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Graphical Models

slides adopted from Sandro Schönborn
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Graphical Models

• Independence & Factorization

• Including structure

• Complexity of multivariate problems

• Independence assumptions

• Graphical Models

• Graphs to depict factorizations

• Topological properties

• Causal modeling

• Factor graphs
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Graphical Models

• Independence & Factorization

• Including structure

• Complexity of multivariate problems

• Independence assumptions

• Graphical Models

• Graphs to depict factorizations

• Topological properties

• Causal modeling

• Factor graphs

Russell, Norvig, Artificial Intelligence – A modern approach, 3rd ed., Pearson 2010

With examples from chapters 13 & 14
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Missing Structure

• Until now:

put everything in a large feature vector then find best classification
or

learn a full joint probability distribution

• Knowledge about the domain? -> features, pre-processing

• Knowledge about feature dependencies? -> classification method

• How can we integrate specialist knowledge?

• It surely helps to make the problem easier!

• How to construct a composite system when only parts are available for 
training?
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Structured Problems

Genetic Code  Function Image  Facial Expression

Relations among pixels
(dependencies)
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Structure in Probabilistic Models

• Bayes formalism needs:

• Likelihood 

• Prior 

• Both contain “structure/knowledge” information:

• Likelihood: likelihood assigned to each possible combination of features

-> contains every possible form of structure among features

• Prior: prior belief

-> contains our knowledge about the model/domain before seeing data 

• Structure is complicated, it can render models intractable

Too much structure is also undesired: not entirely hand-designed classifiers

or     Joint Probability Density / Table
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Multivariate Problems: Complexity

• Most problems involve many variables

images > 106(1 MP), DNA data, web consumer data, …

• Structure involves interdependencies among many variables

Image pixels show strong correlations with each other

-> complicates inference

• Estimation of densities is susceptible to high dimensionality

e.g. dimension of covariance matrix: 𝑑x𝑑, captures only linear relations

Joint probability tables: one entry for every possible combination 𝒪 exp 𝑑

-> complicates density estimation
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Example: Dentist Diagnosis with Joint Probability

• Dentist diagnosis considering 4 binary variables

• toothache: patient has toothache

• cavity: patient has a cavity

• probe: the dentists probe catches in the tooth

• rain: it is currently raining

• JPT gives occurrence probability of each combination

JPT
toothache ¬toothache

probe ¬probe probe ¬probe

rain
cavity 0.036 0.004 0.024 0.003

¬cavity 0.005 0.021 0.048 0.192

¬rain
cavity 0.072 0.008 0.048 0.005

¬cavity 0.011 0.043 0.096 0.384

Russell, Norvig, Artificial Intelligence – A modern approach, 3rd ed., Pearson 2010

Contains a lot of 
structure, although 
not easily extractable

Complexity of 

estimation𝒪 2𝑑

“Joint Probability Table”
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Example: Dentist Inference

• “What is the probability of a cavity if the probe catches?” 

We do not know: toothache 𝑇, rain 𝑅

𝑃 cavity probe =
𝑃(c, p)

𝑃 p

𝑃 p, c = ෍
𝑅,𝑇
𝑃 p, c, 𝑅, 𝑇

= 𝑃 p, c, r, t + 𝑃 p, c, r, ¬t + 𝑃 p, c, ¬r, t + 𝑃 p, c, ¬ r, ¬t

𝑃 p =෍
𝑅,𝑇,𝐶

𝑃 𝑅, 𝑇, 𝐶, p = ⋯

p: probe catchesc: cavity

marginalization

Nasty complexity

⇒ 𝑃 cavity probe = 0.53 9

Multivariate Problems

• Most problems involve many variables

• Estimation of densities is susceptible to high dimensionality

• Exponential requirement of samples

• Inference with many variables? 

• Impractical complexity

• How to handle joint probability tables? 

• Encode and decode structure in JPT?

