
1 

1 

Feature Selection:  
Linear Transformations 

 

                  ynew = M xold 
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Constraint Optimization (insertion) 

Problem: Given an objective function f(x) to be optimized and let  

 constraints be given by hk(x)=ck   ,  

 moving constants to the left,  ==>   hk(x) - ck=gk(x).  

 f(x) and gk(x) must have continuous first partial derivatives 

A Solution:  

 Lagrangian Multipliers                      0 = x f(x) +  Σxλk gk(x) 

 or starting with the Lagrangian :    L (x,λ) = f(x) + Σ λk gk(x).   

                       with  xL (x,λ) = 0. 



2 

4 

The Covariance Matrix  (insertion) 

Definition 

    Let x = {x1, ..., xN}  N be a real valued random variable  

    (data vectors),  with the expectation value of the mean E[x]  = μ. 

 

   We define the covariance matrix  Σx of a random variable x  

    as      Σx := E[ (x- μ) (x- μ)T ]   

                        with matrix elements   Σij = E[ (xi - μi) (xj - μj)
T ] . 

Application:   Estimating E[x] and E[ (x - E[x] ) (x - E[x] )T ] from data. 
 

    We assume m samples of the random variable x = {x1, ..., xN}  N  

    that is we have a set of m vectors { x1 , ..., xm }  N  

    or when put into a data matrix  X  N x m 
 

    Maximum Likelihood estimators  

    for μ and Σx are:  
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KLT/PCA Motivation 

• Find meaningful “directions” in correlated data 

• Linear dimensionality reduction 

• Visualization of higher dimensional data 

• Compression / Noise reduction 

• PDF-Estimate 
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Karhunen-Loève Transform: 1st Derivation  

 
This is a constrained optimization → use of the Lagrangian: 

      L(a1, λ1)       = E[a1
T x xT a1] – λ1 ( a1

T a1 – 1 ) 

 

             =      a1
T Σx a1       – λ1 ( a1

T a1 – 1 ) 
 
 

Lagrange 

multiplier 

Problem 
    Let x = {x1, ..., xN}  N be a feature vector of zero mean,  

    real valued random variables. 

 

     We seek the direction a1 of maximum variance: 

 

 

 

 

== >       y1 = a1
T x    for which a1 is such as E[y1

2]  is maximum 

                     with the constraint that a1
T a1 = 1 
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Karhunen-Loève Transform 

 

for E[y1
2]  to be maximum :  
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E[y1
2] = a1

T Σx a1  = λ1 
 

=>   for E[y1
2]  to be maximum, λ1 must be the largest eigenvalue. 

L(a1, λ1) = a1
T Σx a1 – λ1 ( a1

T a1 – 1 )  

=>       a1 must be eigenvector of Σx with eigenvalue  λ1. 

 

=>     Σx a1 – λ1 a1 = 0 
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Karhunen-Loève Transform 

The resulting matrix A is known as   Principal Component Analysis (PCA) 
 

or Kharunen-Loève transform (KLT)        y = AT x 
 1

N

ii

i

y



 x a

Now let’s search for a second direction, a2, such that: 

   y2 = a2
T x     such as E[y2

2] is maximum, and     

                         a2
T a1 = 0     and    a2

T a2 = 1 

Similar derivation:  L(a2, λ2) = a2
T Σx a2 – λ2 ( a2

T a2 – 1 )  with  a2
T a1 = 0 

 

     =>   a2 must be the eigenvector of Σx associated with the  

            second largest eigenvalue λ2. 

We can derive N orthonormal directions that maximize the  

variance:  A = [a1, a2,…, aN]   and   y = AT x 
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•  Let y = A
T
x, then by definition of the correlation matrix: 

 

 

•  Rx is symmetric  its eigenvectors are mutually orthogonal 

 

Problem 

    Let x = {x1, ..., xN}  N be a feature vector of zero mean,  

    real valued random variables. 
 

