Feature Selection:
Linear Transformations

Ynew = M Xold

Constraint Optimization (insertion)

Problem: Given an objective function f(X) to be optimized and let
constraints be given by h (x)=c, ,
moving constants to the left, ==> h,(x) - ¢,=g,(x).
f(x) and g,(x) must have continuous first partial derivatives

A Solution:
Lagrangian Multipliers 0=v, f(x) + Zv,4 9,(X)
or starting with the Lagrangian : L (x,4) = f(X) + X 4, g,(x).

with wL (x,2) = 0.




The Covariance Matrix (insertion)

Definition
Let x = {X,, .., Xy} € RN be a real valued random variable
(data vectors), with the expectation value of the mean E[X] = p.

We define the covariance matrix X, of a random variable X

as  Eoi=E[(x- 1) (x0)]
with matrix elements X = E[ (X; - 1) (X - ;,lj)T] .

Application: Estimating E[x] and E[ (x - E[x]) (X - E[x] )"] from data.

We assume m samples of the random variable X = {x, ..., xu} € RN
that is we have a set of m vectors {X,, .., X, } € RN
or when put into a data matrix X € RNxm

Maximum Likelihood estimators

. il 0
for pand X, are: = 4, =—IX
— m k=t
s -1y Ly
= ML ;k:l(ék - ﬁML)(lk - EML) - ;

KLT/PCA Motivation

¢ Find meaningful “directions” in correlated data
e Linear dimensionality reduction

e Visualization of higher dimensional data

e Compression / Noise reduction

e PDF-Estimate

| low redundancy ‘ [high redundancy
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Karhunen-Loeve Transform:| ist perivation

Problem
Let x = {x,, ... xu} € RN be a feature vector of zero mean,

real valued random variables.

We seek the direction a; of maximum variance:

==> y;=8,"X for which &, is such as E[y,2] is maximum
with the constraint that 3,78, =1

This is a constrained optimization — use of the Lagrangian:
L@, 4) =E["xx"a]-24(a,"a-1)

= a'Xa —A(a'a-1)

Karhunen-Loeve Transform

L(2;, 41) = S, a-4 (a,"a,-1)

oL@, A4) _

0a,

for E[y,?] to be maximum :

=>  Xa-48=0

=> a; must be eigenvector of X, with eigenvalue 4,.

Ely,?] = a"X,8, =4

=> for E[y,?] to be maximum, 4; must be the /argest eigenvalue.




Karhunen-Loeve Transform

Now let’s search for a second direction, a,, such that:
Y,=8,"X  such as E[y,?] is maximum, and

2'3,=0 and aT'a=1

Similar derivation: L(a, 4,) =a,"X,a,—4,(a,"a,—1) with a,"a, =0

=> @, must be the eigenvector of X, associated with the
second largest eigenvalue A,.

We can derive N orthonormal directions that maximize the
variance: A=[a;, a,...,8y] and y=ATXx

The resulting matrix A is known as Principal Component Analysis (PCA)

or Kharunen-Loéve transform (KLT) y=ATXx X=

Karhunen-Loéve Transform: 2 perivation

Problem
Let X ={x,, ..., x,} € RN be a feature vector of Zerorrean,
real valued random variables.

We seek a transformation A of X that results in a new set of
variables Y = ATX (feature vectors) which are uncorrelated
(i.e. Elyyl=0 for i=j).

o Lety= ATZ, then by definition of the correlation matrix:

R, =E[yy 1= E[A"xx A]= A"R A

* R, is symmetric = its eigenvectors are mutually orthogonal
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Karhunen-Loeve Transform

> i.e. if we choose A such that its columns a; are orthonormal
eigenvectors of R, , we get:

[4, 0 0]
Ry:ATRXA:A:IO oI
LO 0 /INJ

e If we further assume R, to be positive definite,

---- > the eigenvalues A; will be positive.

The resulting matrix A is known as

N
Karhunen-Loeve transform (KLT) y= ATX x=>ya,
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Karhunen-Loeve Transform

The Karhunen-Loéve transform (KLT)

N
y=A"x x=73ya,

i=1

For mean-free vectors ( e.g.replace X by X-—E[X])

this process diagonalizes the covariance matrix Ey
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KLT Properties: MSE-Approximation

We define a new vector x in M-dimensional subspace (M < N),

m
using only M basis vectors: |% = Z y.a,

» Projection of x into the subspace spanned
by the M used (orthonormal) eigenvectors.

