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The Cocktail-Party Problem 

Faith Riggold 1964  “Cocktail-Party” 
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ICA 

Independent Component Analysis  

http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/IJCNN99_tutorial3.html 



2 

3 

ICA: the task  

Given n Signals X that are a linear mixture of unknown 

source signals S, can we estimate the source signals ?  

The “BSS: Blind Source Separation” or “Cocktail-Party” 
problem: 

Estimated 

Separated Sources 

Y 
W 

 X = A·S Y=W·X 

unknown   to be estimated   

Unknown   

Source Signals 

S 
A 

Observed Signals  

“linear mixture of sources”  

X 
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ICA: the problem 

Given:         X = { xi( t ) | 1 ≤ i ≤ n, 1 ≤ t ≤ T }, a  n x T  data matrix 

Problem:      How to decompose the matrix into   X = AS   with   

  an unknown mixing matrix    A   
  and unknown source signal  Si● 

X               =          A           x 

···· S1●···· 

···· S2●···· 

 

 ···· Sm●···· 

So far only linearity is assumed.    ->  Many solutions & ambiguities !!! 

Ambiguities:   

1. The variance  (scaling ) of Si● cannot be determined, either a scalar 

multiplication of  A or of S 

Ambiguities:   

1. The variance  (scaling ) of Si● cannot be determined, either a scalar 

multiplication of  A or of S      

2. The order of the sources is arbitrary. 

-> we should normalize the sources. 
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ICA: the data model 

X               =          A           x 

···· S1●···· 

···· S2●···· 

 

 ···· Sm●···· 

Question:  

 What could be an assumption on the sources S 

 that helps to decompose the X into A and S ? 

Assumption:  

    1)  All sources signals Si    , the rows of S, are    

         statistically independent. 

    2)  Since we can not estimate the magnitude of Si  , 

         we fix it to E[Si Si 
T] =1  ==> E[SST] = I 
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 Definition:  

 Random variables (vectors) yi are statistically   

 independent if  

P(y1, y2,….,yn) =   ∏ P(yi)  

 

 

 

 

ICA:  statistical independence 

==>  for any function gi 

E[ g1(y1) g2(y2)··· gn(yn)] =   ∏ E[ gi(yi) ]  
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ICA:  what about PCA 

 =>    E[ s ] = 0  ,   E[ s² ] = 1 
 

uncorrelated versus independence 

=> s,t are  uncorrelated 

     =>   E [ f( s )  g( t )]   =  2E [ s4 ] =    
 

4

2 3

5

and      E [ f( s )]  E[  g( t )]   =  2 

E[ s² ]        2E[ s² ] 

=>  s,t are  stat. dependent 

-√3  

 ½√3  

+√3  

p(s) : uniform distribution  

 define  t = 2s²   
     =>   E[ s·t ] = 2 E[ s³ ] = 0  

define  f(x) = x²   and    g(x) = x 

       also  E[ s ]E[ t ] = 0                 ??  => s ,t statistically independent?? 
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If more than one source signal is Gaussian we can not 
separate the sources with ICA. 

Let us assume: 
all source signals are Gaussian, 
uncorrelated and of unit variance.  
 

Then an orthogonal mixing matrix 

would generate signals Xi with a  

completely symmetrical Gaussian joint density function. 

ICA: gaussian signals are of no use 

A completely symmetrical joint density function contains no 

information on the structure of  the mixing matrix A. 
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ICA: the data model continued 

Assumptions: 

    1)  non-Gaussian source signals Si (except   

         possibly one).  

 

    2)  All sources signals Si    , the rows of  S are    

         statistically independent. 

    3)  Since we can not estimate the magnitude of Si  , 

         we fix it to E[Si Si 
T] =1  ==> E[SST] = I 
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ICA:  approach 

We search for a matrix W (ideally W = A-1) so that the 

rows  yi  of 

   Y = WX  

1. are maximal statistically independent, 

2. are maximal non Gaussian, 

3. and of variance E[yi yi 
T] =1.   
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ICA:  PCA as preprocessing 

PCA  

• computes the axis of maximum variance 

• these axis are uncorrelated ( but only for Gaussian 

data statistically independent).  

Now we can normalize the axis by their variance 

 => Z = V·X=V·A·S  with   E[zi zi 
T] =1.   

 

 

PCA 
normalize by variance 

“whitening the data” 

for non Gaussian data  
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ICA: the procedure 

Source Mixture 

Whitened Signals 

 Z = V·X=V·A·S 

 X = A·S Y=W·X S 

X X X 
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ICA: the problem reformulated twice 

     2.) Independence approach :  
      

1. Measure the independence between the signals.  

2. Find the signals that maximize this independence. 

     1.) Non-Gaussian approach:  
By the central limit theorem, the PDF of a sum of n independent 

random variables tends to a Gaussian random variable. 
      

1. Find a measure of non-Gaussianity.  

2. Find W such that the outputs PDF are as different as possible 
from the Gaussian function. 
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ICA: measure of non-Gaussian 

      There exist several approaches to measure if a pdf is 
Gaussian or not! 

However, we do not know the full pdf! 

 it is more reasonable to use more global measures 

    of the distribution such as mean, variance,…  

     

Remember, moments and cumulants (semi-invariants) 
are easy to compute!  
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ICA: measure of non-Gaussian 
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      The cumulants of distribution are: 

The Kurtosis is then defined: 
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ICA: measure of non-Gaussian 

      
Both  cumulants and kurtosis are good to measure the deviation 
of a distribution from being Gaussian: 

For ICA the Kurtosis is commonly applied: 

For finding the independent components: 

optimize  W so that                      is maximum: ( )

n

j

j

kurt Y
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ICA: 2nd approach: independence 

      Remember: 

Kullbach-Leibler divergence measures a distance 

between two pdf’s (! not symmetric): 
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Definition of stat. independent     p(y1, y2,….,yn) =   ∏ p(yi)  

 Now we measure   L (  p(y1, y2,….,yn)  ,  ∏ p(yi)  ) 
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ICA: measure of independence 

 Now we measure   L (  p(y1, y2,….,yn)  ,  ∏ p(yi)  ) 
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ICA: application to images 

Mixtures      
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ICA: application to images 

PCA   ICA   
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ICA: application to images 

ICA   Originals      


