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Wavelets  

 

 

 

Wavelets: Applications 

Compression in 2D & 3D 

Multiscale Editing: 

          100%                         19%                            3%                             1%   

Wavelets for Computer Graphics : A Primer 
Stollniz, DeRose & Salesin 
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Haar Wavelets 

V j  is the vector space of all piece wise constant function 

on [0,1] dividing the interval in 2 j pieces: 

0                                                            1 

         Example          with 8 pieces  
3

V

Every function with less constant pieces is element of V3
 . 

0 1 2
...

j
V V V V                 => :  

Haar Wavelet Basis Functions 

  0,1, ..., 2 1( ) : 2       
jj j

i
ix x i    

A special type of basis functions of       are the 

“scaling functions“. 

j
V

with 1    0 1

0    else
( )

x
x

 
   are the Haar Wavelet basis functions.   
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Example: Basis for 
2

V

 
2 2 2 2

0 0 1 1 2 2 3 3
( ) ( ) ( ) ( ),     

i
x x x x cf x c c c c         Any function in V2 can be 

represented! 
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Complementary Space & Wavelets 

   

1

0

,f g f x g x dx 

Definition: The scalar product in        is 
j

V

Definition:         is the orthogonal complementary space 

                    of          in          ,            
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Definition:  Wavelets are the basis functions              that span  

                    the vector space        .          j
W
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Haar Wavelets 
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Example: Basis for 1
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    and      are the basis of W 
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Example 

2
in  V

 
2 2 2 2 2 2 2 2

0 0 1 1 2 2 3 3
( )         ( )            ( )           ( )                        x x x xf x c c c c      

f(x)  =  8x                        + 4x                         + 1x                         + 3x 

0 0 1
in  V W W 

1 1
in  V W

f(x)  =  6x                        + 2x                         + 2x                         - 1x 

 
1 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1
( )         ( )            ( )           ( )                        x x x xf x c c d d      

f(x)  =  4x                        + 2x                         + 2x                         -1x 

 
0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1
( )         ( )            ( )           ( )                        x x x xf x c d d d      

8 

4 
3 
1 

2D Application 

i.e. an image with 256x256 pixels we 

could convert in a 1D function of V16 

What is differnt ?  

possible  !!!  

But, similarity of neighboring pixels 
then only would be used in one 
direction.  

B) Apply 1D functions separately to columns and rows. 
 B)  is the usual case:  

Alternatives: 
 A) 2D Scaling- and Wavelet functions??  (do not exist) 
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Standard 2D Haar Wavelet Transformation 

1. Transform all rows 

2. Transform all columns 

Non Standard Transformation 

Alternate row and 

column 

transformation.  
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Standard or Non Standard!?? 

Both methods result in a valid wavelet transformation.  
They differ in computation load and in their support. 

A) Standard Haar Wavelet basis is a tensor product of 1d basis functions 

     , :x y x y   

B) Non standard Haar Wavelet basis defines a  
 
    2D scaling function                                
 
 
    with wavelet functions  
 

     , :x y x y   

     , :x y x y   

     , :x y x y   

Haar Wavelets in 2D 

Standard Haar Wavelet basis for  

 

  + = +1,  - = -1, grey = 0  

2
2DV Non Standard Haar Wavelet basis 

 

  + = +1,  - = -1, grey = 0  

2
2DV
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Compression 

with an  orthonormal  basis    
1

0
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f x cU x







Search for        with                                     and  tolerance   
 
 
         that                                     and                   minimal.    

       

ˆ 1
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Solution:        is the maximum with  

   iand                        a permutation of                    with  1....i M
   1

 
i i

c c
  



are Haar Wavelets orthonormal ? 

   
i

U

Haar Wavelets 

0 0 1
z.B.  V W W 

0 0 1 1

0 0 0 1
( ), ( ),   ( ),  ( ) . . .         x x x x    Haar wavelets are orthogonal ! 

But not normalized! 

Normalized 

2       
j

2       
j

 ( ) :                 2       
j j

i
x x i  

 ( ) :                 2       
j j

i
x x i  

Haar wavelets: 

  the coefficients  
1

2

j j

j
c c
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Haar Wavelet compression 

# coefficients                100%                            19%                             3%                             1%   

rel. error   L2                  0%                              5%                             10%                           15%   

In general, 
this does not directly translate into the number of bytes required.  

Scale analysis   `Multi-resolution Analysis´ 

remark :  Haar Wavelets are only   

                one example of wavelets!  

0 1 1
( ) : ( ), ( ), .  .  .  ( ) 

j j j

N
x x x x


    
 

j
   Ψ   

Define one-row matrices:   

0 1 1
( ) : ( ), ( ), .  .  .  ( ) 

j j j

M
x x x x


    
 

j
   Φ   

( ) ( ) x x
j-1 j j

Ψ Φ Q

2

1 0

1 0
 

0 1

0 1

 

 

 
 

 
 

Q

Example : Haar Wavelets!  

1 0

1 0
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2
P

0 1 2
  ...  

j
V V V V  

0 1 2
           ...   

                                

j
V V V V  

  P, Q

1
( ) ( ) x x




j j j
PΦ Φ

Refinement:  

    From                                      and the linearity 

    results        matices            with  
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Multiresolution Analysis 

 |  |   
   

j-1 j-1 j j j
Φ Ψ Φ P Q

Notation: 

Example : Haar Wavelets!  

1 1 1 1 2 2 2 2

0 1 0 2 0 1 2 3

1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1

, , , , , ,






 

 

           
   

 

 
 

      

Filter Banks 

So far we investigated the scaling- and wavelet functions. 

  0 1 1
,           with      , ,....

j j j j j j j

M
f x V f C C c c c


   
 

Φ

However, the coefficients of the Wavelet transformation  

are more important . 

-1

-1

j j j

j j j

C A C

D B C





In lower resolution: 1 1 j-1 -1
  +    

j j j j j
f C C D

 
 Φ Φ Ψ
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Φ Φ Ψ

are analysis filter  ,
j j

A B



Page 10 

Filter banks (2) 

         | Q  = I  
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Φ Φ Ψ

with  

 a.)                                                          b.)  
-1
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j j j

j j j

C A C

D B C





 |  |   
   

j-1 j-1 j j j
Φ Ψ Φ P Q

Are synthesis filter  ,Q
j j

P

a filter Bank ! 

j
C

1j
C
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A
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B
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D



2j
C



1j
A



1j
B



2j
D



. . . . . .  0
C

1
A

1
B

0
D

                 Either we know                or  

                 -> then we can transform the signal.  
,Q

j j
P,

j j
A B
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Old friends! 

Linear B-spline Wavelets 
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Kubic B-spline Wavelets 

Computationally more efficient:  

 

Solve the sparse system                                             for  cj-1 and d j-1 
 using the 

 

 LU decomposition ( O(n) ). 

 

So the transform can be efficiently computed without knowing  Aj and Bj
  

1

1
| Q

j

j j j

j

c
P c

d





 
   

 

Computing the c’s and d’s from P and Q 

  | Q  = I  

j

j j

j

A
P

B

 
   

 

However, 

given the sparse synthesis filter P j and Qj ,  

in general this does not guarantee that Aj and Bj 

are sparse too.  

=>  Could be computational expensive! 

-1

-1

j j j

j j j

C A C

D B C





with                           ,   we an compute the transformation.   
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Daubechies Wavlets: 