Now, what is the expected mean square error
between X and its projection X :

N
D Vg,

i=m+1

2 i 1T 1
Elx- x| =€l | =E| XX (va )Nya)|=-
[ J L J |_ P J
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KLT Properties: MSE-Approximation

:

E[”x—)”( )J:

2 [_ T 3 2
]:....:EFZ(yiai )= X E[W] =X 4

The error is minimized if we choose as basis those eigenvectors

corresponding to the m largest eigenvalues of the correlation
matrix.

e Amongst all other possible orthogonal transforms KLT
is the one leading to minimum MSE

This form of KLT ( as presented here ) is also referred to as
Principal Component Analysis (PCA).
The principal components are the eigenvectors ordered (desc.)

by their respective eigenvalue magnitudes 2;
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KLT Properties

Total variance

e Letw.lo.g. E[X]=0 andy = A'X the KLT (PCA) of x.
From the previous definitions we get:

on=Ely']=4

e i.e. the eigenvalues of the input covariance matrix are equal
to the variances of the transformed coordinates.

> Selecting those features corresponding to M largest
eigenvalues retains the maximal possible total variance (sum
of component variances) associated with the original random
variables X;
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KLT Properties: Entropy

For a random vector Y the entropy H ,=—E[lnp,(y)] is a
measure for the randomness of the underlying process.

Example: for a zero-mean ((t=0) m-dim. Gaussian

m

H,=-E [ In( (27) ?

1
_= 1 B
2|t exn-—y'5y) ) ]

- Ta-1
H, =;|n(2n)+§|n‘zy‘+§5[y =y

E[y'Z,'y]= E[trace{y'= 'y}]

" m _ o
=%|n(2ﬂ)+%|nH A +— = E[trace{Z 'yy'}]
= 2 = Eftrace{I}]=m

> Selecting those features corresponding to m largest eigenvalues
maximizes the entropy in the remaining features.

» No wonder: variance and randomness are directly related !




Computing a PCA: ”

Problem: Given mean free data X , a set on n feature vectors X;

€ R™. Compute the orthonormal eigenvectors q; of the correlation
matrix R, .

» There are many algorithms that can compute very efficiently
eigenvectors of a matrix.

However, most of these methods can be very unstable in certain
special cases.

» Here we present SVD, a method that is in general not the most
efficient one.

However, the method can be made numerically stable very
easily!

Computing a PCA: ’

Singular Value Decomposition:

an Excursus to Linear Algebra
( without Proofs )
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Singular Value Decomposition :

SVD (reduced Version): For matrices A € R™" with m = n, there
exist matrices
U € R™" with orthonormal columns (UTU=1),
V € R™ orthogonal (Vv=1),

> e R™ diagonal,
with A=UZT VT

/—/L
m = lg.
A U z v’
e The diagonal values of X (o3, oy, ...., 6,) are called the singular values.

e It is accustomed to sort them: o;> 0,2 ... 2 ¢,
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SVD Applications:
SVD is an all-rounder !

Once you have U, X, V, you can use it to:

- Solve Linear Systems: A X = Q
a) If Al exists > Compute matrix inverse
b) for fewer equations than unknowns
c) for more equations than unknowns
d) if there is no solution: compute
X that |AX-Db|=min

e) compute rank (numerical rank) of a matrix

-  Compute PCA / KLT
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SVD : Matrix inverse A*
Ax=Dhb:

A=UX VT U, X, V, exist for all A

If A is square nxn and not singular, then A7 exists.

-1

N1=wsz

ey - i = i 19
- (VT) >yt Computing A"~ for a singular A I

Since U, X, V all exist, the only

problem can originate if one g; = 0

1
e or numerically close to zero.

1

=V

I 1

| |

| | --> singular values indicate if A
L n J is singular or not!!
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SVD : Rank of a Matrix

- The rank of A is the number of non-zero singular values.

- If there are very small singular values oj, then A is close of
being singular.

We can set a threshold t, and set ¢; =0 if o<t

then the numeric_rank (A)=#{ o |g>1}

.
!
K
m = l
A U by v’

10
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SVD : Rank of a Matrix (2)

- numeric_rank(A)=#{ o | 5;>1},
the rank of A is equal the dim( Img(A))

K—L
01
‘ ‘
m _ I ) =
A U = Al

| n = dim(Img(A) ) + dim( Ker(A))

- the columnslof U corresponding to the o; #0, span the range of A

- the columns " of V corresponding to the o; =0, span the nullspace of A
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remember linear mappings A

I><
Il
oy

1) case A1 exists

A
[R“/ e

2) A issingular: dim(Ker(A)) #0

2
%
%
&

ige of 4

11



] 1 — 2
SVD : solving Ax=Db 5
2) A issingular: dim(Ker(A)) #0
>,
Z  A\=
& o
%
b
R D
«Lid "nge or 4
There are an infinite number of different X that solve Alzb 1ne?
Which one should we choose??
e.g. we can choose the X with || X || = min
— then we have to search in the space orthogonal to the nullspace
] H — M 2
SVD : Solving ||AXx - ¢ | = min 6
3) C is not in the range of A
N
= N g*
e ran N
& 8e (in,
N\ age
N ) s
1) Projecting C into the range of A results in c*
2) From all the solutions of A X =C* we choose the X with || X || = min

12



SVD : Solving |[Ax - ¢|
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= min
AXx=c forany A exist U, 2, V, with A= UZ VT
with 032 0,2 ... 2 0,

UzvTix=c

_
x = (UXZV') ¢

. Computing A'l for a singular Al?
_ (VT) Z-1U-19

> What to do in X with 1/0 = co  ?22?

