

Face Image Analysis Applications

Probabilistic Morphable Model Fitting
Basel2018

Thomas Vetter
University of Basel

Face Identification by Image Comparison

... done by pixel analysis

But which pixel to compare with which ?

Shape information tells us which pixel to compare

Analysis by Synthesis

Change Your Image ...

Analysis by Synthesis

THE BIG QUESTION:

How is this Image Model structured?

Is it:

2D, an image based rendering model?

or

3D, a full 3D computer graphics model?

or

Possibly, there is no final answer!

Linear Object Class Idea

Linear Object Classes and Image Synthesis from a Single Example Image.
Thomas Vetter and Tomaso Poggio *IEEE PAMI* 1997, 19(7), 733-742.

Separating shape and texture in 2D images

2D Morphable Face Image Model

Linear Object Class Idea

INPUT			
EXAMPLES		TEST	

Image based rendering

Synthesis of novel views from a single face image.
Thomas Vetter, IJCV 1998, 28(2), 103-116.

Morphable 2D Face Model

$$\begin{array}{ccc}
 \text{REAL FACE} & \leftrightarrow & \text{REFERENCE FACE} \\
 & = & \\
 & \alpha_1 R_1 + \alpha_2 R_2 + \alpha_3 R_3 + \alpha_4 R_4 + \dots & \\
 & = & \\
 & \beta_1 R_1 + \beta_2 R_2 + \beta_3 R_3 + \beta_4 R_4 + \dots &
 \end{array}$$

Morphable 3D Face Model

$$\text{3D Model} = R_\rho \left\{ \begin{array}{l} \alpha_1 \text{3D Face}_1 + \alpha_2 \text{3D Face}_2 + \alpha_3 \text{3D Face}_3 + \alpha_4 \text{3D Face}_4 + \dots \\ \beta_1 \text{3D Face}_1 + \beta_2 \text{3D Face}_2 + \beta_3 \text{3D Face}_3 + \beta_4 \text{3D Face}_4 + \dots \end{array} \right\}$$

Morphable Models for Image Registration

$$= R_\rho \left\{ \begin{array}{l} \alpha_1 \text{3D Face}_1 + \alpha_2 \text{3D Face}_2 + \alpha_3 \text{3D Face}_3 + \dots \\ \beta_1 \text{3D Face}_1 + \beta_2 \text{3D Face}_2 + \beta_3 \text{3D Face}_3 + \dots \end{array} \right\}$$

R = Rendering Function

ρ = Parameters for Pose, Illumination, ...

Optimization Problem: Find optimal α, β, ρ !

Output

Face Recognition

Normalizing for pose, illumination and ...

Face recognition

Complex Changes in Appearance

Images: CMU-PIE database. (2002)

3D Morphable Model

Identification by shape and texture coefficients only

Face analysis

Multi-PIE: Face recognition

[16] Prabhu et al., "Unconstrained Pose-Invariant Face Recognition using 3D Generic Elastic Models", PAMI 2011
[17] Schönborn et al., "A Monte Carlo Strategy to Integrate Detection and Model-Based Face Analysis", GCPR 2013
[18] Egger et al., "Pose Normalization for Eye Gaze Estimation and Facial Attribute Description", GCPR 2014

Try a new hairstyle!

3D Geometry
and Texture

3D Pose, Position
Illumination,
Foreground,
Background

Try a new hairstyle!

3D Geometry
and Texture

3D Pose, Position
Illumination,
Foreground,
Background

Image Preprocessing for FRVT 2002

Image Preprocessing for FRVT 2002

Skin Detail Analysis for Face Recognition

Skin Detail Analysis for Face Recognition

Jean Sebastian Pierrard, Thomas Vetter CVPR 2007

Overview

Characterizing moles

- ▶ Appearance → Blob detection
- ▶ Location → Skin segmentation
- ▶ Importance → Saliency measure

Recognition

- ▶ Reference System → Morphable Model

Data used

- ▶ Results based on subset of FERET-data base
- ▶ Gray scale
- ▶ Medium resolution (10-20k pixels face area)
- ▶ Mole sizes: 2-20 pixels

Morphable Model for Correspondence

3DMM maps visible region on a common reference

Morphable Model for Correspondence II

Mole Detection: Shading Problem

- Template matching is sensitive to intensity gradients !