    We seek a transformation A of x  that results in a new set of  

    variables y = ATx  (feature vectors) which are uncorrelated 

    ( i.e.   E[yi, yj]= 0  for   i   j ) . 

 

Karhunen-Loève Transform: 2nd Derivation  
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Karhunen-Loève Transform 

 i.e. if we choose A such that its columns ai are orthonormal 

eigenvectors of Rx  , we get: 

1
0 0

0 0

0 0
N





 

  
 
  

     ---- >  the eigenvalues i  will be positive. 

 

The resulting matrix A is known as 
 

Karhunen-Loève transform (KLT)     y = A
T
x 
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• If we further assume Rx to be positive definite,  
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Karhunen-Loève Transform 

1

N

i

i

y



  i
x a

T
y x A

The Karhunen-Loève transform (KLT) 

For mean-free vectors   (  e.g. replace   x   by    x – E[ x ]  )  

this process diagonalizes the covariance matrix Σy  
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KLT Properties: MSE-Approximation 

We define a new vector     in m-dimensional subspace ( m < N ), 

using only m basis vectors: 
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  Projection of x into the subspace spanned  

    by the m used  (orthonormal) eigenvectors. 

   Now, what is the expected mean square error 

between x and its projection    :  
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KLT Properties: MSE-Approximation 

    The error is minimized if we choose as basis those eigenvectors 

corresponding to the m largest eigenvalues of the correlation 

matrix. 
 

•    Amongst all other possible orthogonal transforms KLT  
      is the one leading to minimum MSE 
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    This form of KLT ( as presented here ) is also referred to as 
Principal Component Analysis (PCA).  
The principal components are the eigenvectors ordered (desc.) 

by their respective eigenvalue magnitudes i 
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KLT Properties 

Total variance 

• Let w.l.o.g. E[x]=0 and y = A
T
x  the KLT  (PCA)  of x.  

From the previous definitions we get:  

 

 

• i.e. the eigenvalues of the input covariance matrix are equal 

to the variances of the transformed coordinates. 

22   
 iy i i

E y 

 Selecting those features corresponding to m largest 

eigenvalues retains the maximal possible total variance (sum 
of component variances) associated with the original random 

variables xi . 
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Example:  for a zero-mean (m=0)   m-dim. Gaussian 

1

12 2
1
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KLT Properties: Entropy 
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 Selecting those features corresponding to m largest eigenvalues 

maximizes the entropy in the remaining features. 

 No wonder: variance and randomness are directly related ! 

 

For a random vector y the entropy                             is a 

measure for the randomness of the underlying process. 
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Computing a PCA: 

Problem: Given mean free data X , a set on n feature vectors xi 

 Rm. Compute the orthonormal eigenvectors ai of the correlation 

matrix Rx . 

 There are many algorithms that can compute very efficiently 
eigenvectors of a matrix. 
However, most of these methods can be very unstable in certain 
special cases. 

 Here we present SVD, a method that is in general not the most 
efficient one.  
However, the method can be made numerically stable very 
easily! 
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Singular Value Decomposition: 

an Excursus to Linear Algebra  
( without Proofs ) 

Computing a PCA: 
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Singular Value Decomposition : 

•  The diagonal values of  (1, 2, …., n) are called the singular values. 
  

•  It is accustomed to sort them:  1   2   ….   n 

SVD (reduced Version): For matrices A  R
mn

 with m ≥ n, there 

exist matrices  

          U  R
mn

 with orthonormal columns ( U T
U = I ) ,  

          V  R
nn

  orthogonal ( V T
V = I  ), 

            R
nn  

diagonal, 

                          with    A=U  V
 T

 

A U 
T

V

= m 

n 
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SVD Applications: 

SVD is an all-rounder !  

 Once you have U, , V , you can use it to:  
 

- Solve Linear Systems: A x = b  

 

 

 

 

 

 

- ……. 

