The Cocktail-Party Problem
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Independent Component Analysis

http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/IJCNN99_tutorial3.html




ICA: the task

The “BSS: Blind Source Separation” or “Cocktail-Party”
problem:

Given n Signals X that are a linear mixture of unknown
source signals S, can we estimate the source signals ?
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ICA: the problem

Given: X={x(t)|1<i<n 1<t<T} a nxT data matrix

Problem: How to decompose the matrix into X =AS with
an unknown mixing matrix A
and unknown source signal §;,

So far only linearity is assumed. -> Many solutions & ambiguities !l

Ambiguities:
1. The variance (scaling ) of S;, cannot be determined, either a scalar
multiplication of A orof S -> we should normalize the sources.

2. The order of the sources is arbitrary.




ICA: the data model

S,
_ S,y
X = A X
= S-mo
Question:

What could be an assumption on the sources S
that helps to decompose the X into Aand S?

Assumption:
1) All sources signals s; , the rows of S, are
statistically independent.

2) Since we can not estimate the magnitude of s;,
we fix it to E[s;s;T] =1 ==> E[SST] = |

ICA: staftistical independence

Definition:

Random variables (vectors) y; are statistically
independent if

Py yary) = 11 PO

==> for any function ;

E[9,0) 9oy 9n0)] = [T ELGiv) ]




ICA: what about PCA

uncorrelated versus independence
o 123
p(S) : uniform distribution LT T T LT T,
=> E[s]=0, E[s?]=1 AR
-V3 +V3
define t = 252
=> E[st]=2E[s3]=0 =>S,t are uncorrelated
also E[s]E[t]=0 22 =>S tstatistically independent2?
define f(x) =x? and g(x) =X )
oy 2(3)
=> E[f(s) g(t)] = 2E[s"]= .

and  E[f(s)] E[ g(t)] = 2

=> S,l are stat. dependent

-
E[s?] 2E[$?]

ICA: gaussian signals are of no use

Let us assume:
all source signals are Gaussian,
uncorrelated and of unit variance.

Then an orthogonal mixing matrix
would generate signals X with a
completely symmetrical Gau55|an joint density functlon

A completely symmetrical joint density function contains no
information on the structure of the mixing matrix A.

If more than one source signal is Gaussian we can not
separate the sources with ICA.




ICA: the data model continued

Assumptions:

1) non-Gaussian source signals s; (except
possibly one).

2) All sources signals s; , the rows of S are
statistically independent.

we fix it to E[s;s5;"] =1 ==> E[SST] = |

3) Since we can not estimate the magnitude of s; ,

ICA: approach
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We search for a matrix W (ideally W = AY) so that the
rows Y; of

Y =WX
1. are maximal statistically independent,

2. are maximal non Gaussian,

3. and of variance E[y;y;"] =1.
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ICA: PCA as preprocessing

PCA
e computes the axis of maximum variance

* these axis are uncorrelated ( but only for Gaussian
data statistically independent).

Now we can normalize the axis by their variance
=>Z = V- X=V-A-S with E[zz"] =1.

lize by variance
PCA norman
“whitening the data”

D
N,

for non Gaussian data >
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ICA: the procedure

Source Mixture

S \ Y

Whitened Signals

Z=V:'X=V'AS




ICA: the problem reformulated twice

1.) Non-Gaussian approach:

By the central limit theorem, the PDF of a sum of n independent
random variables tends to a Gaussian random variable.

1. Find a measure of non-Gaussianity.

2. Find W such that the outputs PDF are as different as possible

from the Gaussian function.

2.) Independence approach :

1.

Measure the independence between the signals.
2.

Find the signals that maximize this independence.

ICA: measure of non-Gaussian -

There exist several approaches to measure if a pdf is
Gaussian or not!

However, we do not know the full pdf!
- it is more reasonable to use more global measures

of the distribution such as mean, variance,...

Remember, moments and cumulants (semi-invariants)
are easy to compute!

N
it moment: m, = E[x']=) x'P(x),i=12,..

=1

ith central moment:  #, = E[(x-E[x])'| =) (x- m,) P(x)

N
=1
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ICA: measure of non-Gaussian

The cumulants of distribution are:

K, (x) = E[x] = m,

2 2
x,(xx;) = E[xx;] = my-m = o

K, (XXX X)) = E[xx %1 — E[Xx;]JE[X,X]

E[xx, JE[X;X,]

Elxx;1E[x,X]
- E[xx1E[X;x,]

The Kurtosis is then defined:

kurt(x,) =—%= = E[x']-3(E[x’])’

2
KZ
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ICA: measure of non-Gaussian

Both cumulants and kurtosis are good to measure the deviation
of a distribution from being Gaussian:

For ICA the Kurtosis is commonly applied:

Kurtosis

positive
\[- (leptokurtic)

negative
(platykurtic) \’

-
4

For finding the independent components:

optimize W so that Zn: Hkurt(Yj)H is maximum:
i




ICA: 2nd approach: independence

Remember:
Definition of stat. independent Py, yor¥n) = || P

Kullbach-Leibler divergence measures a distance
between two pdf’s (! not symmetric):

=— X n—pb(x) X
)==]p. (X1 ()

Now we measure L ( p@y, yorvn) - 11RO )

oy Hp(y)

( - —
LLp(Y)'H p(Y;) J_ (V)
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ICA: measure of independence
Now we measure L ( Py, vorv) + [1PO) )

L[ p(Y),f[ p(yi)Jz —J. p(Y)m Hp(pY())/.)

dy

[P(Y)inp(Y)dy - ij )In p(y,)dY
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Def.: Mutual Information: 1(y,,y,,...y,) = -H(Y)+> H(y,)
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ICA: application to images

Mixtures
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ICA: application to images

PCA ICA
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ICA: application to images

ICA
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