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  Linear Classifiers 

Previous lectures introduced the Bayes Classifier: 

• Optimal accuracy in terms of minimizing the  
   classification error probability. 

• If the probability distribution is appropriate for  
   the novel data. 

Therefore, instead of modeling the whole feature 
space, we often prefer to learn the discrimination 
function directly. 

In real world applications, it is very difficult to obtain 
the appropriate probability distribution. 
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Linear Classifiers 

Bayes classifier: 

data 
probability 

density 
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rule 
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learning 
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Linear Classifiers 

Requirement: The data must be linearly separable. 

Ok Not ok! 

There is no line that 
can separate both 

classes! 
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Linear Classifiers 
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If x1 and x2 are two points on the decision hyperplane: 

in l dimensions 

hence w is perpendicular to the hyperplane 
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Linear Classifiers 
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If there is no axis intercept the 
hyperplane passes through the origin. 

g(x) is a measure of the distance  

from the hyperplane to x. 

Its sign marks on which side of the hyperplane x is. 
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Linear Classifier: Margin Computation 
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The direction normal to the hyperplane is given by: w  
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The Perceptron 

The Perceptron is a learning algorithm that adjusts the 

weights wi of its weight vector w such that for all 

examples  xi : 
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Here, the intercept is included in w : 

It is assumed that the problem is linearly 

separable. Hence this vector w exists. 
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T
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The Perceptron 

 w must minimize the classification error. 

 w is found using an optimization algorithm. 

 

General steps towards a classifier: 
 

1. Define a cost function to be minimized. 

2. Choose an algorithm to minimize it. 

3. The minimum corresponds to a solution. 
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The Perceptron Cost Function 
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 Cost function: 

Y: subset of the training vectors which are 

    misclassified by the hyperplane  

    defined by w. 
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The Perceptron Algorithm 

1
w

( )J w
is continuous and 
piecewise linear. 

Y changes 

Y is constant 

J(w) is minimized by gradient descent:  

  (update w by taking steps that are proportional to the 

 negative of the gradient of the cost function J(w)) 
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The Perceptron Algorithm 

Example: 

w(t) 

misclassified 

w(t+1) 
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t
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The Perceptron Algorithm 

Example: 

w(t) 

w(t+1) 

1
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x
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Note that     must be chosen carefully, if it is too 
large, more errors will occur. 

t


t x
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t
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more misclassifications 

    is a critical parameter of the algorithm ! t


(t) 

(t+1) 
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The Perceptron Algorithm 

The perceptron converges in a finite number 
of iterations to a solution if: 
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  :e.g.

    is set to be large at the 
beginning and gets smaller and 
smaller as the iterations proceed. 

t


The perceptron stops as soon as the last  
misclassification disappears: Is this optimal? 
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Perceptron: Online Learning 

This training of the Perceptron is called “reward and 
punishment algorithm”. 
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The misclassified training examples can be used 
cyclically, one after the other. 
 

The examples are reused until they are all classified 
correctly. 
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The Perceptron as a Neural Network  

Once the perceptron is trained, it is used to perform 
the classification: 
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The perceptron is the simplest form of a  
“Neural Network”: 

synaptic 
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activation 
function 

f

1 
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T

w x
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Least Squares Methods 

Linear classifiers are attractive because: 

• They are simple and 

• computationally efficient. 

The Perceptron is used in the case where the 
training examples are linearly separable. 

Can we still use a simple linear classifier 
where the training examples are NOT linearly 
separable ? 
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Least Squares Methods 

We want that the difference between the output of 

the linear classifier: 

and the desired outputs (class labels): 

to be small.  

What does small mean ? 
 

We will describe two criterions: 

1. Mean square error estimation, and 

2. Sum of square error estimation. 

T

w x

1

2

1 if  

1 if  

y x

y x





  

  

18 

Mean Square Error 

Cost function: 
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Mean Square Error 

Problem: ?
T

E x x  
 

  ?E x y 

Computing           and          requires knowledge of 
the probability distribution function of the feature 
vectors. 

T

E x x 
 

 E x y

If the pdf is known or we have a good method to 
estimate it, we might as well use a Bayesian classifier, 
which minimizes the classification error ! 

Here, we want to find a similar result without having 
to know the probability distribution. 

This leads us to the minimum sum of squares 
estimation. 
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Sum of Squares Error 

Instead of                          use the following  

 
cost function: 
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X is a N x l matrix, each row is  

the transpose on one l-dimensional  

training vector ( --> X  is  N x l ). 

