Logistic Regression

Two Worlds: Probabilistic & Algorithmic

We know two conceptual approaches to classification:
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Bayes Classifier

Probabilistic classifier with a
generative setup based on
class density models

Bayes (Gauss), Naive Bayes

“Direct” Classifiers

Find best parameter (e.g. W)
with respect to a specific loss
function measuring
misclassification

Perceptron, SVM, Tree, ANN

Can we have a probabilistic classifier with
a modelling focus on classification?




Advantages of Both Worlds

* Posterior distribution has advantages over classification label:
* Asymmetric risks: need classification probability

* Classification certainty: Indicator if decision in unsure

* Algorithmic approach with direct learning has advantages:
* Focus of modelling power on correct classification where it counts

* Easier decision line interpretation

* Combination?
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Towards a “Direct” Probabilistic Classifier

* |dea 1: Directly learn a posterior distribution

For classification with the Bayes classifier, the posterior distribution is
relevant. We can directly estimate a model of this distribution (we called this
as a discriminative classifier in Naive Bayes). We know from Naive Bayes that
we can probably expect a good performance from the posterior model.

* |dea 2: Extend linear classification with probabilistic interpretation

The linear classifier outputs a distance to the decision plane. We can use this
value and interpret it probabilistically: “The further away, the more certain”

Logistic Regression

The Logistic Regression will implement both ideas: It is a model of a
posterior class distribution for classification and can be interpreted
as a probabilistic linear classifier. But it is a fully probabilistic model,
not only a “post-processing” of a linear classifier.

It extends the hyperplane decision idea to Bayes world

* Direct model of the posterior for classification
* Probabilistic model (classification according to a probability distribution)
 Discriminative model (models posterior rather than likelihood and prior)

* Linear model for classification
* Simple and accessible (we can understand that)
* We can study the relation to other linear classifiers, i.e. SVM




History of Logistic Regression

* Logistic Regression is a very “old” method of statistical analysis
and in widespread use, especially in the traditional statistical
community (not machine learning).

1957/58, Walker, Duncan, Cox

* A method more often used to study and identify explaining factors
rather than to do individual prediction.
Statistical analysis vs. prediction focus of modern machine learning
Many medical studies of risk factors etc. are based on logistic regression

Statistical Data Models

We do not know P(X,y) but we can assume a certain form.
---> This is called a data model.

Simplest form besides constant (one prototype) is a linear model.

d
Lin, (X) =D WX + Wy = (W, X)+W, =W X+ W,
i=1
L]
X w

» Linear Methods:
Classification: Logistic Regression (notypo!)
Regression: Linear Regression




Repetition: Linear Classifier

Linear classification rule:
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Repetition: Posterior Distribution

* Classification with Posterior distribution: Bayes

Based on class densities and a prior
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Combination: Discriminative Classifier

Decision boundary
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Probabilistic interpretation of classification
output: ~distance to separation plane

Notation Changes

* We work with two classes
Data with (numerical) feature vectors X and labels y € {0, 1}

We do not use the notation of Bayes with w anymore. We will need the explicit label value of y
in our models later.

* Classification goal: infer the best class label {0 or 1} for a given feature point

y" = arg yren{gﬁ}l’(ylx)

* All our modeling focuses only on the posterior of having class 1:
P(y=11x)

¢ Obtaining the other is trivial: Py=0lx)=1-Py=1|x)




Parametric Posterior Model

We need a model for the posterior distribution, depending on the
feature vector (of course) and neatly parameterized.

Py=11x60) =f(x; )

The linear classifier is a good starting point. We know its
parametrization very well:

glx; wowy) =wlx +w,
We thus model the posterior as a function of the linear classifier:

P(y = 1| x,w,wp) = f(W'x + wy)

Posterior from classification result: “scaled distance” to decision plane

Logistic Function

To use the unbounded distance to the decision plane in a probabilistic
setup, we need to map it into the interval [0, 1]
This is very similar as we did in neural nets: activation function

The logistic function a(x) squashes a value x € Rto [0, 1]

1
1+e™*

o(x) =

The logistic function is a smooth, soft threshold
o(x) »1 x->o
o(x) >0 x- —o0

a(0) =+




The Logistic Function

Logistic Function

1.0
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The Logistic "Regression”




The Logistic Regression Posterior

We model the posterior distribution for classification in a two-
classes-setting by applying the logistic function to the linear
classifier:

P(y = 1| x) = a(g(x))

1

— — T —
P(y - 1| x'w'WO) - f(W x+W0) - 1+ e_(wa+W0)

This a location-dependent model of the posterior distribution, parametrized by a
linear hyperplane classifier.