Are probabilities practically useless??
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Independence and Factorization

• Help through independence assumptions:

• Marginal Independence

• Conditional Independence

• Independence assumptions lead to factorizations

• Lowers complexity of estimation and inference drastically

• Explicit “non-structure statements”

• A way of expressing structure

• to deal with intermediate forms of dependence (anywhere from none to full)

• which is easy to work with, can be used by specialists
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Marginal Independence

• Full statistical independence among variables

𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑃 𝑌

𝑃 𝑋 𝑌 = 𝑃(𝑋)

• Expert knowledge:

No relation between X and Y not linear, not higher order, none

• Affects complexity drastically:

Full independence: 𝑘𝑑 → 𝑑 ∗ 𝑘

For each independent variable: 𝑘𝑑 → 𝑘𝑑−1 + 𝑘

• Unfortunately not very common

Independent variables usually do not appear in the first place since they are irrelevant
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Marginal Independence

• The dentist probabilities should not be dependent on the weather

• Assume independence of rain from all the other variables:

𝑃 𝐶, 𝑇, 𝑃, 𝑅 = 𝑃 𝐶, 𝑇, 𝑃 𝑃(𝑅)

toothache ¬toothache

probe ¬probe probe ¬probe

cavity 0.108 0.012 0.072 0.008

¬cavity 0.016 0.064 0.144 0.576

Russell, Norvig, Artificial Intelligence – A modern approach, 3rd ed., Pearson 2010

Lowered complexity 
of estimation

Structure is visible

rain ¬rain

0.333 0.667
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Conditional Independence

• Independent conditional probabilities

Independent if we know the value of a third variable 

𝑃 𝑋, 𝑌|𝑍 = 𝑃 𝑋 𝑍 𝑃 𝑌 𝑍

𝑃 𝑋 𝑌, 𝑍 = 𝑃(𝑋|𝑍)

• Lowers complexity:

Full conditional independence: 𝑘𝑑−1 ∗ 𝑘 → (𝑑 − 1) ∗ 𝑘 ∗ 𝑘

For each cond. independent variable: 𝑘𝑑−1 ∗ 𝑘 → (𝑘𝑑−2 + 𝑘) ∗ 𝑘

• Very useful:

• More often than marginal independence

• Causal modeling: effects of a common cause

14
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Example: Conditional Independence

• Expect:

Catching of the probe should be “independent” of toothache

• But they are not, they occur with strong correlation (xxx)

𝑃 𝑇, 𝑃 ≠ 𝑃 𝑇 𝑃(𝑃)

• Dependency can be “reduced” to a common cause: cavity
c → p, c → t

• Knowing about cavity renders toothache and probe independent
𝑃 𝑇, 𝑃|𝐶 = 𝑃 𝑇 𝐶 𝑃 𝑃 𝐶
𝑃 𝑇 𝑃, 𝐶 = 𝑃 𝑇 𝐶
𝑃 𝑃 𝑇, 𝐶 = 𝑃(𝑃|𝐶)
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Example: Conditional Independence

• Factorization into 4 factors: (4 tables)

CPT probe ¬probe

cavity 0.9 0.1

¬cavity 0.2 0.8

CPT toothache ¬toothache

cavity 0.6 0.4

¬cavity 0.1 0.9

cavity ¬cavity

0.2 0.8

rain ¬rain

0.333 0.667

Lowered complexity 
of estimation Structure is visible

𝑃(𝐶)

𝑃(𝑃|𝐶)

𝑃(𝑅)

𝑃(𝑇|𝐶)

𝑃 𝑃, 𝑇, 𝐶, 𝑅 = 𝑃 𝑃 𝐶 𝑃 𝑇 𝐶 𝑃 𝐶 𝑃(𝑅)

16

“Conditional 
Probability Table”
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A Discriminative Shortcut?

• Bayes classifier only needs posterior … direct estimation?

• Posterior: diagnostic knowledge “Toothache indicates a cavity.”

• Likelihoods: causal knowledge “A cavity causes toothache.”

• Diagnostic information is what we want at the end

-> Classification using the posterior

• Generative models waste resources on modeling irrelevant details

Details within the classes are not relevant for classification
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Why Generative?

• Causal knowledge is more robust in structured domains:

• More flexible model

e.g. add gum disease to the dentist diagnosis model

• Individual parts of causal knowledge can change independently

e.g. usage of new improved and more precise probe

• Expert knowledge is most often available in causal form

Conditional independence relations

• Careful: Generative models are prone to

• Over-structuring -> bad estimation & inference quality

• Over-simplification -> model can not capture necessary relations

• Generative models are the usual way of Bayesian modeling

Using factored causal knowledge has more advantages than only a better complexity

18
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Structure in Bayesian Models

• Bayes Classifier / Models

• Likelihood & Prior to calculate posterior

𝑃 𝑐 Ԧ𝑥 =
𝑃 Ԧ𝑥 𝑐 𝑃(𝑐)

σ𝑐 𝑃 Ԧ𝑥 𝑐 𝑃(𝑐)

• Uncertainty through probabilistic models

• Structure

• Likelihood factorizes according to knowledge expressed through
(conditional) independence relations

