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Nonlinear Classifiers: Introduction

• Classifiers

• Supervised Classifiers

• Linear Classifiers

• Perceptron

• Least Squares Methods

• Linear Support Vector Machine

• Nonlinear Classifiers

• Part I: Multi Layer Neural Networks,
Convolutional Neural Network

• Part II: Nonlinear Support Vector Machine

• Decision Trees

• Unsupervised Classifiers
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Nonlinear Classifiers: Introduction

What would a linear 
SVMs do with this data?

x=0

• An example: Suppose we’re in 1-dimension
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Nonlinear Classifiers: Introduction

Not a big surprise

Positive “plane” Negative “plane”

x=0

• An example: Suppose we’re in 1-dimension
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What can be done 
about this?

x=0

• Harder 1-dimensional dataset

Nonlinear Classifiers: Introduction
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non-linear basis 
function

x=0
),( 2
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Nonlinear Classifiers: Introduction
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non-linear basis 
function

Nonlinear Classifiers: Introduction
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x=0

Nonlinear Classifiers: Introduction

x=0

• Linear classifiers are simple and computationally efficient. 

• However for nonlinearly separable features, they might lead 

to very inaccurate decisions. 

• Then we may trade simplicity and efficiency for accuracy 

using a nonlinear classifier.
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The Perceptron

The Perceptron is a learning algorithm that adjusts the 

weights wi of its weight vector w such that for all 

examples  xi :
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Here, the intercept is included in w :

It is assumed that the problem is linearly 

separable. Hence this vector w exists.
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The Perceptron

 w must minimize the classification error.

 w is found using an optimization algorithm.

General steps towards a classifier:

1. Define a cost function to be minimized.

2. Choose an algorithm to minimize it.

3. The minimum corresponds to a solution.
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The Perceptron Cost Function
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The Perceptron Algorithm

1w

( )J w
is continuous and 
piecewise linear.

Y changes

Y is constant

J(w) is minimized by gradient descent: 

(update w by taking steps that are proportional to the 

negative of the gradient of the cost function J(w))

( )
(t+1) (t)               t

J w
w w w w

w



      


( )
( )

T

x x

x Y x Y

J w
w x x

w w
 

 

 
 

 
  ( 1) ( ) t x

x Y

w t w t x 


   

( )
T

x

x Y

J w w x






7

13

The Perceptron Algorithm

Example:

w(t)

misclassified

w(t+1)
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x x

x 1Here,  =-1  because  x 

t x x 

tHere,  =0.2
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The Perceptron Algorithm

Example:

w(t)

w(t+1)

1

2

x x

Note that     must be chosen carefully, if it is too 
large, more errors will occur.

t

t x x 
tHere,  =1

more misclassifications

is a critical parameter of the algorithm !t

(t)

(t+1)
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The Perceptron as a Neural Network

Once the perceptron is trained, it is used to perform 
the classification:
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The perceptron is the simplest form of a 
“Neural Network”:

synaptic 
weights

activation 
function

f
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x1 x2 XOR Class

0 0 0 B

0 1 1 A

1 0 1 A

1 1 0 B

The XOR problem

• There is no single line (hyperplane) that separates class A 
from class B.  On the contrary, AND and OR operations 
are linearly separable problems.
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• For the XOR problem, draw two lines, instead 

of one.

• Then class B is outside the shaded area and 

class is A inside. 

• Was called: two-step design.

The Two-Layer Perceptron

18

• Step 1:  Draw two lines (hyperplanes)

Each of them is realized by a perceptron. 
The outputs of the perceptrons will be 

depending on the value of x ( f is the activation function ).

0
 ( )                    1,  2

1
( )i iy g x if


  



The Two-Layer Perceptron
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• Step 2:  Find the ‘position’ of x w.r.t. both lines,

based on the values of y1, y2.
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• Equivalently: 

1. The computations of the first step perform a mapping

2. The decision is then performed on the transformed data y.

1st step 2nd

stepx1 x2 y1 y2

0 0 0(-) 0(-) B(0)

0 1 1(+) 0(-) A(1)

1 0 1(+) 0(-) A(1)

1 1 1(+) 1(+) B(0)

Tyyyx ] ,[ 21

The Two-Layer Perceptron
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• This decision can be performed via a second line
which can also be realized by a perceptron.

