
1

1

Feature Selection:
Linear Transformations

 ynew = M xold

3

Constraint Optimization (insertion)

Problem: Given an objective function f(x) to be optimized and let

 constraints be given by hk(x)=ck ,

 moving constants to the left, ==> hk(x) - ck=gk(x).

 f(x) and gk(x) must have continuous first partial derivatives

A Solution:

 Lagrangian Multipliers 0 = x f(x) + Σxλk gk(x)

 or starting with the Lagrangian : L (x,λ) = f(x) + Σ λk gk(x).

 with xL (x,λ) = 0.

2

4

The Covariance Matrix (insertion)

Definition

 Let x = {x1, ..., xN}  N be a real valued random variable

 (data vectors), with the expectation value of the mean E[x] = μ.

 We define the covariance matrix Σx of a random variable x

 as Σx := E[(x- μ) (x- μ)T]

 with matrix elements Σij = E[(xi - μi) (xj - μj)
T] .

Application: Estimating E[x] and E[(x - E[x]) (x - E[x])T] from data.

 We assume m samples of the random variable x = {x1, ..., xN}  N

 that is we have a set of m vectors { x1 , ..., xm }  N

 or when put into a data matrix X  N x m

 Maximum Likelihood estimators

 for μ and Σx are:

1

1

m

kM L k

x
m




  

1

1
 ()()

m
T

k kM L M L M Lk

x x
m

 


     
1 T

XX
m



5

KLT/PCA Motivation

• Find meaningful “directions” in correlated data

• Linear dimensionality reduction

• Visualization of higher dimensional data

• Compression / Noise reduction

• PDF-Estimate

3

7

Karhunen-Loève Transform: 1st Derivation

This is a constrained optimization → use of the Lagrangian:

 L(a1, λ1) = E[a1
T x xT a1] – λ1 (a1

T a1 – 1)

 = a1
T Σx a1 – λ1 (a1

T a1 – 1)

Lagrange

multiplier

Problem
 Let x = {x1, ..., xN}  N be a feature vector of zero mean,

 real valued random variables.

 We seek the direction a1 of maximum variance:

== > y1 = a1
T x for which a1 is such as E[y1

2] is maximum

 with the constraint that a1
T a1 = 1

8

Karhunen-Loève Transform

for E[y1
2] to be maximum :

1 1

1

(,)
0

L a

a






E[y1
2] = a1

T Σx a1 = λ1

=> for E[y1
2] to be maximum, λ1 must be the largest eigenvalue.

L(a1, λ1) = a1
T Σx a1 – λ1 (a1

T a1 – 1)

=> a1 must be eigenvector of Σx with eigenvalue λ1.

=> Σx a1 – λ1 a1 = 0

4

9

Karhunen-Loève Transform

The resulting matrix A is known as Principal Component Analysis (PCA)

or Kharunen-Loève transform (KLT) y = AT x
 1

N

ii

i

y



 x a

Now let’s search for a second direction, a2, such that:

 y2 = a2
T x such as E[y2

2] is maximum, and

 a2
T a1 = 0 and a2

T a2 = 1

Similar derivation: L(a2, λ2) = a2
T Σx a2 – λ2 (a2

T a2 – 1) with a2
T a1 = 0

 => a2 must be the eigenvector of Σx associated with the

 second largest eigenvalue λ2.

We can derive N orthonormal directions that maximize the

variance: A = [a1, a2,…, aN] and y = AT x

10

[] []  
T T T T

y x
R E E A A A R Ayy xx

• Let y = A
T
x, then by definition of the correlation matrix:

• Rx is symmetric  its eigenvectors are mutually orthogonal

Problem

 Let x = {x1, ..., xN}  N be a feature vector of zero mean,

 real valued random variables.

 We seek a transformation A of x that results in a new set of

 variables y = ATx (feature vectors) which are uncorrelated

 (i.e. E[yi, yj]= 0 for i  j) .

Karhunen-Loève Transform: 2nd Derivation

5

11

Karhunen-Loève Transform

 i.e. if we choose A such that its columns ai are orthonormal

eigenvectors of Rx , we get:

1
0 0

0 0

0 0
N





 

  
 
  

 ---- > the eigenvalues i will be positive.

The resulting matrix A is known as

Karhunen-Loève transform (KLT) y = A
T
x

1

N

i

i

y



  i
x a

T

y x
R A R A 

• If we further assume Rx to be positive definite,

12

Karhunen-Loève Transform

1

N

i

i

y



  i
x a

T
y x A

The Karhunen-Loève transform (KLT)

For mean-free vectors (e.g. replace x by x – E[x])

this process diagonalizes the covariance matrix Σy

6

13

KLT Properties: MSE-Approximation

We define a new vector in m-dimensional subspace (m < N),

using only m basis vectors:

1

ˆ
i

i

m

y



  i
x a

x̂

 Projection of x into the subspace spanned

 by the m used (orthonormal) eigenvectors.

