set .

e Which initial parameters to use ?

- Same here: in general we don't know where to look for
global maximum.

- Obvious approaches:

1. Perform k-means to obtain initial t's.

2. Try different random values and choose the ones which
lead to maximal likelihood.

30
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GMM/EM Resources

J. A. Bilmes et al : A Gentle Tutorial of the EM Algorithm
and its Application to Parameter Estimation for
Gaussian Mixture and Hidden Markov Models (1998)

GMMBAYES - Gaussian Mixture Model Methods
Matlab-Toolbox

Gaussian Mixtures Demo Applet
http://lcn.epfl.ch/tutorial/english/gaussian/html/index.html
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http://www.it.lut.fi/project/gmmbayes/

