

The Cocktail-Party Problem

Faith Riggold 1964 "Cocktail-Party"

ICA

Independent Component Analysis

http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/IJCNN99_tutorial3.html

ICA: the task

The “BSS: Blind Source Separation” or “Cocktail-Party” problem:

Given n Signals X that are a linear mixture of unknown source signals S , can we estimate the source signals ?

ICA: the problem

4

Given: $X = \{ x_i(t) \mid 1 \leq i \leq n, 1 \leq t \leq T \}$, a $n \times T$ data matrix

Problem: How to decompose the matrix into $X = AS$ with an unknown mixing matrix A and unknown source signal $S_{i\bullet}$.

$$X = A \times \begin{bmatrix} \dots S_{1\bullet} \dots \\ \dots S_{2\bullet} \dots \\ \vdots \\ \dots S_{m\bullet} \dots \end{bmatrix}$$

So far only linearity is assumed. \rightarrow Many solutions & ambiguities !!!

Ambiguities:

1. The variance (scaling) of $S_{i\bullet}$ cannot be determined, either a scalar multiplication of A or of S \rightarrow we should normalize the sources.
2. The order of the sources is arbitrary.

ICA: the data model

5

$$X = A \times \begin{matrix} \dots & S_1 \bullet \dots \\ \dots & S_2 \bullet \dots \\ \vdots & \vdots \\ \dots & S_m \bullet \dots \end{matrix}$$

Question:

What could be an assumption on the sources S that helps to decompose the X into A and S ?

Assumption:

- 1) All sources signals s_i , the rows of S , are statistically independent.
- 2) Since we can not estimate the magnitude of s_i , we fix it to $E[s_i s_i^T] = 1 \implies E[SS^T] = I$

ICA: statistical independence

6

Definition:

Random variables (vectors) y_i are statistically independent if

$$P(y_1, y_2, \dots, y_n) = \prod P(y_i)$$

\implies for any function g_i

$$E[g_1(y_1) g_2(y_2) \dots g_n(y_n)] = \prod E[g_i(y_i)]$$

ICA: what about PCA

7

uncorrelated versus independence

$p(s)$: uniform distribution

$$\Rightarrow E[s] = 0, E[s^2] = 1$$

define $t = 2s^2$

$$\Rightarrow E[s \cdot t] = 2 E[s^3] = 0$$

$\Rightarrow s, t$ are uncorrelated

$$\text{also } E[s]E[t] = 0 \quad ?? \Rightarrow s, t \text{ statistically independent??}$$

define $f(x) = x^2$ and $g(x) = x$

$$\Rightarrow E[f(s)g(t)] = 2E[s^4] = \frac{2(\sqrt{3})^4}{5}$$

$$\text{and } \underbrace{E[f(s)]}_{E[s^2]} \underbrace{E[g(t)]}_{2E[s^2]} = 2 \quad \Rightarrow s, t \text{ are stat. dependent}$$

ICA: gaussian signals are of no use

8

Let us assume:

all source signals are Gaussian,
uncorrelated and of unit variance.

Then an orthogonal mixing matrix
would generate signals X_i with a
completely symmetrical Gaussian joint density function.

A completely symmetrical joint density function contains no
information on the structure of the mixing matrix A .

If more than one source signal is Gaussian we can not
separate the sources with ICA.

ICA: the data model continued

9

Assumptions:

- 1) non-Gaussian source signals s_i (except possibly one).
- 2) All sources signals s_i , the rows of S are statistically independent.
- 3) Since we can not estimate the magnitude of s_i , we fix it to $E[s_i s_i^T] = 1 \implies E[SS^T] = I$

ICA: approach

10

We search for a matrix W (ideally $W = A^{-1}$) so that the rows y_i of

$$Y = WX$$

1. are maximal statistically independent,
2. are maximal non Gaussian,
3. and of variance $E[y_i y_i^T] = 1$.

