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Density Estimation 

• Parametric techniques 

• Maximum Likelihood   

• Maximum A Posteriori 

• Bayesian Inference 

• Gaussian Mixture Models (GMM) 

– EM-Algorithm 
 

• Non-parametric techniques 

• Histogram 

• Parzen Windows 

• k-nearest-neighbor rule  
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GMM Applications 

single Gaussian        ? ?          GMM 
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GMM Applications 

Density estimation 

Observed data from a complex but unknown 
probability distribution.  

 

Can we describe this data with a few parameters ? 

 

Which (new) samples are unlikely to come from this 
unknown distribution (Outlier detection )? 
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GMM Applications 

Clustering  

Observations from K classes. Each class produces 

samples from a multivariate normal distribution. 
Which observations belong to which class ? 

Sometimes 
easy 

Sometimes 
impossible 

Often possible 
but not clear-cut 
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GMM: Definition 

• Mixture models are linear combinations of densities:  

1

1

with   1 , ( | ) 1

( | ) ( | )
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p x c p x
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  

  

 



– Capable of approximating almost any complex and   
irregularly shaped distributions  ( K might get big )! 

{ , },         ( | ) ( , )i i i i i ip x N       

• For Gaussian mixtures: 
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Sampling a GMM 

Assume that each data point is generated according 
to the following recipe: 

1. Pick a component (i [ 1 .. K ] ) at random. 

Choose component i with probability ci . 

2. Sample data point ~ N(i,i). 

• How to generate a random variable according to a 

known GMM     ( ) ( , )
K

i i ii
p x c N  

 In the end, we might not know which data points came from which 

component (unless someone kept track during the sampling process)! 
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Learning a GMM 

Recall ML-estimation  

We have: 

     A density function p(· ; ) governed by a set of   

    unknown parameters .  

     A data set of size N drawn from this distribution  

     X= {x1, ..., xN} 

L( ) ln p(X; )

arg max L( )



  

  

We wish:  

 to obtain the parameters best explaining data X 

      by maximizing the log-likelihood function: 
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Learning a GMM 

• For a single Gaussian distribution this is simple to 
solve. We have an analytical solution. 

 

• Unfortunately for many problems (including GMM) it 
is not possible to find analytical expressions.  
 

  Resort to classical optimization techniques ?  

  Possible but there is a better way:    
   

      EM – Algorithm   (Expectation-Maximization) 



5 

9 

Expectation Maximization ( EM ) 

• Usually used when: 

• the observation is actually incomplete; some values are 
missing from the data set.  

• the likelihood function is analytically intractable but can be 
simplified by assuming the existence of additional but 
missing (so-called hidden/latent) parameters. 

• General method for finding ML-estimates in the case 
of incomplete or missing data (GMM’s are one 
application). 

 The latter technique is used for GMMs. Think of each data point as 
having a hidden label specifying the component it belongs to. 
These component labels are the latent parameters. 
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General EM procedure 

Observed data set (incomplete):      X   

Assume a complete data set exists: Z = (X, Y) 

    Z  has a joint density function: 

( | ) ( , | )p p  z x y

Define the complete-data log-likelihood function: 

L( | ) L( | X,Y) ln (X,Y| )p    

The EM setting 

( | , ) ( | )p p   y x x

Our aim is to find a  that maximizes this function.  



6 

11 

General EM procedure 

• But: We cannot simply maximize  
   because Y is not known. 

L( | X,Y) p(X,Y| )ln  

• L (|X, Y) is in fact a random variable:  

­ Y can be assumed to come from some distribution 

  

­ That is, L(|X, Y) can be interpreted as a function where 

X  and  are constant and Y is a random variable. 

 

( | X, )f y

• The EM will compute a new, auxiliary function, 

based on L, that can be maximized instead.
 

• Let‘s assume we already have a reasonable estimate 
for the parameters: (i-1)

  .
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General EM procedure 

• EM uses an auxiliary function: 

( 1) ( 1)( , ) ln (X,Y | ) X,|i iQ E p       

How to read this: 

– X and (i-1) are constants, 

–  is a simple variable (the function argument), 

– Y is a random variable governed by distribution f . 

• The task is to rewrite Q and perform some calculations to make 
it a fully determined function. 

 
• Q is the expected value of the complete-data log-likelihood  

w.r.t. to missing data (Y), observed data (X) and current 
parameter estimates ((i-1)). 

This is called the E-step (expectation-step) 
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General EM procedure 

•  Q can be rewritten by means of the marginal distribution f: 

( 1) ( 1)

( 1)

( , ) ln (X,Y | ) X,

ln (X, | ) ( | X, )

|i i

i

Q E p

p f dy

 



      

   
y

y y

If y is a continuous random variable: 

If y is a discrete random variable: 

( 1) ( 1)

( 1)

( , ) ln (X,Y | ) X,

ln (X, | ) ( | X, )

|i i

i

y

Q E p

p f

 



      

   y y

Think of this as 
the expected 
value of a 

function of Y 

E[g(Y)] 

Evaluate f( y | X,  (i-1) ), using the current estimate  (i-1). 

