
1

1

 Linear Classifiers

Previous lectures introduced the Bayes Classifier:

• Optimal accuracy in terms of minimizing the
 classification error probability.

• If the probability distribution is appropriate for
 the novel data.

Therefore, instead of modeling the whole feature
space, we often prefer to learn the discrimination
function directly.

In real world applications, it is very difficult to obtain
the appropriate probability distribution.

2

Linear Classifiers

Bayes classifier:

data
probability

density
estimation

classification
rule

decision

learning

data
classification

function
decision

learning

Linear Classifier:

2

3

Linear Classifiers

Requirement: The data must be linearly separable.

Ok Not ok!

There is no line that
can separate both

classes!

4

Linear Classifiers

2

0

1 1 2 2 0

() 0 :

() ... 0

T

l l

g x w x w g

g x w x w x w x w

   

     

() 0g x 

1
x

2
x

1 20 0

T T

w x w w x w  

If x1 and x2 are two points on the decision hyperplane:

in l dimensions

hence w is perpendicular to the hyperplane

1 2
 () 0

T

w x x  

ℝ ℝ

3

5

+

-

x

z

d

Linear Classifiers

1
x

2
x

g (x)
z

w


0
w

d
w


If there is no axis intercept the
hyperplane passes through the origin.

g(x) is a measure of the distance

from the hyperplane to x.

Its sign marks on which side of the hyperplane x is.

0
() 0

T

g x w x w  

6

x

xp

d

Linear Classifier: Margin Computation

0
() 0

T
g x w x w  Recall

The direction normal to the hyperplane is given by: w
Hence,

p

w
x x d

w
 

signed distance

0
() ()

T

p

w
g x w x d w

w
  

()

T
w w

g x d d w
w

  

()g x
d

w
 

0
()

T

T

p

w w
g x w x w d

w
   

4

7

The Perceptron

The Perceptron is a learning algorithm that adjusts the

weights wi of its weight vector w such that for all

examples xi :

1

2

0

0

T

i

T

i

w x x

w x x





  

  

1

0

l

w

w
w

w

 

 

 
 

 
 

1

1

l

x

x
x

 

 

 
 

 
 

Here, the intercept is included in w :

It is assumed that the problem is linearly

separable. Hence this vector w exists.

 () 0
T

g x w x  

8

The Perceptron

 w must minimize the classification error.

 w is found using an optimization algorithm.

General steps towards a classifier:

1. Define a cost function to be minimized.

2. Choose an algorithm to minimize it.

3. The minimum corresponds to a solution.

5

9

The Perceptron Cost Function

1

2

0

0

T

T

w x x

w x x





  

  

Goal:

0
T

x
w x x Y   

() 0 :

() 0 if

J w w Y

J w Y

   

  


()
T

x

x Y

J w w x



 Cost function:

Y: subset of the training vectors which are

 misclassified by the hyperplane

 defined by w.

i

i

x 1 2

x 2 1

= -1 if b u t is c lass ified in

= + 1 if b u t is c lass ified in

i

i

x

x

  

  





10

The Perceptron Algorithm

1
w

()J w
is continuous and
piecewise linear.

Y changes

Y is constant

J(w) is minimized by gradient descent:

 (update w by taking steps that are proportional to the

 negative of the gradient of the cost function J(w))

()
(t+ 1) (t)

t

J w
w w w w

w



      



()
()

T

x x

x Y x Y

J w
w x x

w w
 

 

 
 

 
  (1) ()

t x

x Y

w t w t x 



   

()
T

x

x Y

J w w x



 

6

11

The Perceptron Algorithm

Example:

w(t)

misclassified

w(t+1)

1


2


(1) ()
t x

x Y

w t w t x 



   

x
x

x 1
H ere , = -1 b ecau se x 

t x
x 

t
H ere , = 0 .2

12

The Perceptron Algorithm

Example:

w(t)

w(t+1)

1


2


x
x

Note that must be chosen carefully, if it is too
large, more errors will occur.

t


t x
x 

t
H ere , = 1

more misclassifications

 is a critical parameter of the algorithm ! t


(t)

(t+1)

7

13

The Perceptron Algorithm

The perceptron converges in a finite number
of iterations to a solution if:

t

c

lim

lim

t

t

0k

2

k
t

t

0k

k
t























 :e.g.

 is set to be large at the
beginning and gets smaller and
smaller as the iterations proceed.

t


The perceptron stops as soon as the last
misclassification disappears: Is this optimal?