Illumination Compensation

Mole Detection: Shading Problem

False Positives

- ▶ Templates also match common facial features
- ▶ Sporadic hits due to hairstyle, beard, ...

- ▶ We need to mask out non-skin regions / outliers
- ▶ 3DMM is **not** sufficient

Selection by Saliency

Recognition

- ▶ Find matching pairs of moles in reference frame

- ▶ Identification score:
weighted sum of saliences from matched points

Face Recognition

- Based only on mole locations and saliency.

Probe	Saliency threshold (<i>Gallery subset size</i>)					
	5 (156)	10 (107)	15 (83)	Fail	Perf.	Fail
bc	69	55.77	39	63.55	26	68.67
bd	34	78.20	13	87.85	8	90.36
be	17	89.10	7	93.45	4	95.18
bf	20	87.18	5	95.32	5	93.97
bg	47	69.87	24	77.57	17	79.51
bh	68	56.41	30	71.96	21	74.70
bk	42	73.07	22	79.44	13	84.33

Manipulation of Faces

Modeling of 2D Images

Face Exchange Tasks

Difficult problem, even for humans.
Has never been automated !

Change Your Image ...

Continuous Modeling in Face Space

Modeling the Appearance of Faces

- ▶ Which directions code for specific attributes ?

Learning from Examples

Attributes of Faces

Gender

Weight

Original

Portraits made to Measure

- Computer can learn to model faces according to „human“ categories.

Portraits made to Measure

Portraits made to measure:
Mirella Walker and Thomas Vetter
Journal of Vision, 9(11):12, 1-13, 2009

Expressions

Simulation of Aging of Human Faces in Images

Aging model:
model predicts perceived age

Ageing: linear shape model only

Example-based aging

Example-based Texture: The Problem

Parametric Pigmentation Model

$$\rho(\mathbf{x}, \mathbf{y}, \sigma) = \sum_{\mathbf{u}, \mathbf{v} \in \Omega} \mathcal{N}((\mathbf{x} - \mathbf{u}, \mathbf{y} - \mathbf{v})^T, \sigma)$$

- ▶ σ regulates the spread
- ▶ \mathbf{u}, \mathbf{v} learned freckle position from example data Ω
- ▶ The parameters $\sigma, \mathbf{u}, \mathbf{v}$ and different freckle shapes are learned by detecting freckles in given faces

Parametric Pigmentation Model

Aging Model

- ▶ Shape: continuous
- ▶ Pigmentation: stochastic
- ▶ Wrinkles: example based

Transfer of Facial Expressions

Original:

Novel Face:

Expression Invariant 3D Face Recognition with a Morphable Model

Brian Amberg, Reinhard Knothe and Thomas Vetter

IN: *IEEE Proceedings FG2008: 8th International Conference Automatic Face and Gesture Recognition, Amsterdam, The Netherlands, 2008.*

Expression Invariant 3D Face Recognition

Expression Invariant 3D Face Recognition with a Morphable Model
Brian Amberg, Reinhard Knothe and Thomas Vetter, IEEE FG2008

Linear Expression Model

- ▶ Modeling facial expressions in a separate subspace

$$F(\alpha) = \mu + M \alpha$$

$$F(\alpha_n, \alpha_e) = \mu + M_n \alpha_n + M_e \alpha_e$$

- ▶ Face Scans differ in Orientation and Translation

$$Data(\alpha) = R(F(\alpha_n, \alpha_e)) + T$$

Expression Transfer

3D Scans of Visemes

Mouth Mesh

Mouth Modeler

Principal
Components

Mouth Modeler

Principal
Components

Mouth Modeler

Principal
Components

Speech Animation

Retargeting Face Motions

Animation of Images