X is often referenced as Design Matrix 
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If  X  is a square matrix:  
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Sum of Squares Error 
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      is the l x N   Moore-Penrose    

Pseudo-inverse of the N x l matrix X. 
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Sum of Squares Error 

Recall that the objective is to solve               .  X w y

If N>l, which is often the case in Pattern Recognition, 

then there are more equations than unknowns: the 
system is over determined. 

In general, there is no solution which satisfies all 
equations. 

The solution            corresponds to the minimum 

sum of square solution:  

ŵ X y




2

ˆm in y X w
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Sum of Squares Error - Example 

 
1

ˆ  
T T

w X X X y


 





































































































5.0

7.0
,

6.0

8.0
,

4.0

7.0
,

2.0

6.0
,

6.0

4.0
:

3.0

3.0
,

7.0

2.0
,

4.0

1.0
,

5.0

6.0
,

5.0

4.0
:

2

1




Data: 

N = 10,  

l   = 2+1 = 3 

Task:     minimize   
2

1

( )

N
T

ii

i

J w y w x



 

24 

Sum of Squares Error - Example 
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The Perceptron Cost Function 
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 Cost function: 

Y: subset of the training vectors which are 

    misclassified by the hyperplane  

    defined by w. 
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Linear Support Vector Machine 

So far, we have seen two classifiers with the same 
decision function: 

0
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Perceptron: 

Sum of Squares: 

Goal: 

Their difference consisted in the cost function that 
was optimized to find the weights: 
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Perceptron Problem 

Perceptron: 

Problem:      There is an infinity of classifier that 

                      agree with the above criterion. 

Example: 

The one we want is the  
one that gives optimal  
generalization performance.  

Which one is it ? 
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

 
x 1

x 2
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= + 1     if   
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Sum of Squares Estimator Problem 

Sum of Squares:  
2

0

1

m in

N
T

ii
w

i

y w x w



 

Problem:    The estimator tries to place the hyperplane   

                 so that all the examples have the same 
                 distance from it (+1 for ω1 and –1 for ω2) 

Example: 
A single training example 
can pull the whole decision 
plane 

Even in a linearly separable case, the optimal least 
squares estimator may get training errors !!! 
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Linear Support Vector Machine (SVM) 

Is it possible to design a linear classifier better than 
the perceptron and the SSE? 

 

What are the criterions? 

1. The decision surface should not be affected 
by examples far from it. 

2. It should minimize the risk of error on 
unseen data (maximize generalization). 

3. It should be unique : Not affected by initial 
values or optimization parameters  
(unlike for the perceptron). 

30 

Linear SVM 

1. The decision function should not be affected 
by examples far from it. 

           decision independent of  

 

decision only 
dependent on 
difficult to classify 
examples 
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Linear SVM 

2. It should minimize the risk of errors on unseen 
data (maximize generalization). 

Which of these two decision functions give the best 
generalization performances? 

Intuitively, the best 
hyperplane is the one 
that maximizes the 
distance to each class. 

32 

Margin Maximization 

How can we formalize these two concepts 
mathematically that the decision function is unique? 

The optimal decision function 

is the one that separates 

both classes and maximizes 

the distance between the 

decision hyperplane and the 

closest examples. 

The double of this distance is called the margin. 



17 

33 

x 

xp 

d 

Margin Computation 
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Linear SVM Learning 

Now, we want to: 

1. find w and w0, such that the margin 

is maximized. 
 

( )
2 2

g x
d

w


This is equivalent to: 

 

 

2 0 1

0 2

11
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T
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    

These closest examples, with              are called support vectors. ( ) 1g x 

2 2 /d w

2.  scale w and w0, such that g(x)= +1 for the closest examples 

     of ω1 and g(x)= –1 for the closest examples of ω2. 

         => then the margin is  
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Linear SVM 

Note that: 

1. This formulation provides a unique decision function, because 
there is only one that maximizes the separation between 
positive and negative examples. 

 
 

2. This formulation assumes that the training vectors are 
separable. We will see in the next section how to address the 
non-separable case. 
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SVM Learning is a Constrained Optimization 

Now, how to compute w and w0 according to the criterion: 

2 0 1
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This is a constrained optimization. 

With  labels yi = +1 for examples of ω1  and yi =  -1 for ω2 

this is equivalent to: 
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Lagrange Multipliers 

 0

1
ˆ arg m in   su b jec t to   1   1, ,

2

T T
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w

w w w y w x w i N   

1. The cost function,                  , is convex.  

2. The constraints are linear. 
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Lagrangian Function: 
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  There is a unique solution, 

  that can be found using the method of   
    Lagrange Multipliers. 

