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Density Estimation 

• Parametric techniques 

• Maximum Likelihood   

• Maximum A Posteriori 

• Bayesian Inference 

• Gaussian Mixture Models (GMM) 

– EM-Algorithm 

 

• Non-parametric techniques 

• Histogram 

• Parzen Windows 

• k-nearest-neighbor rule  
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Non-parametric Techniques 

• Common parametric forms rarely fit the densities 
encountered in practice. 

 

• Classical parametric densities are unimodal, 
whereas many practical problems involve 
multimodal densities.  

 

• Non-parametric procedures can be used with 
arbitrary distributions and without the assumption 
that the form of the underlying densities are known. 
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Histograms 

• Conceptually most simple and intuitive method to estimate a 

p.d.f. is a histogram. 
 

 

• The range of each dimension xi of vector x is divided into a 

fixed number m of intervals. 
 

 

• The resulting M boxes (bins) of identical volume V count the 

number of points falling into each bin: 
 

 

• Assume we have N samples (xi) and the number of points xl in 

the j-th bin, bj, is kj. Then the histogram estimate of the 

density is:  
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Histograms 

• … is constant over every bin bj  

• … is a density function 
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• The number of bins M and their starting positions 

are “parameters”. However only the choice of M is 

critical. It plays the role of a smoothing parameter. 
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Histograms: Example 

• Assume one dimensional data sampled from 
a combination of two Gaussians 

• 3 bins 
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Histograms: Example 

• 7 bins 

• 11 bins 
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Histogram Approach 

• Histogram p.d.f. estimator is very efficient since it 
can be computed online (only update counters, no need 

to keep all data) 

 

• Usefulness is limited to low dimensional vectors, 

since number of bins, M, grows exponentially with 

data’s dimensionality d: 

M= md 

 

 “Curse of dimensionality” 
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Parzen Windows: Motivation 

• Consider set of 1-D samples {x1, …, xN} of which 
we want to estimate the density 

• We can easily get estimate of cumulative 
distribution function (CDF) as: 
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• Density p(x) is the derivative 

of the CDF 

• But that is discontinuous !! 
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Parzen Windows: 

• What we can do, is to estimate the density as: 
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• This is the proportion of observations falling within the 

interval [x-h/2, x+h/2] divided by h . 

• We can rewrite the estimate (already for d dim.):  
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Parzen Windows: 

• The resulting density estimate itself is not continuous. 

 

• This is because points within a distance h/2 of x contribute a 

value 1/N  to the density and points further away a value of 

zero. 

 

• Idea to overcome this limitation: 

 Generalize the estimator by using a smoother weighting 

function (e.g. one that decreases as |z| increases). 

 This weighting function K is termed kernel and the 

parameter h is the spread (or bandwidth). 
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Parzen Windows 

• The kernel is used for interpolation: each sample 
contributes to the estimate according to its distance 

from x 

• For a density,         must: 

- Be non-negative 

- Integrate to 1 

( )p x

• This can be assured by requiring the kernel itself  
to fulfill the requirements of a density function, ie.: 

( ) 0 and ( ) 1K x K d      z z
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Parzen Windows: Kernels 

Discontinuous Kernel Functions: 
 

 Rectangular: 

  

 Triangular:  

  

Smooth Kernels: 

 Normal:   

 

 Multivariate normal:            
(radially symm. univ. Gaussian) 
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Parzen Windows: Bandwidth 

Examples of two-dimensional circularly symmetric normal Parzen 

windows for 3 different values of h.  

• The choice of bandwidth is critical ! 
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Parzen Windows: Bandwidth 

3 Parzen-window density estimates based on the same set of 5 samples, 

using windows from previous figure 

 If h is too large the estimate will suffer from too little 

resolution. 

 If h is too small the estimate will suffer from too much 

statistical variability. 
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Parzen Windows: Bandwidth 

Small h : more complicated 

boundaries 

Large h : less complicated 

boundaries 

• The decision regions of a PW-classifier also depend 
on bandwidth (and of course of kernel). 
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k-Nearest-Neighbor Estimation 

• Similar to histogram approach. 
 

• Estimate        from N training samples by centering 

a volume V around x and letting it grow until it 

captures k samples. 
 

( )p x

• These samples are the k nearest neighbors of x . 
 

• In regions of high density (around x) the volume 

will be relatively small. 
 

• k plays a similar role as the bandwidth parameter in 

PW. 
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k-NN Decision Rule (Classifier) 

( )
( )

k
p

N V x



x

• Let N be the total number of samples and V the 

volume around x which contains k samples then 

• Suppose that in the k samples we find km from class 

m (so that              ).  

 

• Let the total number of samples in class m be nm 

(so that              ) . 
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• Then we may estimate the class-conditional density p(x|m) as 

 

 

 and the prior probability p(m) as 
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• Using these estimates the decision rule: 

  assign x to m if  

 translates (Bayes’ theorem) to: 

  assign x to m if  
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k-NN Decision Rule (Classifier) 
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 The decision rule is to assign x to the class that 

receives the largest vote amongst the k nearest 

neighbors of all classes M.  

• For k=1 this is the 
nearest neighbor rule 
producing a Voronoi-
tesselation of the 
training space. 

• This rule is sub-optimal, but when the number of 
prototypes is large, its error is never worse than 

twice the Bayes error classification probability PB. 

k-NN Decision Rule (Classifier) 
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Non-parametric comparison 

• Parzen window estimates require storage of all 

observations and n evaluations of the kernel 

function for each estimate, which is computationally 
expensive! 

 

• Nearest neighbor requires the storage of all the 
observations. 

 

• Histogram estimates do not require storage for all 
the observations, they require storage for the 
description of the bins. But for simple histograms 
the number of the bins grows exponentially with the 
dimension of the observation space. 
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Non-parametric Techniques 

Advantages 

• Generality: same procedure for unimodal, 
normal and bimodal mixture. 

• No assumption about the distribution 
required ahead of time. 

• With enough samples we can converge to an 
arbitrarily complicated target density. 
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Non-parametric Techniques 

Disadvantages 

• Number of required samples may be very 
large (much larger than would be required if we 
knew the form of the unknown density) . 

• Curse of dimensionality. 

• In case of PW and KNN computationally 
expensive (storage & processing).  

• Sensitivity to choice of bin size, bandwidth,… 


