
1

Nonlinear Classifiers I

2

Nonlinear Classifiers: Introduction

• Classifiers

• Supervised Classifiers

• Linear Classifiers

• Perceptron

• Least Squares Methods

• Linear Support Vector Machine

• Nonlinear Classifiers

• Part I: Multi Layer Neural Networks,
Convolutional Neural Network

• Part II: Nonlinear Support Vector Machine

• Decision Trees

• Unsupervised Classifiers

2

3

Nonlinear Classifiers: Introduction

What would a linear
SVMs do with this data?

x=0

• An example: Suppose we’re in 1-dimension

4

Nonlinear Classifiers: Introduction

Not a big surprise

Positive “plane” Negative “plane”

x=0

• An example: Suppose we’re in 1-dimension

3

5

What can be done
about this?

x=0

• Harder 1-dimensional dataset

Nonlinear Classifiers: Introduction

6

non-linear basis
function

x=0
),(2

kkk xxz

Nonlinear Classifiers: Introduction

4

7

),(2

kkk xxz
x=0

non-linear basis
function

Nonlinear Classifiers: Introduction

8

x=0

Nonlinear Classifiers: Introduction

x=0

• Linear classifiers are simple and computationally efficient.

• However for nonlinearly separable features, they might lead

to very inaccurate decisions.

• Then we may trade simplicity and efficiency for accuracy

using a nonlinear classifier.

5

9

The Perceptron

The Perceptron is a learning algorithm that adjusts the

weights wi of its weight vector w such that for all

examples xi :

1

2

0

0

T

i

T

i

w x x

w x x





  

  

1

0

l

w

w
w

w

 
 
 
 
 
 

1

1

l

x

x
x

 
 
 
 
 
 

Here, the intercept is included in w :

It is assumed that the problem is linearly

separable. Hence this vector w exists.

 () 0
T

g x w x  

10

The Perceptron

 w must minimize the classification error.

 w is found using an optimization algorithm.

General steps towards a classifier:

1. Define a cost function to be minimized.

2. Choose an algorithm to minimize it.

3. The minimum corresponds to a solution.

6

11

The Perceptron Cost Function

1

2

0

0

T

T

w x x

w x x





  

  

Goal:

0
T

x w x x Y   
() 0 :

() 0 if

J w w Y

J w Y

   

  


()
T

x

x Y

J w w x


Cost function:

Y: subset of the training vectors which are

misclassified by the hyperplane

defined by w.

i

i

x 1 2

x 2 1

=-1 if but is classified in

=+1 if but is classified in

i

i

x

x

  

  





12

The Perceptron Algorithm

1w

()J w
is continuous and
piecewise linear.

Y changes

Y is constant

J(w) is minimized by gradient descent:

(update w by taking steps that are proportional to the

negative of the gradient of the cost function J(w))

()
(t+1) (t) t

J w
w w w w

w



      


()
()

T

x x

x Y x Y

J w
w x x

w w
 

 

 
 

 
  (1) () t x

x Y

w t w t x 


   

()
T

x

x Y

J w w x




7

13

The Perceptron Algorithm

Example:

w(t)

misclassified

w(t+1)

1

2

(1) () t x

x Y

w t w t x 


   

x x

x 1Here, =-1 because x 

t x x 

tHere, =0.2

14

The Perceptron Algorithm

Example:

w(t)

w(t+1)

1

2

x x

Note that must be chosen carefully, if it is too
large, more errors will occur.

t

t x x 
tHere, =1

more misclassifications

is a critical parameter of the algorithm !t

(t)

(t+1)

8

15

The Perceptron as a Neural Network

Once the perceptron is trained, it is used to perform
the classification:

1

2

if 0 assign to

if 0 assign to

T

T

w x x

w x x









The perceptron is the simplest form of a
“Neural Network”:

synaptic
weights

activation
function

f
1

-1
Tw x

16

x1 x2 XOR Class

0 0 0 B

0 1 1 A

1 0 1 A

1 1 0 B

The XOR problem

• There is no single line (hyperplane) that separates class A
from class B. On the contrary, AND and OR operations
are linearly separable problems.

9

17

• For the XOR problem, draw two lines, instead

of one.

• Then class B is outside the shaded area and

class is A inside.

• Was called: two-step design.