• Prior captures knowledge about the model

• Causal knowledge in likelihood: generative model

19

Graphical Models

• Independence & Factorization

• Including structure

• Complexity of multivariate problems

• Independence assumptions

• Graphical Models

• Graphs to depict factorizations

• Topological properties

• Causal modeling

• Factor graphs
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Graphical Language

• Conditional independence can become complex

𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐷|𝐶, 𝐵 𝑃 𝐶|𝐴 𝑃 𝐵 𝑃(𝐴)

also called „Bayes Net“

21

A C

DB

• Graphical Models: Formalized graphs to depict factorization

Graphical language to display structure information

Full Product Rule

• Product rule for joint probabilities (known from lecture start)

𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑌 𝑃 𝑌

• Any joint probability can be expanded into a product

𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃(𝐷|𝐴, 𝐵, 𝐶)

• 1 factor for each variable

• Each factor is conditional on all previous factors’ variables

• Not more efficient than joint probability: later factors grow in “size”

• Explicitly expresses the dependencies of variables

22
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Directed Graph

• Graph G: set of vertices V with connecting edges E

• Edges are directed

A B D

C E

Connections are
not mandatory

23

Directed Acyclic Graph (DAG)

• Directed Graph without directed cycles

• DAGs allow a “forwards” numbering of vertices: topological ordering

A vertex numbering such that all edges point from smaller to larger numbers

A B D

C

A B D

C

DAG No DAG

B

C

24
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Bayesian Networks       ( DAGs )
• Structure of the graph  Conditional independence relations

• Requires that graph is acyclic (no directed cycles)

• 2 components to a Bayesian network
• The graph structure (conditional independence assumptions)
• The numerical probabilities (for each variable given its parents)

• Also known as belief networks, graphical models, causal networks

In general,

p(X1, X2,....XN) =  p(Xi | parents(Xi ) )

The full joint distribution The graph-structured approximation

Directed Graphs for Factorization

• A factorization of the joint probability is expressed through a DAG

• Nodes represent factors (in the full product expansion)

• 1 node <-> 1 variable <-> 1 factor

• An edge expresses a conditional dependency

• Incoming edge <-> explicit conditional dependency

D

B C

𝑃 𝐷 𝐵, 𝐶

𝑃(𝐶)𝑃(𝐵)

A ↔ 𝐴 ↔ 𝑃(𝐴|… )

26
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Example: Full Joint Probability

𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃 𝐵|𝐴 𝑃 𝐶|𝐴, 𝐵 𝑃 𝐷|𝐴, 𝐵, 𝐶

27

Example: Dentist

𝑃 𝑇, 𝑃, 𝐶, 𝑅 = 𝑃 𝑇|𝐶 𝑃 𝑃|𝐶 𝑃 𝐶 𝑃(𝑅)

28
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Example: Naïve Bayes Classifier

𝑃 Ԧ𝑥, 𝐶 = 𝑃 Ԧ𝑥 𝐶 𝑃(𝐶) = 𝑃 𝑥1 𝐶 𝑃 𝑥2 𝐶 ⋯𝑃 𝑥𝑑 𝐶 𝑃(𝐶)

“tile”
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Observations

• Variables with a known value

• Example: The dentist observes a catching probe.

• Known nodes are shaded

• The observed value itself has to be specified elsewhere

30
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California Alarm Example by Judea Pearl

31

Situation:
I'm at work.
John (a neighbor) calls to say that in my house the alarm went off,
but Mary (an other neighbor) did not call.
The alarm will usually be set off by burglars,
but sometimes it may also go off because of minor earthquakes

Variables:
Burglary, Earthquake, Alarm, John-Calls, Mary-Calls

Question:
Burglary or Earthquake or … ??

California Alarm Example by Judea Pearl

Consider the following 5 binary variables:

B = a burglary occurs at your house

E = an earthquake occurs at your house

A = the alarm goes off

J = John calls to report the alarm

M = Mary calls to report the alarm

• What is P(B | M, J) ?  (for example)

• We can use the full joint distribution to answer this question
• Requires 25 = 32 probabilities

• Can we use prior domain knowledge to come up with a Bayesian network that requires fewer 
probabilities?
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Alarm Example: Network Topology?