Now Q is fully determined and we can use it! 
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General EM procedure 

•  Both E- and M-steps are repeated until convergence. 
 

• In each E-Step, we find a new auxiliary function Q 

• In each M-Step, we find a new parameter set  

•  In a second step Q is used to obtain a better set of 

 parameters : 
( ) ( 1)arg max ( , )i iQ 



   

This is called the M-step (maximization-step) 
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General EM algorithm 

Summary of the general EM algorithm (see also Bishop, p.440) 
 

1. Choose an initial setting for the parameters  (i-1)
. 

 

2. E-step:      evaluate f ( y | X,  (i-1) ) , 

         plug it into  

        to obtain a fully determined auxiliary function 

 

3. M-step:     evaluate (i) given by 

 

4. Check for convergence of either the log likelihood or the 
parameter values. If the convergence criterion is not 
satisfied, then let  (i-1)   (i)  and return to step 2. 

dyYXpXyfQ
y

ii

   )|,(ln),|(),( )1()1(

( ) ( 1)arg max ( , )i iQ 



   
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General EM Illustration 

( )i ( 1)i
( 2)i

( )( , )i

iQ   

( 1)

1( , )i

iQ 

  

Iterative majorisation 

Aim of EM: Find local maximum  

of function L() by using  

auxiliary function Q(, 
(i)

) . 

How does this work? 

 

• Q touches L at point  

[
(i)

, L(
(i)

)] and lies everywhere below L  . 

 

• Maximize auxiliary function. 

• The position of the maximum 
(i+1) 

gives a value of L which is 

greater than in the previous iteration. 

• Repeat this scheme with new auxiliary function until 
convergence. 

( )L 
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General EM Summary 

• Iterative algorithm for ML-estimation of systems 
with hidden/missing values. 
 

• Calculates expectance for hidden values based on 
observed data and joint distribution. 
 

• Slow but guaranteed convergence. 
 

• May get „stuck“ in local maximum. 
 

• There is no general EM implementation. The details 
of both steps depend very much on the particular 
application. 
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Application: EM for Mixture Models 

M

i i i

i 1

p(x | ) c p (x | )


  

•   Our probabilistic model is now: 

M

i

i 1

c 1




1 M 1 M(c , ,c , , , )   with parameters:  

 such that:   

•   That is, we have M component densities pi (of the  

  same family) combined through M mixing    

  coefficients ci . 
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EM for Mixture Models 

• The incomplete-data log-likelihood becomes 

(remember we assume X is iid): 

N N M

i j j i j

i 1 j 1i 1

L( | X) ln p(x | ) ln c p (x | )
 

 
     

 
 

• Difficult to optimize with log of sum 

 
N

i i 1
Y y




• Now let‘s try the EM-trick: 
 

– Consider X as incomplete. 

– Introduce unobserved data                 whose values indicate which 

component of the MM generated each data item. 

– That is,  yi1,...,M  and  yi=k  if the i-th sample stems from the  

k-th component. 
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EM for Mixture Models 

• If we knew the values of Y, the log likelihood would 

simplify to:  

   
i i i

N N

i i i y y i y

i 1 i 1

L( | X,Y) ln p(X,Y | )

ln p(x | y , )p(y | ) ln c p (x | )
 

  

     
Could apply 
standard 

optimization 
techniques 

• But we don‘t know Y, so we follow the EM-procedure: 

1. Start with an initial guess of the mixture parameters: 

 

2. Find an expression for the marginal density function of the  
 unobserved data  p( y | X,  ): 

g g g g g

1 M 1 M(c , ,c , , , )   
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EM for Mixture Models 

N
g g

i i

i 1

p( | X, ) p(y | x , )


  y

• Using guessed parameters, we obtained the desired marginal 
density function.  
 

• This can now be substituted in Q (i.e. in the E-step). 

Using Bayes‘s rule, we get: 

 

 

 

 

 

g
g i i i

i i g

i

p(x | y , )p(y )
p(y | x , )

p(x | )


 



i i i

g

y y i y

M g

k k i kk 1

c p (x | )

c p (x | )






i i i

g

y y i y

g

i

c p (x | )

p(x | )






yi is the (unknown) 

component label of 

data point xi. 
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• But for Gaussian mixtures, there is no need to deal with Q in the 
above form!  

 

 

 

 
y

gnew XypyXL ),|(),|(argmax
Θ

Here it is not 
necessary to 
deal with this 
directly 

  

• For our mixture model, the E-step is: 

( , ) ln(L( | X, )) ( | X, )g gQ p    
y

y y

1 1

1 1

( , ) ln( ) ( | , )

ln( ( | )) ( | , )

M N
g g

k i

k i

M N
g

k i k i

k i

Q c p k x

p x p k x

 

 

   

 





1

1
( | , )

N
g

k i

i

c p k x
N 

 

Substituted 
marginal 
hidden data 
density 

• The M-step is to find a parameter set         that maximizes Q. 
new

• Instead, a set of simple formulas for updating       
   can be used. 



EM for Gaussian Mixtures 
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These formulas are derived from                 .  