The Two-Layer Perceptron

18

• Step 1: Draw two lines (hyperplanes)

Each of them is realized by a perceptron.
The outputs of the perceptrons will be

depending on the value of x (f is the activation function).

0
 () 1, 2

1
()i iy g x if


  



The Two-Layer Perceptron

1

2

() 0,

() 0

g x

g x





• Step 2: Find the ‘position’ of x w.r.t. both lines,

based on the values of y1, y2.

10

19

• Equivalently:

1. The computations of the first step perform a mapping

2. The decision is then performed on the transformed data y.

1st step 2nd

stepx1 x2 y1 y2

0 0 0(-) 0(-) B(0)

0 1 1(+) 0(-) A(1)

1 0 1(+) 0(-) A(1)

1 1 1(+) 1(+) B(0)

Tyyyx] ,[21

The Two-Layer Perceptron

20

• This decision can be performed via a second line
which can also be realized by a perceptron.

,0)y(g 

The Two-Layer Perceptron

 Computations of the first step perform a mapping
that transforms the nonlinearly separable problem
to a linearly separable one.

11

21

The Two-Layer Perceptron

This is known as the two layer perceptron with
one hidden and one output layer.
The activation functions are:

1 0
(.)

0 0

x
f

x


 



•The architecture

22

The Two-Layer Perceptron

• The nodes (neurons) of the figure realize the
following lines (hyper planes).

1 1 2

2 1 2

3 1 2

1
() 1 1 0

2
3

() 1 1 0
2
1

() 1 2 0
2

g x x x

g x x x

g y y y

   

   

   

• Classification capabilities:

All possible mappings performed by the first layer are
onto the vertices of the unit side square,
e.g., (0, 0), (1, 0), (1, 0), (1, 1).

1 0
(.)

0 0

x
f

x


 



12

23

Classification capabilities

• The more general case

0

1

0

1

() 0

() 0

l

i ik k i

k

p

j jk k j

k

g x w x w

g y w y w





  

  





 

,

0, 1 1, 2,...

l

i

x R

y i p



 

1[,...] ,

()

T p

p

i i

x y y y y R

y f g

  



0() 0 ,
T l

i ii ig x w x w w x R   

0() 0 ,
T p

j jj jg y w y w w y R   

 gi(x) ’s perform a mapping of a vector x onto y
representing the vertices of the unit side Hp hypercube.

24

 The mapping is achieved with p nodes each realizing a

hyperplane. The output of each of these nodes is 0 or 1

depending on the relative position of x w.r.t. the

hyperplane.

Classification capabilities

Intersections of these hyperplanes form regions in the

l-dimensional space. Each region corresponds to a

vertex of the Hp unit hypercube.

13

25

For example, the 001 vertex corresponds to the region which
is located

Classification capabilities

The output node realizes a hyperplane in the y space, that

separates some of the vertices from the others. Thus, the
two layer perceptron has the capability to classify vectors into
classes that consist of unions of polyhedral regions.
But not ANY union. It

depends on the relative

position of the

corresponding vertices.

to the (-) side of g1(x) =0

to the (-) side of g2(x) =0

to the (+) side of g3(x) =0

26

The Three-Layer Perceptron

• This is capable to classify vectors into classes consisting of
ANY union of polyhedral regions.

• The idea is similar to the XOR problem. It realizes more
than one plane in the space.

14

27

The reasoning

• For each vertex, corresponding to class A, construct
a hyperplane which leaves THIS vertex on one side
(+) and ALL the others to the other side (-).

• The output neuron realizes an OR gate.

Overall:

The first layer of the network forms the hyperplanes,
the second layer forms the regions and
the output nodes forms the classes.

Multi-Layer Neural Networks
28

Many parameter

• Number of layers

• Number of nodes in each layer.

• Number of connections of each node with previous
the layer (e.g. fully connected)

15

29

layer r-1 layer r

The Multi-Layer Neural Network

   
1

1

0

1

rk
r r r r

j jk k j

k

i w y i w






 

 1r

ky i
output of the k-th node at layer r-1

 r

j i argument for  .f for the i-th trainings pair layer r

   1r rr

jj i w y i




r

j

1r

k


for the i-th trainings pair

   
1

1

0

0

, 1
rk

r r r

jk k

k

w y i with y i






  

       1r rr r

jj ji fy i f w y i


 

30

 Designing Multilayer Networks

– One strategy could be to adopt the above rationale and
construct a structure that classifies correctly all the
training patterns. (usually impossible)

– Second strategy: Start with a (large) network structure

and compute the w’s, often called ‘synaptic weights´, to

optimize a cost function.