14

Perceptron: Online Learning

This training of the Perceptron is called “reward and
punishment algorithm”.

1
(1) () if () 0 an d

T

t t tt
w t w t x w t x x     

2
(1) () if () 0 an d

T

t t tt
w t w t x w t x x     

(1) () o th erw isew t w t 

The misclassified training examples can be used
cyclically, one after the other.

The examples are reused until they are all classified
correctly.

8

15

The Perceptron as a Neural Network

Once the perceptron is trained, it is used to perform
the classification:

1

2

if 0 a s s ig n to

if 0 a s s ig n to

T

T

w x x

w x x









The perceptron is the simplest form of a
“Neural Network”:

synaptic
weights

activation
function

f

1

-1
T

w x

16

Least Squares Methods

Linear classifiers are attractive because:

• They are simple and

• computationally efficient.

The Perceptron is used in the case where the
training examples are linearly separable.

Can we still use a simple linear classifier
where the training examples are NOT linearly
separable ?

9

17

Least Squares Methods

We want that the difference between the output of

the linear classifier:

and the desired outputs (class labels):

to be small.

What does small mean ?

We will describe two criterions:

1. Mean square error estimation, and

2. Sum of square error estimation.

T

w x

1

2

1 if

1 if

y x

y x





  

  

18

Mean Square Error

Cost function:

Find: ˆ a rg m in ()
w

w J w

 is minimum when ()J w
()

0
J w

w






 
T T()

2
J w

E y w x x
w


   
 

T T

2 2
T

E x y w E x x     
   

1
T T

ˆ w E x x E x y


    
   

1 1 1 2 1

1 2

[] []... []

[]

[] []... []

l

T

x

l l l l

E x x E x x E x x

E x x R

E x x E x x E x x

 

 
 
 

  

 is the auto-correlation matrix

1

T

[]

[] ...

[]
l

E x y

E x y

E x y

 

 

 

  

is the cross-
correlation vector

 
2

T

()J w E y w x
 

 
  

10

19

Mean Square Error

Problem: ?
T

E x x  
 

  ?E x y 

Computing and requires knowledge of
the probability distribution function of the feature
vectors.

T

E x x 
 

 E x y

If the pdf is known or we have a good method to
estimate it, we might as well use a Bayesian classifier,
which minimizes the classification error !

Here, we want to find a similar result without having
to know the probability distribution.

This leads us to the minimum sum of squares
estimation.

20

Sum of Squares Error

Instead of use the following

cost function:

 
2

T

()J w E y w x
 

 
  

 
2

T

1

()

N

ii

i

J w y w x



 

 is minimum when ()J w
()

0
J w

w






 
T T

1

()
2

N

i ii

i

J w
y w x x

w 


  




T T T

1 1

2 2

N N

i i ii

i i

y x w x x

 

 
    

 
 

X is a N x l matrix, each row is

the transpose on one l-dimensional

training vector (--> X is N x l).

X is often referenced as Design Matrix

1 2
[, , ...,]

T

N
X x x x

1 2
[, , ...,]

T

N
y y y y

desired responses column vector. 2 2
T T

X y X X w  

11

21

 
1

ˆ
T T

w X X X y


 

If X is a square matrix:
1

X X
 


Sum of Squares Error

()
2 2

T TJ w
X y X X w

w


 



()
ˆ0

T TJ w
X X w X y

w


  



ˆ w X y


 

 
1

T T
X X X X





X


 is the l x N Moore-Penrose

Pseudo-inverse of the N x l matrix X.