,0)y(g 

The Two-Layer Perceptron

 Computations of the first step perform a mapping
that transforms the nonlinearly separable problem 
to a linearly separable one.
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The Two-Layer Perceptron

This is known as the two layer perceptron with 
one hidden and one output layer. 
The activation functions are:
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•The architecture
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The Two-Layer Perceptron

• The nodes (neurons) of the figure realize the    
following lines (hyper planes).
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• Classification capabilities:

All possible mappings performed by the first layer are
onto the vertices of the unit side square, 
e.g.,  (0, 0), (1, 0), (1, 0), (1, 1).
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Classification capabilities

• The more general case
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 gi(x) ’s perform a mapping of a vector x onto y
representing the vertices of the unit side Hp hypercube.        

24

 The mapping is achieved with p nodes each realizing a 

hyperplane.  The output of each of these nodes is 0 or 1 

depending on the relative position of x w.r.t. the 

hyperplane.

Classification capabilities

Intersections of these hyperplanes form regions in the

l-dimensional space.  Each region corresponds to a 

vertex of the Hp unit hypercube.
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For example, the 001 vertex corresponds to the region which 
is located 

Classification capabilities

The output node realizes a hyperplane in the y space, that 

separates some of the vertices from the others.  Thus, the 
two layer perceptron has the capability to classify vectors into 
classes that consist of unions of polyhedral regions.  
But not ANY union.  It 

depends on the relative 

position of the 

corresponding vertices.

to the  (-) side of g1(x) =0

to the (-) side of g2(x) =0

to the (+)  side of g3(x) =0

26

The Three-Layer Perceptron

• This is capable to classify vectors into classes consisting of 
ANY union of polyhedral regions.

• The idea is similar to the XOR problem.  It realizes more 
than one plane in the space.
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The reasoning 

• For each vertex, corresponding to class A, construct 
a hyperplane which leaves THIS vertex on one side 
(+) and ALL the others to the other side (-).

• The output neuron realizes an OR gate.

Overall:

The first layer of the network forms the hyperplanes, 
the second layer forms the regions and 
the output nodes forms the classes.

Multi-Layer Neural Networks
28

Many parameter

• Number of layers  

• Number of nodes in each layer.

• Number of connections of each node with previous 
the layer (e.g. fully connected)



15

29

layer  r-1      layer  r

The Multi-Layer Neural Network
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 Designing Multilayer Networks

– One strategy could be to adopt the above rationale and 
construct a structure that classifies correctly all the 
training patterns. (usually impossible)

– Second strategy: Start with a (large) network structure 

and compute the w’s, often called ‘synaptic weights´, to 

optimize a cost function. 

– Back Propagation is an algorithmic procedure that 
computes the synaptic weights iteratively, so that an 
adopted cost function is minimized (optimized).

Multi-Layer Neural Networks
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Nonlinear Classifiers: Agenda

Part I: Nonlinear Classifiers

Multi Layer Neural Networks

• XOR problem

• Two-Layer Perceptron  

• Backpropagation algorithm to train 
multilayer perceptrons 

• Choice of the network size 

• Model selection techniques

• Applications: XOR, ZIP Code, OCR problem 

• Demo: SNNS, BPN

32

The Steps:

1. Adopt an optimizing cost function J(i), e.g.,

• Least Squares Error

• Relative Entropy

between desired responses and actual responses 

of the network for the available training patterns.  

 That is, from now on we have to live with errors 
resulting from structure and cost function.  We 
only try to minimize them, using certain criteria.

The Backpropagation Algorithm (BP)
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layer  r-1      layer  r

r

j

1r

k


The Backpropagation Algorithm

The Steps:

2. Adopt an algorithmic procedure for the 
optimization of the cost function with respect to 

the weights  w e.g.:

– Gradient descent

– Newton’s algorithm

– Conjugate gradient

34

The Backpropagation Algorithm

The Steps:

3. The task is a nonlinear optimization
e.g. with gradient descent.
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BackProp:   Step 3 nonlinear optimization 

Detail: Computation of the Gradients.
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BackProp:   Step 3 nonlinear optimization 

Detail: Computation of          for Least Squares
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(new) (old)
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3. The task is a nonlinear optimization.

e.g. gradient descent.
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BackProp:   Step 3   summary 

with the following up-date rules:

Error ej( i ): Difference of 

actual and desired response 
for the j-th output neuron
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L
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output target
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The Backpropagation Algorithm

The Procedure:

1. Initialization:
Initialize unknown weights randomly with small values.

2. Forward computations:
For each of the training examples compute the output 

of all neurons of all layers. Compute the cost function 
for the current estimate of weights.