 Now, what is the expected mean square error

between x and its projection :

2
ˆE  

 
x x

x̂

2

1

N

i

i m

E y

 

 
  

  

 i
a ()()

T

i j

i j

E y y
 

  
 
  i j

a a

14

KLT Properties: MSE-Approximation

 The error is minimized if we choose as basis those eigenvectors

corresponding to the m largest eigenvalues of the correlation

matrix.

• Amongst all other possible orthogonal transforms KLT
 is the one leading to minimum MSE

1

N

i

i m


 

 
2

ˆ ()()
T

i j

i j

E E y y
 

      
 
  i j

x x a a
2

1

N

i

i m

E y

 

 
 

 This form of KLT (as presented here) is also referred to as
Principal Component Analysis (PCA).
The principal components are the eigenvectors ordered (desc.)

by their respective eigenvalue magnitudes i

7

15

KLT Properties

Total variance

• Let w.l.o.g. E[x]=0 and y = A
T
x the KLT (PCA) of x.

From the previous definitions we get:

• i.e. the eigenvalues of the input covariance matrix are equal

to the variances of the transformed coordinates.

22   
 iy i i

E y 

 Selecting those features corresponding to m largest

eigenvalues retains the maximal possible total variance (sum
of component variances) associated with the original random

variables xi .

16

Example: for a zero-mean (m=0) m-dim. Gaussian

1

12 2
1

 ln((2) exp())
2

 []

m

y y y
H y yE 

   
    

KLT Properties: Entropy

[ln ()] 
y y

H E p y

11 1

2 2 2
ln(2) ln []

Tm

y y y
H E


    y y

 Selecting those features corresponding to m largest eigenvalues

maximizes the entropy in the remaining features.

 No wonder: variance and randomness are directly related !

For a random vector y the entropy is a

measure for the randomness of the underlying process.

1

2 2

1

ln(2) ln
2

m

m

i

i

m
 



  

 

 

 

1 1

1

[] []

[]

[]

T T

y y

T

y

E E trace

E trace

E trace I m

 



  

 

 

y y y y

yy

8

17

Computing a PCA:

Problem: Given mean free data X , a set on n feature vectors xi

 Rm. Compute the orthonormal eigenvectors ai of the correlation

matrix Rx .

 There are many algorithms that can compute very efficiently
eigenvectors of a matrix.
However, most of these methods can be very unstable in certain
special cases.

 Here we present SVD, a method that is in general not the most
efficient one.
However, the method can be made numerically stable very
easily!

18

Singular Value Decomposition:

an Excursus to Linear Algebra
(without Proofs)

Computing a PCA:

9

19

Singular Value Decomposition :

• The diagonal values of  (1, 2, …., n) are called the singular values.

• It is accustomed to sort them: 1  2  ….  n

SVD (reduced Version): For matrices A  R
mn

 with m ≥ n, there

exist matrices

 U  R
mn

 with orthonormal columns (U T
U = I) ,

 V  R
nn

 orthogonal (V T
V = I),

   R
nn

diagonal,

 with A=U  V
 T

A U 
T

V

= m

n

20

SVD Applications:

SVD is an all-rounder !

 Once you have U, , V , you can use it to:

- Solve Linear Systems: A x = b

- …….

- Compute PCA / KLT

a) If A-1 exists  Compute matrix inverse

b) for fewer equations than unknowns

c) for more equations than unknowns

d) if there is no solution: compute

 x that | A x - b | = min

e) compute rank (numerical rank) of a matrix

10

21

SVD : Matrix inverse A-1

A x = b :

 
1

1 T
A U V




 

If A is square nxn and not singular, then A-1 exists.

1

1

1

n

T
V U





 

 
  

 
 

A=U  V T U, , V, exist for all A

 
1

1 1

T
V U


 

 
Computing A-1

 for a singular A !?

Since U, , V all exist, the only

problem can originate if one σi = 0

or numerically close to zero.

--> singular values indicate if A

 is singular or not!!

22

- The rank of A is the number of non-zero singular values.

- If there are very small singular values i , then A is close of

being singular.

A U 
T

V

= m

n

1
2

n

SVD : Rank of a Matrix

 We can set a threshold t, and set i = 0 if i ≤ t

 then the numeric_rank (A) = # { i | i > t }

11

23

- numeric_rank(A) = # { i | i > t } ,

the rank of A is equal the dim(Img(A))

SVD : Rank of a Matrix (2)

A U 
T

V

= m

n

1
2

0

s

0

n = dim(Img(A)) + dim(Ker(A))

- the columns of U corresponding to the i ≠ 0 , span the range of A

- the columns of V corresponding to the i = 0 , span the nullspace of A

24

1) case A-1 exists

remember linear mappings A x = b

A

R
m

R
n

A x = b

2) A is singular: dim(Ker(A)) ≠ 0

b

12

25 SVD : solving A x = b

2) A is singular: dim(Ker(A)) ≠ 0

b

There are an infinite number of different x that solve Ax=b !!??

