graphics and vision gravis

Deep Neural Networks

Pattern Recognition

Fall 2018

Adam Kortylewski

Overview

- Backpropagation in Computational Graphs
- Deep Neural Networks
 - From Perceptrons to Deep Neural Networks
 - High Level APIs
 - Optimization and Regularization
- Convolutional Neural Networks
 - Fundamental Properties of Images
 - Basic Architecture & Examples
- Applications
- Open Research Questions

Backpropagation in Computational Graphs

$$e=(a+b)*(b+1)$$
 $c=a+b$


```
d = b + 1
```

e = c * d

Backpropagation in Computational Graphs

$$e=(a+b)*(b+1)$$
 $c=a+b$

Backpropagation in Computational Graphs

$$e=(a+b)*(b+1)$$
 $c=a+b$

• Intermediate results need to be stored in order to compute the derivates

Automated differentiation with autograd

• Differentiating mathematical programs with *autograd* in numpy

```
import autograd.numpy as np # Thinly-wrapped version of Numpy
from autograd import grad

def taylor_sine(x): # Taylor approximation to sine function
    ans = currterm = x
    i = 0
    while np.abs(currterm) > 0.001:
        currterm = -currterm * x**2 / ((2 * i + 3) * (2 * i + 2))
        ans = ans + currterm
        i += 1
    return ans

grad_sine = grad(taylor_sine)
print "Gradient of sin(pi) is", grad_sine(np.pi)
```

• Automated differentiation is the basis for learning neural networks

Overview

- Backpropagation in Computational Graphs
- Deep Neural Networks
 - From Perceptrons to Deep Neural Networks
 - High Level APIs
 - Optimization and Regularization
- Convolutional Neural Networks
 - Fundamental Properties of Images
 - Basic Architecture & Examples
- Applications
- Open Research Questions

DEEP NEURAL NETWORKS | PATTERN RECOGNITION 2018

Impact on Science

Target output y

DEEP NEURAL NETWORKS | PATTERN RECOGNITION 2018

Speech and text analysis

• Speech

• From images

Recommender Systems everywhere

"Deep Learning for Recommender Systems: A Survey", Ernesto Diaz-Aviles

From Perceptrons to Deep Neural Networks

• Recap: The Perceptrons architecture

From Perceptrons to Deep Neural Networks

- Recap: The Perceptrons architecture
- Perceptrons are also referred to as "artificial neurons", highlighting the original inspiration from biological neurons

Activation functions: Sigmoid

- Input is mapped into the range [0,1] -> probabilistic interpretation
- Reduces the gradient for large inputs -> vanishing gradients

Activation functions: ReLu

- "Rectified linear unit"
- Efficient to compute
- Smaller risk of vanishing gradients

Example Training App

Neural Network demo Preset: Binary Classifier for XOR

Network Graph Add Red Error History Weights Move View Add Green Remove Table input 1 -0.15 0.15 Hidden Neuron 1 Input: x 0:15 0.07 Output: x XOR y 0.46 Input: y Hidden Neuron 2 Correct: 2/4 — Iteration: 0 Animate Train Forward Pass Step

https://lecture-demo.ira.uka.de/neural-network-demo/

From Perceptrons to Deep Neural Networks

 3-layer neural networks can be used to *approximate* any continuous function to any desired precision

504192

MNIST – ZIP code data

Artificial Neural Network

See "Neural Networks and Deep Learning, Michael Nielsen" for an intuitive discussion on that topic.

From Perceptrons to Deep Neural Networks

• Multi-layer networks are preferable over 3-layered networks because they often generalize better

See "Neural Networks and Deep Learning, Michael Nielsen" for an intuitive discussion on that topic.

DEEP NEURAL NETWORKS | PATTERN RECOGNITION 2018

Deep Learning APIs

- Provide a high level API for learning neural networks (define models, load data, automated differentiation)
- Mostly python libraries (caffe is c++)
- For "standard" users these APIs have little difference in terms of what you can do with them

Linear regression in PyTorch

```
import torch
      from torch.autograd import Variable
 2
 3
 4
      x = torch.Tensor(range(-5,5))
 5
      y = 3*x + 4
 6
 7
      w = Variable(torch.Tensor([1.0]), requires grad=True)
 8
      b = Variable(torch.Tensor([1.0]), requires grad=True)
 9
10
      lr = 0.01
11
      for i in range(25):
12
13
          y hat = w^*x + b
14
15
           error = torch.sum(_torch.pow(y - y hat,2)_)
16
           error.backward()
17
18
          # update parameters
          with torch.no grad():
19
              w -= lr * w.grad
20
21
              b -= lr * b.grad
22
              w.grad.zero ()
23
               b.grad.zero ()
          print("Error: {:.4f}".format(error))
24
25
      print("w pred = %.2f, b pred = %.2f" % (w, b))
26
27
```

• In case y were class labels, how could we change this code to perform logistic regression?