EM for Gaussian Mixtures 

1

1
( | , )

N
new g

k i

i

c p k x
N 

  1

1

( | , )

( | , )














N g

i inew i
k N g

ii

x p k x

p k x


1

1

( | , )( )( )

( | , )





  
 







N g new new T

i i k i knew i
k N g

ii

p k x x x

p k x

 

   Update formulas 

( , )gQ  

3. Compute parameters           , using update formulas 
   (perform E- and M-step simultaneously): 

  

new

Plug in the expression 
found in previous step  

(k = label of the k-th component) 
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EM for Mixture Models 

Derivation of the update formulas 

( , ) ln(L( | , )) ( | , )g gQ p    
y

y y

Substituted 
marginal 
hidden data 
density 

Q in its initial form: 

• After a lot of simplification we arrive at an equation where the ck 
and k are expressed independently: 

1 1

1 1

( , ) ln( ) ( | , )

ln( ( | )) ( | , )

M N
g g

k i

k i

M N
g

k i k i

k i

Q c p k x

p x p k x

 

 

   

 




Get formulas 

for k from 

this part  

Get formula 

for ck from 

this part  

 with  
1

1
( | , )

N
g

k i

i

c p k x
N 

 
Formula for ck, 

after further 
simplification 
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EM for Gaussian Mixtures 

• Formula for ck (previous slide) is valid for any mixture model, 
not just Gaussian. 

• Formulas for k  will be specific to the Gaussian mixture. 

1
22

11
2
( ) ( )

(2 )

1
( , ) ( | , )

   


   

d

k

T
k k k

k k k

x x
p x e

 


  

Plug this into the 
expression on the 
previous slide 

• For a d-dimensional Gaussian component, use 

• Take the derivatives of the resulting expression with respect to 
k   and k (very technical).  

• Set the derivatives to zero, then solve for k and k. 

        The results are the update formulas for k
new and k

new. 
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EM for Gaussian Mixture Models 

Summary of the algorithm for GMM (see Bishop, p.438): 

1. Initialize the parameters  old =  (c1… cM , μ1…μM, Σ1…ΣM) 

 

2. E-step:  evaluate the responsibilities of each component  
   for all data points: 

    

    

    

                      

 

          

    No need to compute                    explicitly!  

 

 

),( )1(  iQ

1

( | , )
( | , ) ,

( | , )

old k k i k k
i M

j j i j jj

c p x
p k x

c p x







 



Responsibility of the k-th component 
for the i-th data point 
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EM for Gaussian Mixture Models 

3. E-step/M-step:  Update the parameters  

 

 

 

 

 

 

4. Evaluate the log likelihood 

 

 

    and check it for convergence. If the convergence criterion is 
not satisfied, return to step 2. 














N

i

old

i

N

i i

old

inew

k

xkp

xxkp

1

1

),|(

),|(


1

1

( | , )( )( )

( | , )

N old new new T

i i k i knew i
k N old

ii

p k x x x

p k x

 




  
 






1

1
( | , )

Nnew old

k ii
c p k x

N 
 

  


N

i

M

k kkikk xpcXp
1 1

)),|(ln()|(ln 

28 

Relation to k-means 

• Let ck=1/M  and  k=2I 

• k-means procedure: 

1. Random initialize M cluster centers. 

2. Assign each data point to a cluster according to the 
minimum distance criterion: 

 
 

3. Re-calculate cluster centers: 

 
 

4. Go to step 2 until no change in cluster centers. 

i k i j

i

1 if j || x μ || || x μ ||
p(k | x )

0 otherwise

   
 


N

i inew i 1
k N

ii 1

p(k | x )x

p(k | x )





 



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Relation to k-means 

• GMM is referred to as soft clustering 

- Probability p( k | xi , ) indicates the responsibility of  

the k-th component for the i-th observation (i.e. the 
posterior prob. that the i-th observation comes from  
the k-th component). 

- For each point xi, GMM produces smooth posterior.  

From these, one can find cluster label  

     for each     xi:  C(xi) = argmax p( k|xi , ) 

                                                   k    

 

• k-means is a hard clustering method 

- The responsibility of can only be 1 or 0 . 
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GMM: Open questions 

• How many components are required ? 

- Answer is highly problem dependent. 

- One possibility: Try different numbers, then choose model 
(number) which gives best performance on a validation 
data set . 

• Which initial parameters to use ? 

- Same here: in general we don‘t know where to look for 
global maximum. 

- Obvious approaches: 

1. Perform k-means to obtain initial μ’s. 

2. Try different random values and choose the ones which 
lead to maximal likelihood. 
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GMM/EM Resources 

• J. A. Bilmes et al : A Gentle Tutorial of the EM Algorithm 
and its Application to Parameter Estimation for 
Gaussian Mixture and Hidden Markov Models (1998) 

 

• GMMBAYES - Gaussian Mixture Model Methods  
Matlab-Toolbox             
http://www.it.lut.fi/project/gmmbayes/ 

 

• Gaussian Mixtures Demo Applet 
http://lcn.epfl.ch/tutorial/english/gaussian/html/index.html 

http://www.it.lut.fi/project/gmmbayes/