Logistic Regression is a Linear Classifier

The logistic regression posterior leads to a linear classifier:

1
1+ exp(—(WTx + wy))

Py = 1| x,w,wp) =
Ply=0| x,wowy) =1—-P(y =1| x,w,wy)

1
Py =1] x,w,wy) > 5 = YV= 1 classification; y = 0 otherwise

1
Classification boundary is at: Py =1| x,w,wy) = 3

1 1
=_ T —
1+exp(—WTx+wy)) 2 = wx+wy,=0

Classification boundary is a hyperplane




Interpretation: Logit

Is the choice of the logistic function justified?

* Yes, the logit is a linear function of our data:
Logit: log of the odds ratio: In 1%)

P(y =1 |x) T The linear function (~distance from
nm =w Xx+wp decision plane) directly expresses our
y = classification certainty, measured by the
“odds ratio”:
double distance < squared odds
eg. 3:2-9:4

1

e But other choices are valid, too
They lead to other models than logistic regression, e.g. probit regression
— Generalized Linear Models (GLM) E[y] — f—l(wa + WO)

The Logistic Regression

* So far we have made no assumption on the datal

* We can get I'(X) from a generative model or model it
directly as function of the data (discriminative)

Logistic Regression:
Model: The logit r(X) = 10g£g:;:2 = logﬁ
is a linear function of the data
d
r(x)= Iogﬁ=2w,x,+wO =(W,X)
~ B B = o\) 1
<=> P(y=1] X)_G(<W’X>)_1+exp(—<v~v 3)
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Training a Posterior Distribution Model

The posterior model for classification requires training. Logistic
regression is not just a post-processing of a linear classifier. Learning
of good parameter values needs be done with respect to the
probabilistic meaning of the posterior distribution.

* In the probabilistic setting, learning is usually estimation

We now have a slightly different situation than with Bayes: We do not need
class densities but a good posterior distribution.

* We will use Maximum Likelihood and Maximum-A-Posteriori
estimates of our parameters w, wy,

Later: This also corresponds to a cost function of obtaining w, w,

Maximum Likelihood Learning

The Maximum Likelihood principle can be adapted to fit the
posterior distribution (discriminative case):

* We choose the parameters w, wy which maximize the posterior
distribution of the training set X with labels Y

w, W, =argrv£1‘a411xP( Y | X;w,w)
wWo

= argmax [[xex P(y| x;w,wp) (id)
w,Wqo

Piylxwwy) = P(y=1]|x;wwy)” P(y=0| x;w,wy)'™”
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Logistic Regression: Maximum Likelihood Estimate of w (1)

To simplify the notation we use W, X instead of w, w

with P(y=1x)=o(w'x) and P(y=0|x)=1-c(w'x)
= P(yx)=P(y=1x) P(y=0[x)”" = p'(t—p)"”
The discriminative (log) likelihood function for our data

P(Y|X) - ljp(yib(i): ljpiYi(l— pi)l_yi

log P(Y|X) = > ylog(p)+(1-y,)log(L-p,)

i=1 ‘

“cross-entropy” cost function ‘

_Yy, |og(%]+log(l— P

Maximum Likelihood Estimate of w (2)

log-likelihood function continued

log L(Y,X) = log P(Y|X) :ﬁl: y, Iog(l_p—‘pjﬂog(l— o))

Di
=wlx

1

T . .
=o(w' x)=

Remember [ O( ) T and linear Logit log i

N

logL(Y,X)=>" yw'x —log (1+ e % )

i=1l

Maximize the log-likelihood function with respect to W

o !
—Ilog L(Y,X) =0
Ay 109 L(Y. X)




Maximum Likelihood Estimate of w (3)

0 0 Ty
—logL(Y,X) = — Ww'x —lo (1+eW X')
5 09L (Y. X) ale yw'x; —log
N wx;
DR ey
i=1 1+e" %

Derivative of a Dot Product

Gradient operator

L |92 8
ow v [ow, ow,” T awy

d d d d
—wlx = [— wlix,—wlx, ..., — wal
ow

ow; adw, owg
d
T )
er componen wx = WiXg = X;

Final derivative
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Maximum Likelihood Estimate of w (3)

N

0 T ( wa-)
— W' X —log(l+e” ™
awz YW X =109

i=1

0
—logL(Y, X
- ogL(Y,X)

T

W X Wi

N
Sy e [
i=1 1+

eWT X

—wl
1+e V%

- ZN:(yi—a(wai))xiT 20

i=1

Non-linear equation in W : no closed form solution.

The function Log L is concave therefore a unique
maximum exists.

Iterative Reweighted Least Squares

The concave log P(Y|X) can be maximized iteratively with the
Newton-Raphson algorithm: [terative Reweighted Least Squares

]
W e wh = H7l o (In P(Y|X; W)

Derivatives and evaluation always with respect to w™
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Hessian: Concave Likelihood

2 We use an old trick to keep it simple:
H = InP(Y|X — [W —|1
awowT nP(Y|X) w = [u?]’ X = [x]

(2 nr 1) = 3 o) (1 - o) = 175

w -
i

The Hessian is negative definite:
* The sample covariance matrix ZixixiT is positive definite

- o(wlx;) (1 — a(wal-)) is always positive

The optimization problem is said to be convex and has thus a
optimal solution which can be iteratively calculated.