22

Sum of Squares Error

Recall that the objective is to solve . X w y

If N>l, which is often the case in Pattern Recognition,

then there are more equations than unknowns: the
system is over determined.

In general, there is no solution which satisfies all
equations.

The solution corresponds to the minimum

sum of square solution:

ŵ X y




2

ˆm in y X w

12

23

Sum of Squares Error - Example

 
1

ˆ
T T

w X X X y


 





































































































5.0

7.0
,

6.0

8.0
,

4.0

7.0
,

2.0

6.0
,

6.0

4.0
:

3.0

3.0
,

7.0

2.0
,

4.0

1.0
,

5.0

6.0
,

5.0

4.0
:

2

1




Data:

N = 10,

l = 2+1 = 3

Task: minimize  
2

1

()

N
T

ii

i

J w y w x



 

24

Sum of Squares Error - Example

 () 0
T

g x w x 

0 .4 0 .5 1

0 .6 0 .5 1

0 .1 0 .4 1

0 .2 0 .7 1

0 .3 0 .3 1
 ,

0 .4 0 .6 1

0 .6 0 .2 1

0 .7 0 .4 1

0 .8 0 .6 1

0 .7 0 .5 1

X

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

1

1

1

1

1

1

1

1

1

1

y

 

 

 

 

 

 

 

  
 

 
 
 

 


 

  

2 .8 2 .2 4 4 .8

2 .2 4 2 .4 1 4 .7 ,

4 .8 4 .7 1 0

T
X X

 

 

 

  

1 .6

 0 .1

0 .0

T
X y

 

 

 

  

1

3 .1 3

 () 0 .2 4

1 .3 4

T T
w X X X y



 

 
  

 

  

1
() ?

T T
w X X X y


 

13

25

The Perceptron Cost Function

1

2

0

0

T

T

w x x

w x x





  

  

Goal:

()
T

x

x Y

J w w x



 Cost function:

Y: subset of the training vectors which are

 misclassified by the hyperplane

 defined by w.

i

i

x 1 2

x 2 1

= -1 if b u t is c lass ified in

= + 1 if b u t is c lass ified in

i

i

x

x

  

  





0
T

x
w x x Y   

() 0 :

() 0 if

J w w Y

J w Y

   

  


26

Linear Support Vector Machine

So far, we have seen two classifiers with the same
decision function:

0
() 0

T

g x w x w  

0 1

0 2

0

0

T

T

w x w x

w x w x





   

   

Perceptron:

Sum of Squares:

Goal:

Their difference consisted in the cost function that
was optimized to find the weights:

 
2

0

1

m in

N
T

ii
w

i

y w x w



 

() m it
T

x

x Y

J w w x



 
x 1

x 2

= -1 if

= + 1 if

x

x

 

 





14

27

Perceptron Problem

Perceptron:

Problem: There is an infinity of classifier that

 agree with the above criterion.

Example:

The one we want is the
one that gives optimal
generalization performance.

Which one is it ?

()
T

x

x Y

J w w x



 
x 1

x 2

= -1 if

= + 1 if

x

x

 

 





28

Sum of Squares Estimator Problem

Sum of Squares:  
2

0

1

m in

N
T

ii
w

i

y w x w



 

Problem: The estimator tries to place the hyperplane

 so that all the examples have the same
 distance from it (+1 for ω1 and –1 for ω2)

Example:
A single training example
can pull the whole decision
plane

Even in a linearly separable case, the optimal least
squares estimator may get training errors !!!

15

29

Linear Support Vector Machine (SVM)

Is it possible to design a linear classifier better than
the perceptron and the SSE?

What are the criterions?

