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The Cocktail-Party Problem 

Faith Riggold 1964  “Cocktail-Party” 
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ICA 

Independent Component Analysis  

http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/IJCNN99_tutorial3.html 



2 

3 

ICA: the task  

Given n Signals X that are a linear mixture of unknown 

source signals S, can we estimate the source signals ?  

The “BSS: Blind Source Separation” or “Cocktail-Party” 
problem: 

Estimated 

Separated Sources 

Y 
W 

 X = A·S Y=W·X 

unknown   to be estimated   

Unknown   

Source Signals 

S 
A 

Observed Signals  

“linear mixture of sources”  

X 
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ICA: the problem 

Given:         X = { xi( t ) | 1 ≤ i ≤ n, 1 ≤ t ≤ T }, a  n x T  data matrix 

Problem:      How to decompose the matrix into   X = AS   with   

  an unknown mixing matrix    A   
  and unknown source signal  Si● 

X               =          A           x 

···· S1●···· 

···· S2●···· 

 

 ···· Sm●···· 

So far only linearity is assumed.    ->  Many solutions & ambiguities !!! 

Ambiguities:   

1. The variance  (scaling ) of Si● cannot be determined, either a scalar 

multiplication of  A or of S 

Ambiguities:   

1. The variance  (scaling ) of Si● cannot be determined, either a scalar 

multiplication of  A or of S      

2. The order of the sources is arbitrary. 

-> we should normalize the sources. 
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ICA: the data model 

X               =          A           x 

···· S1●···· 

···· S2●···· 

 

 ···· Sm●···· 

Question:  

 What could be an assumption on the sources S 

 that helps to decompose the X into A and S ? 

Assumption:  

    1)  All sources signals Si    , the rows of S, are    

         statistically independent. 

    2)  Since we can not estimate the magnitude of Si  , 

         we fix it to E[Si Si 
T] =1  ==> E[SST] = I 
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 Definition:  

 Random variables (vectors) yi are statistically   

 independent if  

P(y1, y2,….,yn) =   ∏ P(yi)  

 

 

 

 

ICA:  statistical independence 

==>  for any function gi 

E[ g1(y1) g2(y2)··· gn(yn)] =   ∏ E[ gi(yi) ]  
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ICA:  what about PCA 

 =>    E[ s ] = 0  ,   E[ s² ] = 1 
 

uncorrelated versus independence 

=> s,t are  uncorrelated 

     =>   E [ f( s )  g( t )]   =  2E [ s4 ] =    
 

4

2 3

5

and      E [ f( s )]  E[  g( t )]   =  2 

E[ s² ]        2E[ s² ] 

=>  s,t are  stat. dependent 

-√3  

 ½√3  

+√3  

p(s) : uniform distribution  

 define  t = 2s²   
     =>   E[ s·t ] = 2 E[ s³ ] = 0  

define  f(x) = x²   and    g(x) = x 

       also  E[ s ]E[ t ] = 0                 ??  => s ,t statistically independent?? 
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If more than one source signal is Gaussian we can not 
separate the sources with ICA. 

Let us assume: 
all source signals are Gaussian, 
uncorrelated and of unit variance.  
 

Then an orthogonal mixing matrix 

would generate signals Xi with a  

completely symmetrical Gaussian joint density function. 

ICA: gaussian signals are of no use 

A completely symmetrical joint density function contains no 

information on the structure of  the mixing matrix A. 
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ICA: the data model continued 

Assumptions: 

    1)  non-Gaussian source signals Si (except   

         possibly one).  

 

    2)  All sources signals Si    , the rows of  S are    

         statistically independent. 

    3)  Since we can not estimate the magnitude of Si  , 

         we fix it to E[Si Si 
T] =1  ==> E[SST] = I 
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ICA:  approach 

We search for a matrix W (ideally W = A-1) so that the 

rows  yi  of 

   Y = WX  

1. are maximal statistically independent, 

2. are maximal non Gaussian, 

3. and of variance E[yi yi 
T] =1.   
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ICA:  PCA as preprocessing 

PCA  

• computes the axis of maximum variance 

• these axis are uncorrelated ( but only for Gaussian 

data statistically independent).  

Now we can normalize the axis by their variance 

 => Z = V·X=V·A·S  with   E[zi zi 
T] =1.   

 

 

PCA 
normalize by variance 

“whitening the data” 

for non Gaussian data  

12 

ICA: the procedure 

Source Mixture 

Whitened Signals 

 Z = V·X=V·A·S 

 X = A·S Y=W·X S 

X X X 



7 

13 

ICA: the problem reformulated twice 

     2.) Independence approach :  
      

1. Measure the independence between the signals.  

2. Find the signals that maximize this independence. 

     1.) Non-Gaussian approach:  
By the central limit theorem, the PDF of a sum of n independent 

random variables tends to a Gaussian random variable. 
      

1. Find a measure of non-Gaussianity.  

2. Find W such that the outputs PDF are as different as possible 
from the Gaussian function. 
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ICA: measure of non-Gaussian 

      There exist several approaches to measure if a pdf is 
Gaussian or not! 

However, we do not know the full pdf! 

 it is more reasonable to use more global measures 

    of the distribution such as mean, variance,…  

     

Remember, moments and cumulants (semi-invariants) 
are easy to compute!  
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ICA: measure of non-Gaussian 

1 1

2 2

2 2 1
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      The cumulants of distribution are: 

The Kurtosis is then defined: 
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ICA: measure of non-Gaussian 

      
Both  cumulants and kurtosis are good to measure the deviation 
of a distribution from being Gaussian: 

For ICA the Kurtosis is commonly applied: 

For finding the independent components: 

optimize  W so that                      is maximum: ( )

n

j

j

kurt Y
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ICA: 2nd approach: independence 

      Remember: 

Kullbach-Leibler divergence measures a distance 

between two pdf’s (! not symmetric): 

   
 

 
, ln

b

a b a

a

p x
L p p p x dx

p x
  

Definition of stat. independent     p(y1, y2,….,yn) =   ∏ p(yi)  

 Now we measure   L (  p(y1, y2,….,yn)  ,  ∏ p(yi)  ) 
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ICA: measure of independence 

 Now we measure   L (  p(y1, y2,….,yn)  ,  ∏ p(yi)  ) 
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ICA: application to images 

Mixtures      
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ICA: application to images 

PCA   ICA   
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ICA: application to images 

ICA   Originals      