Which one should we choose??

e.g. we can choose the x with ║ x ║ = min

 → then we have to search in the space orthogonal to the nullspace

x

26 SVD : Solving ║ A x - c ║ = min

3) c is not in the range of A

c*

1) Projecting c into the range of A results in c*

c

x

2) From all the solutions of A x = c* we choose the x with ║ x ║ = min

13

27

A x = c for any A exist U, , V, with A= U  V T

 with 1  2  ….  n

 
1

T
x U V c



 

1

1

1

n

T
V U c





 

 
  

 
 

U  V T x = c

 
1

1 1

T
V U c


 

 

Computing A-1
 for a singular A !?

--> What to do in -1
 with 1/0 =  ????

Some i = 0 if i ≤ t

SVD : Solving ║ A x - c ║ = min

Remember what we need ---- >

28

 1) Project c into the range of A to obtain a c*

2) From all the solutions of A x = c* we choose the ║ x ║ = min

that is the x in the space orthogonal to the nullspace

SVD : Solving: ║ A x - c ║ = min

T
U

1
V

x = c

1

1




2

1




1
0


1
0


- the columns of U corresponding to the i ≠ 0 , span the range of A

- the columns of V corresponding to the i = 0 , span the nullspace of A

We need to:

Basically all rows or columns multiplied by 1/0 are irrelevant!!

 --> so even setting 1/0 = 0 , will lead to the correct result.

14

29

SVD at Work:

For Linear Systems A x = b :

 Case fewer equations than unknowns:

  fill rows of A with zeros so that n = m

Perform SVD on A with (n ≤ m):

 Compute U, , V, with A=U  V T

 Compute threshold t and

 in  set i = 0 for all i ≤ t

 in -1
 set 1/i = 0 for all i ≤ t

For Linear Systems: compute Pseudoinverse A+ = V -1
U T

 and compute x = A+
 b

30

Application: Compute PCA via SVD

Now we use SVD

1. Move center of mass to origin: xi
’=xi-

2. Build data matrix, from mean free data X=U  V T

3. The principal axes are eigenvector of the

covariance matrix C = 1/n XX T

1

T T

d

XX U U





 

 


 

  

Problem: Given mean free data X , a set on n feature vectors xi

 Rm compute the orthonormal eigenvectors ai of the correlation

matrix Rx .

15

31

Application: Compute PCA via SVD (2)

with SVD

 XX T = U  V T (U  V T)T

 = U  V T (V T U T)

 = U  T U T

 = U 2 U T

Since C = 1/n XX T

 the eigenvalues compute to λi = 1/n σi
2

 with λi = σi
2 σ from SVD

σ
2

 variance of E[yi
2]

32

Example: PCA on Images

• Assume we have a set of k images (of size NN)

• Each image can be seen as N2-dimensional point pi

(lexicographically ordered); the whole set can be stored as
matrix:

1 2

| | |

| | |

k
X

 

 

 

  

p p p

• Computing PCA the “naïve” way

• Build correlation matrix XXT (N 4 elements)

• Compute eigenvectors from this matrix: O((N2)
3
)

 Already for small images (e.g. N=100) this is far too expensive

16

33

Now we use SVD

1. Move center of mass to origin: pi
’=pi-

2. Build data matrix, from mean free data

3. The principal axes are eigenvector of

1 2

| | |

| | |

n
X

 

 
  

 

  

p p p

1

T T

d

XX U U





 

 


 

  

PCA on Images

34

PCA on Images

Principal Components can be
visualized by adding to the
mean vector an eigenvector

multiplied by a factor (e.g. λ)

mean face

Eigenfaces Faces

17

35

PCA applied to face images

Choosing subspace dimension r:

 Look at decay of the

eigenvalues as a function of r

 Larger r means lower expected

error in the subspace data

approximation

r k 1
Eigenvalue spectrum

mean
face

Eigenfaces

Here the faces where normalized in eye distance and eye position.

36

Eigenfaces for Face Recognition

Turk, M. and Pentland, A. (1991).
Face recognition using eigenfaces.
In Proceedings of Computer Vision and Pattern Recognition, pages 586--591. IEEE.

In the 90’s the best performing Face Recognition System!

18

37

PCA for Face Recognition

38

PCA & Discrimination

• PCA/KLT do not use any class labels in the
construction of the transform.

 The resulting features may obscure the existence of
 separate groups.

19

39

PCA Summary

• Unsupervised: no assumption about the existence
or nature of groupings within the data.

• PCA is similar to learning a Gaussian distribution
for the data.

• Optimal basis for compression (if measured via
MSE).

• As far as dimensionality reduction is concerned this
process is distribution-free, i.e. it’s a mathematical
method without underlying statistical model.

• Extracted features (PCs) often lack ‘intuition’.

40

PCA an Neural Networks

 A three-layer NN with linear hidden units, trained as auto-encoder,
develops an internal representation that corresponds to the principal
components of the full data set. The transformation F1 is a linear projection
onto a k-dimensional (Duda, Hart and Stork: chapter 10.13.1).