38 38 

Constraint Optimization (insertion) 

Problem: Given an objective function f(x) to be optimized and let  

 constraints be given by  hk(x) = ck   ,  

 moving constants to the left,  ==>   hk(x) – ck = gk(x).  

 f(x) and gk(x) must have continuous first partial derivatives 

A Solution:  

 Lagrangian Multipliers                      0 = x f(x) +  Σxλk gk(x) 

 or starting with the Lagrangian :    L (x,λ) = f(x) + Σ λk gk(x).   

                       with  x L (x,λ) = 0. 
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Constrained Optimization in general 

Objective:               subject to arg m in ( )J


 0 0
( ) 1  w ith   ( , )

T T T

ii

i i

y x w w w w

A b





  

 

Lagrangian:  
 

Let us look at an example in 1 dimension. 

There are two cases: 

θ 

i i
A b 

i i
A b 

J(θ) 

θ 

i i
A b 

i i
A b 

J(θ) 

1

L ( , ) ( ) ( )

N

i i i

i

J A b    



  

40 Constrained Optimization:  

First KKT Condition 

Lagrangian: 
1

L ( , ) ( ) ( )

N

i i i

i

J A b    



  

  The constraint is inactive and 

   plays no role. 

      As if it was an unconstrained  
   problem. 

0
i

 

First case:  

  The minimum of J(θ) is inside the feasible region. 

 

i i
A b 

i i
A b 

J(θ) 

̂
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First KKT Condition 

Lagrangian: 
1

L ( , ) ( ) ( )

N

i i i

i

J A b    



  

Second  case:  

 The minimum of J(θ) is outside the feasible region. 

θ 

i i
A b 

J(θ) 

̂

=> The constraint is active. 

       The constraint minimum is at the 
    boundary of the feasible region. 

ˆ 0
i i

A b  

42 

First KKT Condition 

To summarize both cases, we have           or 

 

This can be stated by the single condition: 

0
i

  0
i i

A b  

ˆ( ) 0
i i i

A b   

At the minimum, either the constraint is active or the 
Lagrangian multiplier is null. 

This is the first Karush-Kuhn-Tucker condition. 

Let‘s now look at the second. 



22 

43 

Second KKT Condition 

Objective:                  subject to a rg m in ( )J



i i

A b 

Lagrangian:  

 

Let us look at an example in 2 dimensions: 

1

L ( , ) ( ) ( )

N

i i i

i

J A b    



  

min J(θ)= c1  < c2  < c3  < c4 

The gradient of J(θ) is normal to 

the active constraints at the 

minimum: 
1 1

ˆ( ) TJ
A











ˆL ( , )
0

 




 



θ1 

θ2 1 1
A b 

2 2
A b 

3 3
A b 

J(θ)=c2 

J(θ)= c3 

J(θ)= c4 

isocurves 
of J(θ) 

J(θ)=c1 
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Third KKT Condition 

θ1 

θ2 

̂ p 

Assume a θ in the feasible region 

ˆ p   ˆA p A A A b       0

ˆ( ) TJ
A











Recall that 

ˆ( )T T TJ
p p A







 



ˆ( )
0

T J
p










because    is a 
minimizer 

̂

0
T T

p A  

0  Third KKT condition 
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KKT Conditions 

0
i

 

ˆL ( , )
0

 








ˆ( ) 0
i i i

A b   

For the problem                subject to arg m in ( )J



i i

A b 

The Lagrangian is 
1

L ( , ) ( ) ( )

N

i i i

i

J A b    



  

̂   is a minimizer if the three KKT conditions are 
satisfied: 

KKT1: 

KKT2: 

KKT3: 

46 

KKT Conditions applied to the SVM 

 0

1
ˆ arg m in   su b jec t to   1   1, ,

2

T T

i i

w

w w w y w x w i N   

 0 0

1

1
   L ( , , ) 1

2

N

T T

i i i

i

w w w w y w x w 



     
 

0
ˆ ˆL ( , , )

0
w w

w





KKT2: 

1

ˆ

N

i i i

i

w y x



  

The hyperplane, defined 

through w, is a linear 

combination of the 
examples. 

 0
ˆ ˆ 1 0

T

i i i
y w x w    

 
KKT1: 

The support vectors, for which            , 

are those for which the constrain is 

active, i.e. 