Some Gj =0 if O'iSt

Remember what we need ---- >

SVD : Solving: | Ax - c| = min

28

We need to:
1) Project C into the range of A to obtain a Cig

2) From all the solutions of A X =C* we choose the || X || = min
that is the X in the space orthogonal to the nullspace

‘ c
k ot -
i u’

- the columnslof U corresponding to the o; #0, span the range of A

\

- the columns" of V corresponding to the o; =0, span the nullspace of A

Basically all rows or columns multiplied by 1/0 are irrelevant!!

--> so even setting 1/0 = 0, will lead to the correct result.

13
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SVD at Work:

For Linear Systems AX =D :

Case fewer equations than unknowns:
> fill rows of A with zeros so that n =m

Perform SVD on A with (n <m):
> Compute U, =, V, with A=UX VT
> Compute threshold t and
> in2 set g =0 forall g<t

> inXtset 1/6,=0 forall o<t

For Linear Systems: compute Pseudoinverse A*=Vx1UT
and compute Xx=A"b
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Application: Compute PCA via SVD

Problem: Given mean free data X , a set on n feature vectors X;

e RM compute the orthonormal eigenvectors a; of the correlation
matrix R, .

Now we use SVD

1. Move center of mass to origin: X;'=X;-\

2. Build data matrix, from mean free data X=UX V'

3. The principal axes are eigenvector of the
covariance matrix C = 1/n XX T

14



with SVD
XXT=uUzvi@uzvh)T
=uUxzVvi(vzTuT)
=uxzxTuT
= uUx?uT
Since C=1/n XXT

the eigenvalues compute to A, = 1/n 0'i2

™
AN

o 2 variance of E[ yiz]

Application: Compute PCA via SVD (2)

with A, = o'i2 O from SVD

Example: PCA on Images

e Assume we have a set of k images (of size NxN)

e Each image can be seen as N?-dimensional point p,

(lexicographically ordered); the whole set can be stored as
matrix:

1 | 1
><=Ip1 o, pkl
L1 ||

e Computing PCA the “naive” way
e Build correlation matrix XX" (N * elements)

e Compute eigenvectors from this matrix: O((NZ)S)

» Already for small images (e.g. N=100) this is far too expensive

32
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PCA on Images

Now we use SVD

1. Move center of mass to origin: p;'=p;-p

2. Build data matrix, from mean free data X =

3. The principal axes are eigenvector of

33

PCA on Images

mean face

Faces

34

Principal Components can be
visualized by adding to the
mean vector an eigenvector

multiplied by a factor (e.g. 1)

16



35

PCA applied to face images

Here the faces where normalized in eye distance and eye position.

mean
face

Choosing subspace dimension r:

* Look at decay of the
eigenvalues as a function of r

= Larger r means lower expected

error in the subspace data
approximation

. T r k
Eigenfaces Eigenvalue spectrum

Eigenfaces for Face Recognition

‘In the 90’s the best performing Face Recognition System! ‘

Turk, M. and Pentland, A. (1991).
Face recognition using eigenfaces.
In Proceedings of Computer Vision and Pattern Recognition, pages 586--591. IEEE.

Feature
Search

w| Multiscale
Head Search

|
Face Mask{ng and
Contrast Norm.

17



PCA for Face Recognition

Raw 3.2 KByles JPEG 530 Byles

(LS
Compare

: Coder 85 Bytes
E Eigenspace iti .
)E : P - Recognition | "Mayor W hite"
Projecticn S
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PCA & Discrimination

e PCA/KLT do not use any class labels in the
construction of the transform.

» The resulting features may obscure the existence of
separate groups.

38

18
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PCA Summary

Unsupervised: no assumption about the existence
or nature of groupings within the data.

PCA is similar to learning a Gaussian distribution
for the data.

Optimal basis for compression (if measured via
MSE).

As far as dimensionality reduction is concerned this
process is distribution-free, i.e. it’'s a mathematical
method without underlying statistical model.

Extracted features (PCs) often lack ‘intuition’.

PCA an Neural Networks

40

A three-layer NN with linear hidden units, trained as auto-encoder,
develops an internal representation that corresponds to the principal
components of the full data set. The transformation F1 is a linear projection
onto a k-dimensional (Duda, Hart and Stork: chapter 10.13.1).

output
Y, X X

QOO |
linear €0 @ - R I(F,)

clcYclelcte

input
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