1. The decision surface should not be affected
by examples far from it.

2. It should minimize the risk of error on
unseen data (maximize generalization).

3. It should be unique : Not affected by initial
values or optimization parameters
(unlike for the perceptron).

30

Linear SVM

1. The decision function should not be affected
by examples far from it.

 decision independent of

decision only
dependent on
difficult to classify
examples

16

31

Linear SVM

2. It should minimize the risk of errors on unseen
data (maximize generalization).

Which of these two decision functions give the best
generalization performances?

Intuitively, the best
hyperplane is the one
that maximizes the
distance to each class.

32

Margin Maximization

How can we formalize these two concepts
mathematically that the decision function is unique?

The optimal decision function

is the one that separates

both classes and maximizes

the distance between the

decision hyperplane and the

closest examples.

The double of this distance is called the margin.

17

33

x

xp

d

Margin Computation

0
() 0

T
g x w x w  Recall

The direction normal to the hyperplane is given by: w
Hence,

p

w
x x d

w
 

signed distance

0
() ()

T

p

w
g x w x d w

w
  

()

T
w w

g x d d w
w

  

()g x
d

w
 

0
()

T

T

p

w w
g x w x w d

w
   

34

Linear SVM Learning

Now, we want to:

1. find w and w0, such that the margin

is maximized.

()
2 2

g x
d

w


This is equivalent to:

2 0 1

0 2

11
ˆ m in su b jec t to

2 1

T

T
w

w x w x
w w

w x w x





     
 

    

These closest examples, with are called support vectors. () 1g x 

2 2 /d w

2. scale w and w0, such that g(x)= +1 for the closest examples

 of ω1 and g(x)= –1 for the closest examples of ω2.

 => then the margin is

18

35

Linear SVM

Note that:

1. This formulation provides a unique decision function, because
there is only one that maximizes the separation between
positive and negative examples.

2. This formulation assumes that the training vectors are
separable. We will see in the next section how to address the
non-separable case.

36

SVM Learning is a Constrained Optimization

Now, how to compute w and w0 according to the criterion:

2 0 1

0 2

11
ˆ arg m in su b jec t to

2 1

T

T
w

w x w x
w w

w x w x





     
 

    

This is a constrained optimization.

With labels yi = +1 for examples of ω1 and yi = -1 for ω2

this is equivalent to:

 0

1
ˆ arg m in su b jec t to 1 1, ,

2

T T

ii

w

w w w y w x w i N   

19

37

Lagrange Multipliers

 0

1
ˆ arg m in su b jec t to 1 1, ,

2

T T

ii

w

w w w y w x w i N   

1. The cost function, , is convex.

2. The constraints are linear.

()
T

J w w w

Lagrangian Function:

 0 0

1

1
L (, ,) 1

2

N
T T

ii i

i

w w w w y w x w 



    
 

 There is a unique solution,

 that can be found using the method of
 Lagrange Multipliers.

38 38

Constraint Optimization (insertion)

Problem: Given an objective function f(x) to be optimized and let

 constraints be given by hk(x) = ck ,

 moving constants to the left, ==> hk(x) – ck = gk(x).

 f(x) and gk(x) must have continuous first partial derivatives

A Solution:

 Lagrangian Multipliers 0 = x f(x) + Σxλk gk(x)

 or starting with the Lagrangian : L (x,λ) = f(x) + Σ λk gk(x).

 with x L (x,λ) = 0.

20

39

Constrained Optimization in general

Objective: subject to arg m in ()J


 0 0
() 1 w ith (,)

T T T

ii

i i

y x w w w w

A b





  

 

Lagrangian:

Let us look at an example in 1 dimension.

There are two cases:

θ

i i
A b 

i i
A b 

J(θ)

θ

i i
A b 

i i
A b 

J(θ)

1

L (,) () ()

N

i i i

i

J A b    



  

40 Constrained Optimization:

First KKT Condition

Lagrangian:
1

L (,) () ()

N

i i i

i

J A b    



  

 The constraint is inactive and

 plays no role.

 As if it was an unconstrained
 problem.