ICA: PCA as preprocessing

11

PCA

- computes the axis of maximum variance
- these axis are uncorrelated (but only for Gaussian data statistically independent).

Now we can normalize the axis by their variance

$$\Rightarrow Z = V \cdot X = V \cdot A \cdot S \text{ with } E[z_i z_i^T] = 1.$$

ICA: the procedure

12

ICA: the problem reformulated twice

13

1.) Non-Gaussian approach:

By the central limit theorem, the PDF of a sum of n independent random variables tends to a Gaussian random variable.

1. Find a measure of non-Gaussianity.
2. Find \mathbf{W} such that the outputs PDF are as different as possible from the Gaussian function.

2.) Independence approach :

1. Measure the independence between the signals.
2. Find the signals that maximize this independence.

ICA: measure of non-Gaussian

14

There exist several approaches to measure if a pdf is Gaussian or not!

However, we do not know the full pdf!

→ it is more reasonable to use more global measures of the distribution such as mean, variance,...

Remember, moments and cumulants (semi-invariants) are easy to compute!

$$\text{i}^{\text{th}} \text{ moment: } m_i = E[x^i] = \sum_{I=1}^N x^i P(x), i = 1, 2, \dots$$

$$\text{i}^{\text{th}} \text{ central moment: } \mu_i = E[(x - E[x])^i] = \sum_{I=1}^N (x - m_1)^i P(x)$$

ICA: measure of non-Gaussian

15

The cumulants of distribution are:

$$\begin{aligned}\kappa_1(x_i) &= E[x_i] = m_1 \\ \kappa_2(x_i x_j) &= E[x_i x_j] = m_2 - m_1^2 = \sigma^2 \\ &\dots \\ \kappa_4(x_i x_j x_k x_l) &= E[x_i x_j x_k x_l] - E[x_i x_j]E[x_k x_l] \\ &\quad - E[x_i x_k]E[x_j x_l] \\ &\quad - E[x_i x_j]E[x_k x_l] \\ &\quad - E[x_i x_l]E[x_j x_k]\end{aligned}$$

The Kurtosis is then defined:

$$kurt(x_i) = \frac{\kappa_4}{\kappa_2^2} = E[x_i^4] - 3(E[x_i^2])^2$$

ICA: measure of non-Gaussian

16

Both cumulants and kurtosis are good to measure the deviation of a distribution from being Gaussian:

For ICA the Kurtosis is commonly applied:

For finding the independent components:

optimize W so that $\sum_j^n \|kurt(Y_j)\|$ is maximum:

ICA: 2nd approach: independence

17

Remember:

Definition of stat. independent $p(y_1, y_2, \dots, y_n) = \prod p(y_i)$

Kullbach-Leibler divergence measures a distance between two pdf's (! not symmetric):

$$L(p_a, p_b) = - \int p_a(x) \ln \frac{p_b(x)}{p_a(x)} dx$$

Now we measure $L(p(y_1, y_2, \dots, y_n), \prod p(y_i))$

$$L\left(p(Y), \prod_i p(y_i)\right) = - \int p(Y) \ln \frac{\prod p(y_i)}{p(Y)} dY$$

ICA: measure of independence

18

Now we measure $L(p(y_1, y_2, \dots, y_n), \prod p(y_i))$

$$\begin{aligned} L\left(p(Y), \prod_i p(y_i)\right) &= - \int p(Y) \ln \frac{\prod p(y_i)}{p(Y)} dY \\ &= \int p(Y) \ln p(Y) dY - \sum_i \int p(Y) \ln p(y_i) dY \\ &= -H(Y) - \sum_i \int p(Y) \ln p(y_i) dY \\ &= -H(Y) + \sum_i H(y_i) \end{aligned}$$

Def.: Mutual Information: $I(y_1, y_2, \dots, y_n) = -H(Y) + \sum_i H(y_i)$

ICA: application to images

19

Mixtures

ICA: application to images

20

PCA

ICA

ICA: application to images

21

ICA

Originals