3. Backward computations:
Compute the gradient terms backwards, starting with 

the weights of the last (e.g. 3rd) layer and then moving 
towards the first.

4. Update: Update the weights.

5. Termination:
Repeat until a termination procedure is met
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The Backpropagation Algorithm

• There is always an escape path!!!  
e.g. the logistic function:

Other differentiable functions are also 
possible and in some cases more desirable.
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• In a large number of optimizing procedures, computation 
of derivatives are involved.  Hence, discontinuous activation
functions pose a problem, i.e., 

40

The Backpropagation Algorithm

• Pattern mode: The 
gradients are computed 
every time a new 
training data pair 
appears. Thus 
gradients are based on 
successive individual 
errors.

Two major philosophies:
• Batch mode: The gradients of the last layer are computed once 

ALL training data have appeared to the algorithm, i.e., by 
summing up all error terms.
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The Backpropagation Algorithm

A major problem:  
The algorithm may 
converge to a local 
minimum.

The cost function choice
Examples:

• The Least Squares
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Desired response of m-th output node (1 or 0)  for input x(i) .

Actual response of   m-th output node, in the interval [0, 1], for input x(i) .
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The Backpropagation Algorithm

The cost function choice
Examples:

• The cross-entropy

This presupposes an interpretation of y and ŷ as 
probabilities!
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Classification error rate: 
• Also known as discriminative learning. 
• Most of these techniques use a smoothed version of the 

classification error.
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The Backpropagation Algorithm

“Well formed” cost functions :

• Danger of local minimum convergence. 

• “Well formed” cost functions guarantee 
convergence to a “good” solution. 

• That is one that classifies correctly ALL training 
patterns, provided such a solution exists. 

• The cross-entropy cost function is a well formed 
one. The Least Squares is not.

44

The Backpropagation Algorithm

optimally class a-posteriori probabilities:

Both, the Least Squares and the cross entropy lead to 
output values that approximate optimally class a-
posteriori probabilities!

That is, the probability of class given       .

)(ˆ iym

))(()(ˆ ixPiy mm 

m )(ix

 It does not depend on the underlying distributions!!! 

It is  a characteristic of certain cost functions and the 
chosen architecture of the network. It depends on the 
model how good or bad the approximation is. 

 It is valid at the global minimum.
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Nonlinear Classifiers: Agenda

Part I: Nonlinear Classifiers

Multi Layer Neural Networks

• XOR problem

• Two-Layer Perceptron  

• Backpropagation    

• Choice of the network size
• Number of layers and of neurons per layer
• Model selection techniques

• Pruning techniques
• Constructive techniques 

• Applications: XOR, ZIP Code, OCR problem 

• Demo: SNNS, BPN
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Choice of the network size

How big a network can be. How many layers and 
how many neurons per layer?   
There are two major techniques:

• Pruning Techniques:
These techniques start from a large network and then 

weights and/or neurons are removed iteratively, 
according to a criterion.

• Constructive techniques:
They start with a small network and keep increasing it, 

according to a predetermined procedure and criterion. 
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Choice of the network size

Idea: Start with a large network and leave the 
algorithm to decide which weights are small.

Generalization properties:

• Large network learn the particular details of the training set. 
• Not be able to perform well when presented with data 

unknown to it. 

 The size of the network must be:

• Large enough to learn what makes data of the same 
class similar and data from different classes dissimilar.

• Small enough not to be able to learn underlying 
differences between data of the same class. This leads 
to the so called overfitting.

49

Choice of the network size

Example:

• Decision curve (a) before and (b) after pruning.
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Choice of the network size

Overtraining is a common phenomena for classifiers 
that are very flexible in their decision surface, 
i.e., the network adapts to the peculiarities of the 
training set and therefore performs bad on new 
test data.