0
i

 

First case:

 The minimum of J(θ) is inside the feasible region.

i i
A b 

i i
A b 

J(θ)

̂

21

41

First KKT Condition

Lagrangian:
1

L (,) () ()

N

i i i

i

J A b    



  

Second case:

 The minimum of J(θ) is outside the feasible region.

θ

i i
A b 

J(θ)

̂

=> The constraint is active.

 The constraint minimum is at the
 boundary of the feasible region.

ˆ 0
i i

A b  

42

First KKT Condition

To summarize both cases, we have or

This can be stated by the single condition:

0
i

  0
i i

A b  

ˆ() 0
i i i

A b   

At the minimum, either the constraint is active or the
Lagrangian multiplier is null.

This is the first Karush-Kuhn-Tucker condition.

Let‘s now look at the second.

22

43

Second KKT Condition

Objective: subject to a rg m in ()J



i i

A b 

Lagrangian:

Let us look at an example in 2 dimensions:

1

L (,) () ()

N

i i i

i

J A b    



  

min J(θ)= c1 < c2 < c3 < c4

The gradient of J(θ) is normal to

the active constraints at the

minimum:
1 1

ˆ() TJ
A











ˆL (,)
0

 




 



θ1

θ2 1 1
A b 

2 2
A b 

3 3
A b 

J(θ)=c2

J(θ)= c3

J(θ)= c4

isocurves
of J(θ)

J(θ)=c1

44

Third KKT Condition

θ1

θ2

̂ p

Assume a θ in the feasible region

ˆ p   ˆA p A A A b       0

ˆ() TJ
A











Recall that

ˆ()T T TJ
p p A







 



ˆ()
0

T J
p










because is a
minimizer

̂

0
T T

p A  

0  Third KKT condition

23

45

KKT Conditions

0
i

 

ˆL (,)
0

 








ˆ() 0
i i i

A b   

For the problem subject to arg m in ()J



i i

A b 

The Lagrangian is
1

L (,) () ()

N

i i i

i

J A b    



  

̂ is a minimizer if the three KKT conditions are
satisfied:

KKT1:

KKT2:

KKT3:

46

KKT Conditions applied to the SVM

 0

1
ˆ arg m in su b jec t to 1 1, ,

2

T T

i i

w

w w w y w x w i N   

 0 0

1

1
 L (, ,) 1

2

N

T T

i i i

i

w w w w y w x w 



     
 

0
ˆ ˆL (, ,)

0
w w

w





KKT2:

1

ˆ

N

i i i

i

w y x



  

The hyperplane, defined

through w, is a linear

combination of the
examples.

 0
ˆ ˆ 1 0

T

i i i
y w x w    

 
KKT1:

The support vectors, for which ,

are those for which the constrain is

active, i.e.

0
i

 

 0
ˆ ˆ 1

T

i i
y w x w 

0

0

ˆ ˆL (, ,)
0

w w

w





KKT2:

1

0

N

i i

i

y



  Can be used to check your
implementation.

24

47

Primal and Dual Problems

The number of support vectors:

If the features are discriminative:

S
N N

S
N N

 0

1
m in su b jec t to 1 1, ,

2

T T

ii
w

w w y w x w i N  

This is the primal problem, it can be solved
efficiently using its dual formulation:

0

0
, ,

1

m ax L (, ,) su b jec t to

N

ii i
w w

i

w w w y x


 



 

1

0

N

i i

i

y





0 








KKT
conditions

≪

48

Learning SVM using the Dual Problem

 0 0

1

1
L (, ,) 1

2

N
T T

ii i

i

w w w w y w x w 



    
 

1

N

ii i

i

w y x



 

1

0

N

i i

i

y





0

,

1
L (, ,)

2

N N
T

i ji j i j i

i j i

w w y y x x       

 0 0

1

1
L (, ,)

2

N
T T

ii i i i i

i

w w w w w y x y w   



    
 

0 0

1 1 1

1
L (, ,)

2

N N N
T T

ii i i i i

i i i

w w w w w y x w y   

  

     

25

49

Learning SVM using the Dual Problem

 0 0

1

1
L (, ,) 1

2

N
T T

ii i

i

w w w w y w x w 



    
 

1

N

ii i

i

w y x



 

1

0

N

i i

i

y





, 1

1ˆ a rg m ax su b jec t to 0
2

N N N
T

i ji j i j i i i

i j i i

y y x x y


    



     

0
i

 

We only need to solve with respect to λ !

