The Cocktail-Party Problem

Faith Riggold 1964 "Cocktail-Party"

ICA

Independent Component Analysis

ICA: the task

The "BSS: Blind Source Separation" or "Cocktail-Party" problem:

Given n Signals X that are a linear mixture of unknown source signals S, can we estimate the source signals?

Source Signals

Unknown Observed Signals Estimated Separated Sources

Y mumn Lyshish
$X=A \cdot S$
$Y=W \cdot X$
unknown
to be estimated

ICA: the problem

Given:
$X=\left\{x_{i}(t) \mid 1 \leq i \leq n, 1 \leq t \leq T\right\}$, a $n \times T$ data matrix
Problem: How to decompose the matrix into $X=A S$ with an unknown mixing matrix A
and unknown source signal S_{i}.

So far only linearity is assumed. -> Many solutions \& ambiguities !!!
Ambiguities:

1. The variance (scaling) of S_{i}. cannot be determined, either a scalar multiplication of A or of $S \quad->$ we should normalize the sources.
2. The order of the sources is arbitrary.

ICA: the data model

Question:
What could be an assumption on the sources S that helps to decompose the X into A and S ?

Assumption:

1) All sources signals s_{i}, the rows of S, are statistically independent.
2) Since we can not estimate the magnitude of S_{i}, we fix it to $\mathrm{E}\left[S_{\mathrm{i}} S_{\mathrm{i}}^{\mathrm{T}}\right]=1==>\mathrm{E}\left[S S^{\mathrm{T}}\right]=I$

ICA: statistical independence

Definition:
Random variables (vectors) y_{i} are statistically independent if

$$
P\left(y_{1}, y_{2}, \ldots, y_{\mathrm{n}}\right)=\prod P\left(y_{\mathrm{i}}\right)
$$

$==>$ for any function $g_{\text {i }}$

$$
\mathrm{E}\left[g_{1}\left(y_{1}\right) g_{2}\left(y_{2}\right) \cdots g_{\mathrm{n}}\left(y_{\mathrm{n}}\right)\right]=\prod \mathrm{E}\left[g_{\mathrm{i}}\left(y_{\mathrm{i}}\right)\right]
$$

ICA: what about PCA
uncorrelated versus independence $\boldsymbol{p}(\boldsymbol{S})$: uniform distribution
$\Rightarrow \mathrm{E}[s]=0, \mathrm{E}\left[s^{2}\right]=1$

ICA: gaussian signals are of no use

Let us assume: all source signals are Gaussian, uncorrelated and of unit variance.

Then an orthogonal mixing matrix would generate signals X_{i} with a completely symmetrical Gaussian joint density function.

A completely symmetrical joint density function contains no information on the structure of the mixing matrix A.

If more than one source signal is Gaussian we can not separate the sources with ICA.

ICA: the data model continued

Assumptions:

1) non-Gaussian source signals s_{i} (except possibly one).
2) All sources signals s_{i}, the rows of S are statistically independent.
3) Since we can not estimate the magnitude of S_{i}, we fix it to $\mathrm{E}\left[S_{\mathrm{i}} S_{\mathrm{i}}{ }^{\mathrm{T}}\right]=1==>\mathrm{E}\left[S S^{\top}\right]=I$

ICA: approach

We search for a matrix \boldsymbol{W} (ideally $\boldsymbol{W}=\boldsymbol{A}^{-\mathbf{1}}$) so that the rows $\boldsymbol{y}_{\boldsymbol{i}}$ of

$$
Y=W X
$$

1. are maximal statistically independent,
2. are maximal non Gaussian,
3. and of variance $\mathrm{E}\left[y_{\mathrm{i}} y_{\mathrm{i}}^{\mathrm{T}}\right]=1$.

ICA: PCA as preprocessing

- computes the axis of maximum variance
- these axis are uncorrelated (but only for Gaussian data statistically independent).

Now we can normalize the axis by their variance

$$
=>Z=V \cdot X=V \cdot A \cdot S \text { with } \quad \mathrm{E}\left[z_{\mathrm{i}} z_{\mathrm{i}}^{\mathrm{T}}\right]=1
$$

ICA: the problem reformulated twice

1.) Non-Gaussian approach:

By the central limit theorem, the PDF of a sum of n independent random variables tends to a Gaussian random variable.