0
i

 

 0
ˆ ˆ 1

T

i i
y w x w 

0

0

ˆ ˆL ( , , )
0

w w

w





KKT2: 

1

0

N

i i

i

y



  Can be used to check your 
implementation. 
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Primal and Dual Problems 

The number of support vectors: 

If the features are discriminative: 

S
N N

S
N N

 0

1
m in   su b jec t to   1   1, ,

2

T T

ii
w

w w y w x w i N  

This is the primal problem, it can be solved 
efficiently using its dual formulation: 

0

0
, ,

1

m ax L ( , , )   su b jec t to   

N

ii i
w w

i

w w w y x


 



 

1

0

N

i i

i

y





0 








KKT 
conditions 

≪ 
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Learning SVM using the Dual Problem 

 0 0

1

1
L ( , , ) 1

2

N
T T

ii i

i

w w w w y w x w 



    
 

1

N

ii i

i

w y x



 

1

0

N

i i

i

y





0

,

1
L ( , , )

2

N N
T

i ji j i j i

i j i

w w y y x x       

 0 0

1

1
L ( , , )

2

N
T T

ii i i i i

i

w w w w w y x y w   



    
 

0 0

1 1 1

1
L ( , , )

2

N N N
T T

ii i i i i

i i i

w w w w w y x w y   

  

     
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Learning SVM using the Dual Problem 

 0 0

1

1
L ( , , ) 1

2

N
T T

ii i

i

w w w w y w x w 



    
 

1

N

ii i

i

w y x



 

1

0

N

i i

i

y





, 1

1ˆ a rg m ax   su b jec t to   0
2

N N N
T

i ji j i j i i i

i j i i

y y x x y


    



     

0
i

 

We only need to solve with respect to λ ! 

0

,

1
L ( , , )

2

N N
T

i ji j i j i

i j i

w w y y x x       

50 

Learning SVM is a Quad. Prog. Probl. 

, 1

                              

1ˆ a rg  m ax   su b jec t to   0
2

N N N

T

i i j i j i j i i

i i j i

y y x x y


    



 
   

 
   0

i
 

This is a standard problem in optimization theory called Convex 
Quadratic Programming. 

Don‘t try to program this yourself ;-) 

In MATLAB, use quadprog, in Scilab, quapro 

In C++ use the library OOQP. 

Once    is found: 

1

ˆˆ

N

i i i

i

w y x



 

 0
ˆ ˆ 1 0

T

i i i
y w x w    

 

ŵ

0
ŵ

̂
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SVM with Non-Separable Classes 

So far, we dealt with the easy case 
of separable classes. 

 

Now what do we do in this case ? 

What‘s the margin here ? 

It is impossible to draw a 
separating hyperplane. 

52 

Soft Margin 

As before, the margin is 
the distance between the 
hyperplanes defined by 

0
1

T
w x w  

m 

The margin is soft if one 
of the points violates 

 0
1

T

i i
y w x w 

There are 3 types of points: 

   - outside the band and correctly classified 

   - inside the band and correctly classified 

   - misclassified 

 0
1

T

i i
y w x w 

 0
0 1

T

i i
y w x w  

 0
0

T

i i
y w x w 
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Slack Variables 

- Outside the band and correctly classified 
- Inside the band and correctly classified 
- Misclassified 

 0
1

T

i i
y w x w 

 0
0 1

T

i i
y w x w  

 0
0

T

i i
y w x w 

The 3 cases can be addressed by a single 
constraint:  0

1
T

i i i
y w x w   

slack variables 

- Outside the band and correctly classified 
- Inside the band and correctly classified 
- Misclassified 

0
i

 

0 1
i

 

1
i

 

ξ measures the deviation of a data point from the 

ideal condition of pattern separability. 
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Slack Variables 

 New Goal:  m in w and  m in # 0
i

 

ξ measures the deviation of a data point from the 

ideal condition of pattern separability. 






1


2


0
0

T

w x w  0
1

T

w x w  
0

1
T

w x w  










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Non-Separable SVM Objective 

 New Goal:  m in w and  m in # 0
i

 

How can we do that mathematically? 

Minimize the average training set error: 

2

1

1
m in ( )

2

N

i

i

w C I 



 

Trade off 
parameter 

indicator  
function 

1 0
( )

0 0

i

i

i

I






 



Problem: This is a non-convex optimization that is NP hard,  
              i.e. impossible to solve ! 

Instead we do: 
2

1

1
m in

2

N

i

i

w C 



 

Moreover, this doesn’t distinguish between disastrous errors and 
near misses. 
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As before, this is solved using the Lagrangian and the KKT 
conditions.  