0

,

1
L (, ,)

2

N N
T

i ji j i j i

i j i

w w y y x x       

50

Learning SVM is a Quad. Prog. Probl.

, 1

1ˆ a rg m ax su b jec t to 0
2

N N N

T

i i j i j i j i i

i i j i

y y x x y


    



 
   

 
   0

i
 

This is a standard problem in optimization theory called Convex
Quadratic Programming.

Don‘t try to program this yourself ;-)

In MATLAB, use quadprog, in Scilab, quapro

In C++ use the library OOQP.

Once is found:

1

ˆˆ

N

i i i

i

w y x



 

 0
ˆ ˆ 1 0

T

i i i
y w x w    

 

ŵ

0
ŵ

̂

26

51

SVM with Non-Separable Classes

So far, we dealt with the easy case
of separable classes.

Now what do we do in this case ?

What‘s the margin here ?

It is impossible to draw a
separating hyperplane.

52

Soft Margin

As before, the margin is
the distance between the
hyperplanes defined by

0
1

T
w x w  

m

The margin is soft if one
of the points violates

 0
1

T

i i
y w x w 

There are 3 types of points:

 - outside the band and correctly classified

 - inside the band and correctly classified

 - misclassified

 0
1

T

i i
y w x w 

 0
0 1

T

i i
y w x w  

 0
0

T

i i
y w x w 

27

53

Slack Variables

- Outside the band and correctly classified
- Inside the band and correctly classified
- Misclassified

 0
1

T

i i
y w x w 

 0
0 1

T

i i
y w x w  

 0
0

T

i i
y w x w 

The 3 cases can be addressed by a single
constraint:  0

1
T

i i i
y w x w   

slack variables

- Outside the band and correctly classified
- Inside the band and correctly classified
- Misclassified

0
i

 

0 1
i

 

1
i

 

ξ measures the deviation of a data point from the

ideal condition of pattern separability.

54

Slack Variables

 New Goal: m in w and  m in # 0
i

 

ξ measures the deviation of a data point from the

ideal condition of pattern separability.






1


2


0
0

T

w x w  0
1

T

w x w  
0

1
T

w x w  











28

55

Non-Separable SVM Objective

 New Goal: m in w and  m in # 0
i

 

How can we do that mathematically?

Minimize the average training set error:

2

1

1
m in ()

2

N

i

i

w C I 



 

Trade off
parameter

indicator
function

1 0
()

0 0

i

i

i

I






 



Problem: This is a non-convex optimization that is NP hard,
 i.e. impossible to solve !

Instead we do:
2

1

1
m in

2

N

i

i

w C 



 

Moreover, this doesn’t distinguish between disastrous errors and
near misses.

56

As before, this is solved using the Lagrangian and the KKT
conditions.

(For a complete derivation of the Lagrangian see e.g. “A Tutorial on
Support Vector Machines for Pattern Recognition” by C.J.C Burges)

The dual problem turns out to be:

, 1

1ˆ a rg m ax su b jec t to 0
2

N N N
T

i ji j i j i i i

i j i i

y y x x y


    



     

0
i

C 

Non-Separable SVM Dual Problem

Objective:

 
2

0
,

1

1
m in su b jec t to 1 1, ,

2i

N
T

ii i i
w

i

w C y w x w i N


 



    

an d 0
i

 

Who can spot the difference with
the original dual problem? This is a huge difference !