1. Find a measure of non-Gaussianity.
2. Find \boldsymbol{W} such that the outputs PDF are as different as possible from the Gaussian function.
2.) Independence approach :
3. Measure the independence between the signals.
4. Find the signals that maximize this independence.

ICA: measure of non-Gaussian

There exist several approaches to measure if a pdf is Gaussian or not!

However, we do not know the full pdf!
\rightarrow it is more reasonable to use more global measures of the distribution such as mean, variance,...

Remember, moments and cumulants (semi-invariants) are easy to compute!

$$
\begin{aligned}
& \text { ith moment: } \quad m_{i}=E\left[x^{i}\right]=\sum_{l=1}^{N} x^{i} P(x), i=1,2, \ldots \\
& \mathrm{i}^{\text {th }} \text { central moment: } \\
& \hline
\end{aligned}
$$

ICA: measure of non-Gaussian

The cumulants of distribution are:

```
\kappa
\kappa
\mp@subsup{\kappa}{4}{}(\mp@subsup{x}{i}{}\mp@subsup{x}{j}{}\mp@subsup{x}{k}{}\mp@subsup{x}{l}{})=E[\mp@subsup{x}{i}{}\mp@subsup{x}{j}{}\mp@subsup{x}{k}{}\mp@subsup{x}{l}{}]-E[\mp@subsup{x}{i}{}\mp@subsup{x}{j}{}]E[\mp@subsup{x}{k}{}\mp@subsup{x}{l}{}]
    - E[\mp@subsup{x}{i}{}\mp@subsup{x}{k}{}]E[\mp@subsup{x}{j}{}\mp@subsup{x}{l}{}]
    - E[ [xi x j]E[ 秋利]
    - E[\mp@subsup{x}{i}{}\mp@subsup{x}{l}{}]E[\mp@subsup{x}{j}{}\mp@subsup{x}{k}{}]
```

The Kurtosis is then defined:

$$
\operatorname{kurt}\left(x_{i}\right)=\frac{\kappa_{4}}{\kappa_{2}^{2}}=E\left[x_{i}^{4}\right]-3\left(E\left[x_{i}^{2}\right]\right)^{2}
$$

ICA: measure of non-Gaussian

Both cumulants and kurtosis are good to measure the deviation of a distribution from being Gaussian:

For ICA the Kurtosis is commonly applied:

For finding the independent components:
optimize W so that $\sum_{j}^{n}\left\|\operatorname{kurt}\left(Y_{j}\right)\right\|$ is maximum:

ICA: 2nd approach: independence

Remember:
Definition of stat. independent $\quad p\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\prod p\left(y_{\mathrm{i}}\right)$

Kullbach-Leibler divergence measures a distance between two pdf's (! not symmetric):

$$
L\left(p_{a}, p_{b}\right)=-\int p_{a}(x) \ln \frac{p_{b}(x)}{p_{a}(x)} d x
$$

Now we measure $L\left(p\left(y_{1}, y_{2}, \ldots, y_{\mathrm{n}}\right), \prod p\left(y_{\mathrm{i}}\right)\right)$

$$
L\left(p(Y), \prod_{i}^{n} p\left(y_{i}\right)\right)=-\int p(Y) \ln \frac{\prod p\left(y_{i}\right)}{p(Y)} d Y
$$

ICA: measure of independence

$$
\begin{aligned}
L\left(p(Y), \prod_{i}^{n} p\left(y_{i}\right)\right) & =-\int p(Y) \ln \frac{\prod p\left(y_{i}\right)}{p(Y)} d Y \\
& =\int p(Y) \ln p(Y) d Y-\sum_{i}^{n} \int p(Y) \ln p\left(y_{i}\right) d Y \\
& =-H(Y)-\sum_{i}^{n} \int p(Y) \ln p\left(y_{i}\right) d Y \\
& =-H(Y)+\sum_{i}^{n} H\left(y_{i}\right)
\end{aligned}
$$

Def.: Mutual Information: $I\left(y_{1}, y_{2}, \ldots y_{n}\right)=-H(Y)+\sum^{n} H\left(y_{i}\right)$

ICA: application to images
Mixtures

ICA: application to images