- Compute PCA / KLT 

 

a)  If  A-1  exists  Compute matrix inverse  

b)  for fewer equations than unknowns 

c)  for more equations than unknowns  

d)  if there is no solution: compute  

   x   that   | A x - b | = min 

e)  compute rank (numerical rank) of a matrix 
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SVD : Matrix inverse A-1 

A x = b : 

 
1

1 T
A U V




 

If A is square nxn and not singular, then  A-1  exists. 

1

1

1

 

n

T
V U





 

 
  

 
 

 

A=U  V T                     U, , V, exist for all A 

 
1

1 1
 

T
V U


 

 
Computing A-1

 for a singular A !?  

 

Since U, , V  all exist, the only 

problem can originate if one σi = 0  

or numerically close to zero.  

-->   singular values indicate if A  

        is singular or not!! 

22 

 

- The rank of  A  is the number of non-zero singular values.  

- If there are very small singular values i , then A is close of 

being singular.  
 
 

A U 
T

V

= m 

n 

1 
2 

n 

SVD : Rank of a Matrix  

  We can set a threshold t, and set   i  = 0   if   i ≤ t  
  

    then the    numeric_rank ( A ) = # { i  | i > t } 
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-  numeric_rank( A ) = # { i  | i > t } ,   

the rank of A  is equal the dim( Img( A ) ) 
 

SVD : Rank of a Matrix (2) 

A U 
T

V

= m 

n 

1 
2 

0 

s 

0 

n = dim( Img(A) ) + dim( Ker(A) ) 

-  the columns    of U corresponding to the   i  ≠ 0 ,  span the range of  A    

-  the columns    of V corresponding to the   i  = 0 ,  span the nullspace of  A    
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1) case A-1 exists 

remember linear mappings  A x = b 
 

A 

R
m 

R
n 

A x = b 

2)  A  is singular:  dim( Ker(A) ) ≠ 0 

b 
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25 SVD : solving  A x = b 
 

2)  A  is singular:  dim( Ker(A) ) ≠ 0 

b 

There are an infinite number of different  x  that solve Ax=b !!?? 

Which one should we choose??  

 

 

 

e.g.  we can choose the  x  with   ║ x ║ = min 

    → then we have to search in the space  orthogonal to the nullspace 

x 

26 SVD : Solving   ║ A x  -  c ║ =  min  

 

3)  c  is not in the range of A 

c* 

1) Projecting  c  into the range of  A  results in  c* 

c 

x 

2)   From all the solutions of  A x = c* we choose the  x  with   ║ x ║ = min 



13 

27 

A x = c     for any  A  exist U, , V, with  A= U  V T 

                with  1   2   ….   n 

 
1

T
x U V c



 

1

1

1

 

n

T
V U c


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 

 
  

 
 

U  V T x = c 

 
1

1 1
 

T
V U c


 

 

Computing A-1
 for a singular A !?  

 

 

-->   What to do in -1
 with 1/0 =    ???? 

Some  i  = 0   if   i ≤ t  
 

SVD : Solving  ║ A x  -  c ║ =  min 

Remember what we need ---- > 
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 1)   Project  c  into the range of  A  to obtain a  c* 

2)   From all the solutions of  A x = c* we choose the ║ x ║ = min      

that is the x in the space  orthogonal to the nullspace 

 

SVD : Solving:   ║ A x  -  c ║ =  min 

T
U

1
V

x = c 

1

1




2

1




1
0


1
0


-  the columns    of U corresponding to the   i  ≠ 0 ,  span the range of  A    

-  the columns    of V corresponding to the   i  = 0 ,  span the nullspace of  A    

We need to: 

Basically all rows or columns multiplied by 1/0 are irrelevant!! 