(For a complete derivation of the Lagrangian see e.g. “A Tutorial on      
Support Vector Machines for Pattern Recognition” by C.J.C Burges ) 
 

The dual problem turns out to be: 

, 1

1ˆ a rg m ax   su b jec t to   0
2

N N N
T

i ji j i j i i i

i j i i

y y x x y


    



     

0
i

C 

Non-Separable SVM Dual Problem 

Objective: 

 
2

0
,

1

1
m in   su b jec t to   1   1, ,

2i

N
T

ii i i
w

i

w C y w x w i N


 



    

an d   0
i

 

Who can spot the difference with  
the original dual problem? This is a huge difference ! 
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Separable vs Non-Separable SVM 

Primal problem: 

 
2

0
,

1

1
m in   su b jec t to   1   1, ,

2i

N
T

ii i i
w

i

w C y w x w i N


 



    

an d   0
i

 

Dual problem: 

, 1

1ˆ a rg m ax   su b jec t to   0
2

N N N
T

i ji j i j i i i

i j i i

y y x x y


    



     

0
i

C 

The separable case is a special case of this case. What 
should be done to get back to the separable case? 

If           , we get back to the separable case. C  
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Influence of the Parameter C 

2

,
1

1
m in   

2i

N

i
w

i

w C






 

improves 
generalization 

reduce training errors 

If C is high ... ? 

fewer training errors,  
lower generalization performance,  
less support vectors. 

If C is low ... ? 

the opposite ! 

C is generally adjusted by trial/error on a validation 

set. 
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As before, once    is found: 

Non-Separable SVM 

1

ˆˆ

N

i i i

i

w y x



 

   0
ˆ ˆ 1 0

T

i i i i
y w x w     

 

ŵ

0
ŵ

̂

The support vectors are those for which          !  

But what are the values of      ?                  

ˆ 0
i

 

i


From the KKT-conditions of the full Lagrangian for the 
non-separable SVM follows:  

ˆ  w ith       0
i i

i C    

 0
ˆ ˆ 1 0

T

i i i
y w x w    

 


0
ŵ
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Applications 

Linear classifiers are best applied to ... 

... linear problems ! 

However, in practice, it is difficult to find linear 
problems. But even if the problem is not 
linearly separable, Sum of Square Classifier 
and Non-Separable Linear SVM may be applied. 

 

Though, due to the simplicity of the classifier, 
we expect sub-optimal results. 
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Zip Code Recognition 

Example of application: Zip Code Recognition 

A Standardized set of normalized digit data is 
available at:  
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/ 

• 7291 digits used for training 

• 2007 digits used for testing 

• 1 digit = 16x16 grey level value 

Example: 
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Zip Code Feature 

Using as feature vector, the simplest of its 
features: the pixel intensities 















 













































0

0

0

1 5

2 4

4 3

0

1 2

0

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

i
x

2 5 6

2 5 6

0

1, , 7 2 9 1

i

i N

x

w

w

 







ℝ 

ℝ 

ℝ 

http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/
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Multiple Classes 

In this example, there are 10 classes, but all the linear 
classifiers that we have reviewed can only discriminate 
between 2 classes. 

So what can we do ? 

We use the one against all strategy: 
We build 10 classifiers: 

0 0 0

0
( )

T
g x x w w 

> 0, x is the digit 0 

< 0, x is any other digit 

9 9 9

0
( )

T
g x x w w 

> 0, x is the digit 9 

< 0, x is any other digit 
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Zip Code Sum of Squares Classifiers 

Example 1: Sum of Squares classifier (0 versus rest) 

1,1 1,2 1,2 5 6
1X x x x 

  X is the 7291x257 data matrix. 

1

1

1

y

 

 

 
 

 
 

y is the 7291x1 column vector 

representing class belonging. 

 +1  for the digit 0 

  -1  for any digit in [1, 9] 

e.g. x1  

represents the 
digit 0 

 
0

1

0

0

T Tw
X X X y

w

 
 

 

Optimal sum of squares classifier 
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Zip Code Linear SVM Classifier 

, 1

1ˆ a rg m ax   su b jec t to   0
2

N N N
T

i ji j i j i i i

i j i i

y y x x y


    



     

0
i

C 
0

1

ˆ
S

N

ii i

i

w y x



 

 
0 0

0
1 0

T

ii i
y x w w    

 

0

w

0

0
w

Example 2: Linear SVM Classifier 

Training: 

Classifying: 

0 0

0

T

x w w
> 0, x is the digit 0 

< 0, x is any other digit 
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Conclusion 

Linear classifiers are: 

• Efficient, 

• Simple and easy to train and classify. 

 

However, they do not attain the best 
performance when the features are not linearly 
separable. This is because the model is too 
simplistic: The number of degrees of freedom is 
just 1+dimensionality of the feature space. 