– Back Propagation is an algorithmic procedure that
computes the synaptic weights iteratively, so that an
adopted cost function is minimized (optimized).

Multi-Layer Neural Networks

16

31

Nonlinear Classifiers: Agenda

Part I: Nonlinear Classifiers

Multi Layer Neural Networks

• XOR problem

• Two-Layer Perceptron

• Backpropagation algorithm to train
multilayer perceptrons

• Choice of the network size

• Model selection techniques

• Applications: XOR, ZIP Code, OCR problem

• Demo: SNNS, BPN

32

The Steps:

1. Adopt an optimizing cost function J(i), e.g.,

• Least Squares Error

• Relative Entropy

between desired responses and actual responses

of the network for the available training patterns.

 That is, from now on we have to live with errors
resulting from structure and cost function. We
only try to minimize them, using certain criteria.

The Backpropagation Algorithm (BP)

17

33

layer r-1 layer r

r

j

1r

k


The Backpropagation Algorithm

The Steps:

2. Adopt an algorithmic procedure for the
optimization of the cost function with respect to

the weights w e.g.:

– Gradient descent

– Newton’s algorithm

– Conjugate gradient

34

The Backpropagation Algorithm

The Steps:

3. The task is a nonlinear optimization
e.g. with gradient descent.

(new) (old)
r r r

j j jw w w  

r

j r

j

J
w

w



  

 



N

i

iEJ
1

)(

18

35

(new) (old)
r r r

j j jw w w  

r

j r

j

J
w

w



  



BackProp: Step 3 nonlinear optimization

Detail: Computation of the Gradients.

 
 r

jr

j

i

i

E









 

 

 

1

0

1
: ()

r

r

jr

j

rr

jr

j
r

jr

jk

i

i

i

w

y i
w

w










 
 
 
  

  
 

  

 

 

 r

j

r rr

jj j

ii

i

E E

w w





 

 

 
1

with
N

i

J E i


    
1

1

0

1

and
rk

r r r r

j jk k j

k

i w y i w






 

 
 

 
1

1

11

1

1

:

r

r

r

r

k

i

i

i

y
y

y








 
 
  
 
 
     1

1

N
r rr

j j

i

w i y i 




   

36

 1

ir
je 

BackProp: Step 3 nonlinear optimization

Detail: Computation of for Least Squares

 
 

r

j r

j

i

i

E








  
2

2

1 1

1 1
ˆ() () () ()

2 2

L Lk k
L

m m m

m m

E i e i f i y i
 

   
  () ()L L

j j me i f i  

 1 1with () ()r r

m my i f i 

      1 1

1

rk
r r r r

j k kj j

k

i i iw f   



 
  

 


      1 1 1 r r r

j j ji i ie f    

 r

j i

Case r = L (Last Layer)

 

 

 

 

 

 1 1
1

rk r

k

r r r
kj k j

i i i

i i i

E E 

   


  


  


Case r < L

 

 
  1

1

r
r rk
kj jr

j

i
i

i

w f










 



 

 

 

 

1 1

0

1 1

rk r r
r

km mmk

r r

j j

i
i

i i

w y

 

 



 

   
 



   
 

 

1

1
1

r rk
r r k
j k r

k j

i
i i

i


 














19

37

(new) (old)
r r r

j j jw w w  
r

j r

j

J
w

w



  


3. The task is a nonlinear optimization.

e.g. gradient descent.

   1

1

N

r rr

j j

i

w i y i 




   

      1 1

1

rk
r r r r

j k kj j

k

i i w f i   



 
  

 


      L L

j j ji e i f i 

BackProp: Step 3 summary

with the following up-date rules:

Error ej(i): Difference of

actual and desired response
for the j-th output neuron

)(ˆ)()(iyiyie j

L

jj 

output target

38

The Backpropagation Algorithm

The Procedure:

1. Initialization:
Initialize unknown weights randomly with small values.

2. Forward computations:
For each of the training examples compute the output

of all neurons of all layers. Compute the cost function
for the current estimate of weights.