Constructing a Bayesian network

Network topology reflects causal knowledge: 
• A burglar can set the alarm off
• An earthquake can set the alarm off
• The alarm can cause Mary to call
• The alarm can cause John to call

• Order the variables in terms of causality 

• Now, apply the chain rule, and simplify based on assumptions

𝑃 𝐽, 𝐵,𝑀, 𝐸 = 𝑃 𝐸, 𝐵 𝑃 𝐴 𝐸, 𝐵 𝑃 𝐽,𝑀 𝐴, 𝐸, 𝐵

= 𝑃 𝐸 𝑃 𝐵 𝑃 𝐴 𝐸, 𝐵 𝑃 𝐽,𝑀 𝐴

= 𝑃 𝐸 𝑃 𝐵 𝑃 𝐴 𝐸, 𝐵 𝑃 𝐽 𝐴 𝑃 𝑀 𝐴

E B

A

J M
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California Example

35

Independence

• Independence can be read from the graph

Topological property (depends only on graph structure!)

• Mainly conditional independence

Always with respect to observations

• Only a few basic cases to consider:

37
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• Phone call gives us information 

about possible burglary

• Unobserved chain:

marginally dependent

• Phone call cannot tell us more 

about a burglary than the alarm

• Observed chain link:

conditionally independent

Case 1: Chain

38

B A M B A M

𝑃 𝐵,𝑀|𝐴 = 𝑃 𝐵 𝐴 𝑃(𝑀|𝐴)𝑃 𝐵,𝑀 = 𝑃(𝐵)෍

𝐴

𝑃 𝐴 𝐵 𝑃(𝑀|𝐴)

• John and Mary are be more likely 

to call both

• Unobserved common cause:

marginally dependent effects

• John’s call does not tell more 

about Mary’s than the alarm

• Observed common cause:

conditionally independent effects

39

Case 2: Common Cause

J A M J A M

𝑃 𝐽,𝑀 =෍

𝐴

𝑃 𝐽 𝐴 𝑃 𝑀 𝐴 𝑃(𝐴) 𝑃 𝐽,𝑀|𝐴 = 𝑃 𝐽 𝐴 𝑃(𝑀|𝐴)
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• Burglary and earthquakes are not 

directly related in our model

• Unobserved common effect:

marginally independent causes

• The alarm can be “explained” by a 

burglary or an earthquake

• Observed common effect:

conditionally dependent causes

Case 3: Collider

40

B A E B A E

𝑃 𝐵, 𝐸 = 𝑃 𝐵 𝑃(𝐸) 𝑃 𝐵, 𝐸|𝐴 =
𝑃 𝐵 𝑃 𝐸

𝑃 𝐴
𝑃(𝐴|𝐵, 𝐸)

Explaining Away

Independence in Graph

• Generalize above results to whole graph

• Any two variables are connected with paths

• Blocked paths indicate a conditional independence

Path: undirected path, links 
can be of any direction

Two variables A and B are conditionally independent, given a 
set of observations C if every path between A and B is 
blocked by C. We then say they are “d-separated through C”.

𝑃 𝐴, 𝐵 𝐶 = 𝑃 𝐴 𝐶 𝑃 𝐵 𝐶
𝐴 ⊥ 𝐵 | 𝐶

41
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D-Separation

• A path is blocked through:

• an observation in a chain

• an observed parent

• an unobserved common child
unobserved collider

• A path is unblocked at

• an observed common descendant
observed collider (or any child of it)

42

Markov Blanket

• Markov Blanket of node A: minimal set of nodes whose 

observation disconnects A from the rest of the graph

• The Markov Blanket of a node consists of its

• Parents

• Children

• Co-Parents

47
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Causal Modeling

• Building graphical models: mostly human design

• Structure learning is possible but hard

• Causal models are convenient

• Separation of concerns, modularity 

• Natural approach in human knowledge base

• Formalization: Judea Pearl

• Not necessary. But it leads to simple graphs

common cause

multiple causes

causal chain 48

Explaining Away

• Observing the common child renders its parents dependent

• Effects of multiple causes:

• Observing the effect renders both causes more likely

• Knowing about one cause "normalizes" the other

it explains away the effect, the other cause is not necessary any more

• Example:

• The grass can get wet due to rain or a sprinkler.

• Observation: The grass is wet.

-> both rain and the sprinkler are now more likely

• Observation: It's raining.

-> sprinkler is less likely again, almost at normal level

49
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Graphical Models

• Graphical notation captures factorization of joint probability

• Nodes: variables

• Edges: factor dependency, directed: incoming edge ~ factor dependency

• Gray nodes: observations

• Independence relations can be read from the graph

• d-separation criterion: blocked paths indicate conditional independence

• Explaining away: “multiple causes compete to explain the effect”

• Graphical notation for general products: factor graphs
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