

Face Image Analysis Applications

Probabilistic Morphable Model Fitting Basel2018

Thomas Vetter University of Basel

UNIVERSITÄT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Face Identification by Image Comparison ... done by pixel analysis

But which pixel to compare with which?

Shape information tells us which pixel to compare

UNIVERSITÄT BASEL DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE THE BIG QUESTION: How is this Image Model structured? Is it: 2D, an image based rendering model? or 3D, a full 3D computer graphics model? or Possibly, there is no final answer!

UNIVERSITÄT BASEL > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE False Positives Templates also match common facial features Sporadic hits due to hairstyle, beard, ... We need to mask out non-skin regions / outliers > 3DMM is not sufficient

UNIVERSITÄT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Recognition

▶ Find matching pairs of moles in reference frame

Identification score:weighted sum of saliencies from matched points

UNIVERSITÄT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Face Recognition

Based <u>only</u> on mole locations and saliency.

	Saliency threshold (Gallery subset size)					
	5 (156)		10 (107)		15 (83)	
Probe	Fail	Perf.	Fail	Perf.	Fail	Perf.
bc	69	55.77	39	63.55	26	68.67
bd	34	78.20	13	87.85	8	90.36
be	17	89.10	7	93.45	4	95.18
bf	20	87.18	5	95.32	5	93.97
bg	47	69.87	24	77.57	17	79.51
bh	68	56.41	30	71.96	21	74.70
bk	42	73.07	22	79.44	13	84.33

UNIVERSITÄT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Expression Invariant 3D Face Recognition with a Morphable Model

Brian Amberg, Reinhard Knothe and Thomas Vetter IN: IEEE Proceedings FG2008: 8th International Conference Automatic Face and Gesture Recognition, Amsterdam, The Netherlands, 2008.

UNIVERSITÄT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Linear Expression Model

Modeling facial expressions in a separate subspace

$$F(\alpha) = \mu + M \alpha$$

$$F(\alpha_n, \alpha_e) = \mu + M_n \alpha_n + M_e \alpha_e$$

▶ Face Scans differ in Orientation and Translation

$$Data(\alpha) = R(F(\alpha_n, \alpha_e)) + T$$