3. Backward computations:
Compute the gradient terms backwards, starting with

the weights of the last (e.g. 3rd) layer and then moving
towards the first.

4. Update: Update the weights.

5. Termination:
Repeat until a termination procedure is met

20

39

The Backpropagation Algorithm

• There is always an escape path!!!
e.g. the logistic function:

Other differentiable functions are also
possible and in some cases more desirable.

)exp(1

1
)(

ax
xf




 () () 1 ()f x f x f x  










00

01
)(

x

x
xf

• In a large number of optimizing procedures, computation
of derivatives are involved. Hence, discontinuous activation
functions pose a problem, i.e.,

40

The Backpropagation Algorithm

• Pattern mode: The
gradients are computed
every time a new
training data pair
appears. Thus
gradients are based on
successive individual
errors.

Two major philosophies:
• Batch mode: The gradients of the last layer are computed once

ALL training data have appeared to the algorithm, i.e., by
summing up all error terms.

21

41

The Backpropagation Algorithm

A major problem:
The algorithm may
converge to a local
minimum.

The cost function choice
Examples:

• The Least Squares





N

i

iEJ
1

)(

2 2

1 1

1, 2,...,
1 1

ˆ() () (() ())
2 2

k k

m m m

m m

i NE i e i y i y i
 

   

:)(iym

:)(ˆ iym
Desired response of m-th output node (1 or 0) for input x(i) .

Actual response of m-th output node, in the interval [0, 1], for input x(i) .

42

The Backpropagation Algorithm

The cost function choice
Examples:

• The cross-entropy

This presupposes an interpretation of y and ŷ as
probabilities!





N

i

iEJ
1

)(

 
1

() () () ()ˆ ˆ() ln (1) ln(1)
k

m m m m

m

i i i iE i y y y y


   

Classification error rate:
• Also known as discriminative learning.
• Most of these techniques use a smoothed version of the

classification error.

22

43

The Backpropagation Algorithm

“Well formed” cost functions :

• Danger of local minimum convergence.

• “Well formed” cost functions guarantee
convergence to a “good” solution.

• That is one that classifies correctly ALL training
patterns, provided such a solution exists.

• The cross-entropy cost function is a well formed
one. The Least Squares is not.

44

The Backpropagation Algorithm

optimally class a-posteriori probabilities:

Both, the Least Squares and the cross entropy lead to
output values that approximate optimally class a-
posteriori probabilities!

That is, the probability of class given .

)(ˆ iym

))(()(ˆ ixPiy mm 

m)(ix

 It does not depend on the underlying distributions!!!

It is a characteristic of certain cost functions and the
chosen architecture of the network. It depends on the
model how good or bad the approximation is.

 It is valid at the global minimum.

23

45

Nonlinear Classifiers: Agenda

Part I: Nonlinear Classifiers

Multi Layer Neural Networks

• XOR problem

• Two-Layer Perceptron

• Backpropagation

• Choice of the network size
• Number of layers and of neurons per layer
• Model selection techniques

• Pruning techniques
• Constructive techniques

• Applications: XOR, ZIP Code, OCR problem

• Demo: SNNS, BPN

46

Choice of the network size

How big a network can be. How many layers and
how many neurons per layer?
There are two major techniques:

• Pruning Techniques:
These techniques start from a large network and then

weights and/or neurons are removed iteratively,
according to a criterion.

• Constructive techniques:
They start with a small network and keep increasing it,

according to a predetermined procedure and criterion.

24

48

Choice of the network size

Idea: Start with a large network and leave the
algorithm to decide which weights are small.

Generalization properties:

• Large network learn the particular details of the training set.
• Not be able to perform well when presented with data

unknown to it.

 The size of the network must be:

• Large enough to learn what makes data of the same
class similar and data from different classes dissimilar.

• Small enough not to be able to learn underlying
differences between data of the same class. This leads
to the so called overfitting.

49

Choice of the network size

Example:

• Decision curve (a) before and (b) after pruning.

25

50

Choice of the network size

Overtraining is a common phenomena for classifiers
that are very flexible in their decision surface,
i.e., the network adapts to the peculiarities of the
training set and therefore performs bad on new
test data.