 -->  so even setting 1/0 = 0 , will lead to the correct result. 
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SVD at Work: 

For Linear Systems A x = b : 

 Case fewer equations than unknowns:  

  fill rows of A with zeros so that n = m 

Perform SVD on A with  (n ≤ m): 

 Compute U, , V, with  A=U  V T  

 Compute threshold t  and 

 in    set   i     = 0   for all   i ≤ t 

 in -1
 set  1/i  = 0   for all   i ≤ t 

For Linear Systems:   compute   Pseudoinverse  A+ = V -1 
U T  

                                       and compute                   x = A+
 b 
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Application: Compute PCA via SVD 

Now we use SVD 

1. Move center of mass to origin: xi
’=xi- 

2. Build data matrix, from mean free data   X=U  V T 

3. The principal axes are eigenvector of the  

covariance matrix C = 1/n  XX T  
 

1

T T

d

XX U U





 

 


 

  

Problem: Given mean free data X , a set on n feature vectors xi 

 Rm compute the orthonormal eigenvectors ai of the correlation 

matrix Rx . 
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Application: Compute PCA via SVD (2) 

with SVD 

 XX T =  U  V T (U  V T  )T 

                  =  U  V T (V T U T  ) 

     =  U  T U T 

                   =  U 2 U T       

                                      

Since C = 1/n  XX T  

 the eigenvalues compute to  λi = 1/n  σi
2    

 with  λi  =  σi
2                                          σ  from SVD 

σ 
2

 variance of E[ yi
2] 
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Example: PCA on Images 

• Assume we have a set of  k  images (of size NN) 

• Each image can be seen as N2-dimensional point pi 

(lexicographically ordered); the whole set can be stored as 
matrix: 

1 2

| | |

| | |

k
X

 

 

 

  

p p p

• Computing PCA the “naïve” way 

• Build correlation matrix XXT (N 4 elements) 

• Compute eigenvectors from this matrix: O((N2)
3
) 

 

 Already for small images (e.g. N=100) this is far too expensive 
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Now we use SVD 

1. Move center of mass to origin: pi
’=pi- 

 

2. Build data matrix, from mean free data 

 
3. The principal axes are eigenvector of 

 

1 2

| | |

| | |

n
X

 

 
  

 

  

p p p

1

T T

d

XX U U





 

 


 

  

PCA on Images 

34 

PCA on Images 

Principal Components can be 
visualized by adding to the 
mean vector an eigenvector 

multiplied by a factor (e.g. λ ) 

mean face 

Eigenfaces Faces 
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PCA applied to face images 

Choosing subspace dimension r: 

 Look at decay of the 

eigenvalues as a function of r 

 Larger r means lower expected 

error in the subspace data 

approximation 

r k 1 
Eigenvalue spectrum 

mean 
face 

Eigenfaces 

Here the faces where normalized in eye distance and eye position. 
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Eigenfaces for Face Recognition 

Turk, M. and Pentland, A. (1991).  
Face recognition using eigenfaces.  
In Proceedings of Computer Vision and Pattern Recognition, pages 586--591. IEEE. 

In the 90’s the best performing Face Recognition System! 
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PCA for Face Recognition 

38 

PCA & Discrimination 

• PCA/KLT  do not use any class labels in the 
construction of the transform. 

   The resulting features may obscure the existence of 
      separate groups. 
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PCA Summary 

• Unsupervised: no assumption about the existence 
or nature of groupings within the data. 

• PCA is similar to learning a Gaussian distribution 
for the data. 

• Optimal basis for compression (if measured via 
MSE). 

• As far as dimensionality reduction is concerned this 
process is distribution-free, i.e. it’s a mathematical 
method without underlying statistical model. 

• Extracted features (PCs) often lack ‘intuition’. 
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PCA an Neural Networks 

     A three-layer NN with linear hidden units, trained as auto-encoder, 
develops an internal representation that corresponds to the principal 
components of the full data set. The transformation F1 is a linear projection 
onto a k-dimensional (Duda, Hart and Stork: chapter 10.13.1). 

 