29

57

Separable vs Non-Separable SVM

Primal problem:

 
2

0
,

1

1
m in su b jec t to 1 1, ,

2i

N
T

ii i i
w

i

w C y w x w i N


 



    

an d 0
i

 

Dual problem:

, 1

1ˆ a rg m ax su b jec t to 0
2

N N N
T

i ji j i j i i i

i j i i

y y x x y


    



     

0
i

C 

The separable case is a special case of this case. What
should be done to get back to the separable case?

If , we get back to the separable case. C  

58

Influence of the Parameter C

2

,
1

1
m in

2i

N

i
w

i

w C






 

improves
generalization

reduce training errors

If C is high ... ?

fewer training errors,
lower generalization performance,
less support vectors.

If C is low ... ?

the opposite !

C is generally adjusted by trial/error on a validation

set.

30

59

As before, once is found:

Non-Separable SVM

1

ˆˆ

N

i i i

i

w y x



 

   0
ˆ ˆ 1 0

T

i i i i
y w x w     

 

ŵ

0
ŵ

̂

The support vectors are those for which !

But what are the values of ?

ˆ 0
i

 

i


From the KKT-conditions of the full Lagrangian for the
non-separable SVM follows:

ˆ w ith 0
i i

i C    

 0
ˆ ˆ 1 0

T

i i i
y w x w    

 


0
ŵ

60

Applications

Linear classifiers are best applied to ...

... linear problems !

However, in practice, it is difficult to find linear
problems. But even if the problem is not
linearly separable, Sum of Square Classifier
and Non-Separable Linear SVM may be applied.

Though, due to the simplicity of the classifier,
we expect sub-optimal results.

31

61

Zip Code Recognition

Example of application: Zip Code Recognition

A Standardized set of normalized digit data is
available at:
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/

• 7291 digits used for training

• 2007 digits used for testing

• 1 digit = 16x16 grey level value

Example:

62

Zip Code Feature

Using as feature vector, the simplest of its
features: the pixel intensities















 













































0

0

0

1 5

2 4

4 3

0

1 2

0

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

i
x

2 5 6

2 5 6

0

1, , 7 2 9 1

i

i N

x

w

w

 







ℝ

ℝ

ℝ

http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/

32

63

Multiple Classes

In this example, there are 10 classes, but all the linear
classifiers that we have reviewed can only discriminate
between 2 classes.

So what can we do ?

We use the one against all strategy:
We build 10 classifiers:

0 0 0

0
()

T
g x x w w 

> 0, x is the digit 0

< 0, x is any other digit

9 9 9

0
()

T
g x x w w 

> 0, x is the digit 9

< 0, x is any other digit

64

Zip Code Sum of Squares Classifiers

Example 1: Sum of Squares classifier (0 versus rest)

1,1 1,2 1,2 5 6
1X x x x 

  X is the 7291x257 data matrix.

1

1

1

y

 

 

 
 

 
 

y is the 7291x1 column vector

representing class belonging.

 +1 for the digit 0

 -1 for any digit in [1, 9]

e.g. x1

represents the
digit 0

 
0

1

0

0

T Tw
X X X y

w

 
 

 

Optimal sum of squares classifier

33

65

Zip Code Linear SVM Classifier

, 1

1ˆ a rg m ax su b jec t to 0
2

N N N
T

i ji j i j i i i

i j i i

y y x x y


    



     

0
i

C 
0

1

ˆ
S

N

ii i

i

w y x



 

 
0 0

0
1 0

T

ii i
y x w w    

 

0

w

0

0
w

Example 2: Linear SVM Classifier

Training:

Classifying:

0 0

0

T

x w w
> 0, x is the digit 0

< 0, x is any other digit

66

Conclusion

Linear classifiers are:

• Efficient,

• Simple and easy to train and classify.

However, they do not attain the best
performance when the features are not linearly
separable. This is because the model is too
simplistic: The number of degrees of freedom is
just 1+dimensionality of the feature space.

