Feature Selection: Linear Transformations

$$\underline{y}_{new} = M \underline{x}_{old}$$

1

Constraint Optimization (insertion)

Problem: Given an objective function f(x) to be optimized and let constraints be given by $h_k(x)=c_k$, moving constants to the left, ==> $h_k(x) - c_k = g_k(x)$. f(x) and $g_k(x)$ must have continuous first partial derivatives

A Solution:

Lagrangian Multipliers

 $0 = \nabla_x f(x) + \Sigma \nabla_x \lambda_k g_k(x)$

or starting with the Lagrangian : $L(x,\lambda) = f(x) + \sum \lambda_k g_k(x)$.

with $\nabla_x L(x,\lambda) = 0$.

Karhunen-Loève Transform $L(\underline{a}_{I}, \lambda_{I}) = \underline{a}_{I}^{T} \Sigma_{\mathbf{x}} \underline{a}_{I} - \lambda_{I} (\underline{a}_{I}^{T} \underline{a}_{I} - 1)$ for $E[y_{I}^{2}]$ to be maximum : $\frac{\partial L(\underline{a}_{1}, \lambda_{1})}{\partial \underline{a}_{1}} = 0$ $\Rightarrow \Sigma_{\mathbf{x}} \underline{a}_{I} - \lambda_{I} \underline{a}_{I} = 0$ $\Rightarrow \underline{a}_{I}$ must be *eigenvector* of $\Sigma_{\mathbf{x}}$ with *eigenvalue* λ_{I} . $E[y_{I}^{2}] = \underline{a}_{I}^{T} \Sigma_{\mathbf{x}} \underline{a}_{I} = \lambda_{I}$ \Rightarrow for $E[y_{I}^{2}]$ to be maximum, λ_{I} must be the *largest* eigenvalue.

No wonder: variance and randomness are directly related !

PCA Summary

• Unsupervised: no assumption about the existence or nature of groupings within the data.

39

- PCA is similar to learning a Gaussian distribution for the data.
- Optimal basis for compression (if measured via MSE).
- As far as dimensionality reduction is concerned this process is distribution-free, i.e. it's a mathematical method without underlying statistical model.
- Extracted features (PCs) often lack 'intuition'.