Iterative Reweighted Least Squares

The concave log P(Y|X) can be maximized iteratively with the
Newton-Raphson algorithm: [terative Reweighted Least Squares

]
W e wh = H7l o (In P(Y|X; W)

Derivatives and evaluation always with respect to w™

Method results in an iteration of reweighted least-squares steps
whtl = (XTsX) T XTS z
z=Xw"+ S_l(Y — P(w”))
¢ Weighted least-squares with z as target: (XTSX)_lXTS z

* Z:adjusted responses (updated every iteration)
« P(w"): vector of responses [py pa, ..., on]”
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Example: Logistic Regression

0125 025 075 0875
L ‘ : : | Solid line: classification (p = 0.5)
I P . | Dashed lines: p = 0.25, p = 0.75 lines

Probabilistic result: posterior of

as P v classification everywhere

- : i The posterior probability
P Loe decays/increases with distance to

. Jo Vo the decision boundary

: RS

Linearly Separable

* Maximum Likelihood learning is problematic in the linearly
separable case: w diverges in length
— leads to classification with infinite certainty

* Classification is still right but posterior estimate is not
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Prior Assumptions

* Infinitely certain classification is likely an estimation artefact:
We do not have enough training samples
- maximum likelihood estimation leads to problematic results

* Solution: MAP estimate with prior assumptions on w

P(W) = N(WIO, 0-2]) Smaller w are preferred (shrinkage)
P(ylx,w,wy) =pY(1 — p)l_y Likelihood model is unchanged
w,w, = argmax P(Y|X; w,wy )P(w)
w,Wo

= arg max P(w) 1_[ P(ylx,w,wy)
wW,Wo

XEX

MAP Learning

lnP(w)l_[P(ny,w, W) =

xeEX
1
Z(yi(wai +wp) —In(1 + exp(wlx; + wg)) ) — 27 llw]|?
.90 2 _ 9T
We need: aw”W” = 2w

d 1 !
%ln P(Y|X) = Z( (yl- —o(wlx; + WO)) xl ) — ﬁwT =0
l

* lterative solution: Newton-Raphson
* Prior enforces a reqularization
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Bayesian Logistic Regression

Idea: In the separable case, there are many perfect linear classifiers
which all separate the data. Average the classification result and
accuracy using all of these classifiers.

* Optimal way to deal with missing knowledge in Bayes sense

6
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Logistic Regression and Neural Nets

* The standard single neuron with the logistic activation is logistic
regression if trained with the same cost function (cross-entropy)

But training with least-squares results in a different classifier

* Multiclass logistic regression with soft-max corresponds to what is
called a soft-max layer in ANN. It is the standard multiclass output
in most ANN architectures.

P(y = 1|lx,w,wp) = a(WTx + wy)
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Non-Linear Extension

X

* Logistic regression is often extended to non-linear cases: x := [*1x2

x;

Extension through adding additional transformed features
* Combination terms: x;x;

* Monomial terms: x?2

Standard procedure in medicine: inspect resulting w to find important factors and
interactions x;x; (comes with statistical information).

* Usage of kernels is possible: training and classification can be
formulated with dot products of data points. The scalar products
can be “replaced” by kernel expansions with the kernel trick.

Kernel Logistic Regression

* Equations of logistic regression can be reformulated with dot

products:
N N

wlix = Z a;x x > Z a;k(x;, x)
i=1

i=1

* No Support Vectors: kernel evaluations with all training points

SVM - 130 Support Points.

P =110 =0 ) ak(x,»
i=1

IVM (import vector machine): Tralning Error: 0235

TestEror  0.264
0255

Extension with only sparse support points! B

Ji Zhu & Trevor Hastie (2005) Kernel Logistic Regression and the Import Vector Machine, Journal of
Computational and Graphical Statistics, 14:1, 185-205, DOI: 10.1198/106186005X25619
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Discriminative vs. Generative

Comparison of logistic regression to naive Bayes

Ng, Andrew Y., and Michael I. Jordan. "On Discriminative vs. Generative
classifiers: A comparison of logistic regression and naive Bayes." Advances in
NIPS 14, 2001.

Conclusion:
* Logistic regression has a lower asymptotic error
* Naive Bayes can reach its (higher) asymptotic error faster

General over-simplification (dangerous!): use a generative model
with few data (more knowledge) and a discriminative model with a
lot of training data (more learning)

Logistic Regression: Summary

» A probabilistic, linear method for classification!
» Discriminative method (Model for posterior)

» Linear model for the Logit

» The posterior probability is given by the logistic function
of the Logit:
1

PUy =)= (W 80) = oo )

» ML-estimation of W is unique but non-linear

» Logistic regression is a very often used method
» Extendable to multiclass

» General Purpose method, included in every standard software,
e.g. glmin R, glmfit/gimval in Matlab - its easy to apply!