Stochastic Gradient Descent

 Gradient is not accumulated over the whole dataset but over random subsets of the training data ("mini-batches")

$$w_{t+1} = w_t + \lambda \frac{\partial}{\partial w_t} \frac{1}{N} \sum_{i=1}^N (y_i - \hat{y}_i)^2$$
$$\approx w_t + \lambda \frac{\partial}{\partial w_t} \frac{1}{M} \sum_{i=1}^M (y_i - \hat{y}_i)^2, \qquad M \ll N$$

More efficient in terms of memory consumption and computational cost

Learning rate annealing

- When GD nears a minima in the cost surface, the parameter values can oscillate back and forth around the minima.
- Slow down the parameter updates by decreasing the learning rate
- This could be done manually, however automated techniques are preferable

Learning rate annealing: Adagrad

$$w_{t+1,i} = w_{t,i} + \frac{\lambda}{\sqrt{S_{t,i} + \epsilon}} \frac{\partial L}{\partial w_{t,i}}$$
$$S_{t,i} = S_{t-1,i} + \left[\frac{\partial L}{\partial w_{t,i}}\right]^2$$

- Adapt learning rate by dividing with the cumulative sum of current and past squared gradients *for each feature independently*
- This is beneficial for training since the scale of the gradients in each layer is often different by several orders of magnitude

Variants of gradient descent

Optimiser	Year	Learning Rate	Gradient
Nesterov	1983		\checkmark
Momentum	1999		\checkmark
AdaGrad	2011	\checkmark	
RMSprop	2012	\checkmark	
Adadelta	2012	\checkmark	
Adam	2014	\checkmark	\checkmark
AdaMax	2015	\checkmark	\checkmark
Nadam	2015	\checkmark	\checkmark
AMSGrad	2018	\checkmark	\checkmark

- Variants of gradient descent act either on the learning rate or the gradient itself
- Typically search for the method which is best suited for your problem via trial and error

Regularization

• Weight regularization (weight decay)

$$L(y, \hat{y}) = (y_i - \hat{y}_i)^2 + \alpha ||W||_2$$

• Dropout – drop random neurons along with their connections

• Early stopping

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." *The Journal of Machine Learning Research* 15.1 (2014): 1929-1958.

Overview

- Backpropagation in Computational Graphs
- Deep Neural Networks
 - From Perceptrons to Deep Neural Networks
 - High Level APIs
 - Optimization and Regularization
- Convolutional Neural Networks
 - Fundamental Properties of Images
 - Basic Architecture & Examples
- Applications
- Open Research Questions

Image Classification

• In Computer Vision, a very popular application scenario is image classification

IM . GENET

1000 object classes1.2m training images100k testing images

From Perceptrons to Deep Neural Networks

- However, when the input- and output layer are very high dimensional, the number of free parameters becomes huge:
- 5-layer fully connected network
- Hidden layers have the same number of nodes Z
- Number of free parameters: $N_F = N_I Z + Z^2 + Z^2 + Z N_O$

Convolutional Neural Networks

- Key Idea: *Constrain* the networks *architecture* to reduce the amount of network parameters.
- The network is constrained such that:
 - Hidden units are locally connected
 - Weights share shared among hidden units
 - Hidden layers are subsampled
- These changes to the network architecture reflect properties which are specific to images.

Overview

- Backpropagation in Computational Graphs
- Deep Neural Networks
 - From Perceptrons to Deep Neural Networks
 - High Level APIs
 - Optimization and Regularization
- Convolutional Neural Networks
 - Fundamental Properties of Images
 - Basic Architecture & Examples
- Applications
- Open Research Questions

• Property 1: Image statistics are locally correlated ("structured")

• Property 2: Redundancy

• Property 3: Global Correlations

• Property 4: Compositionality of Objects – A small set of building blocks (L_1) is enough to build complex object shapes (L_5) via recursive composition

Overview

- Backpropagation in Computational Graphs
- Deep Neural Networks
 - From Perceptrons to Deep Neural Networks
 - High Level APIs
 - Optimization and Regularization
- Convolutional Neural Networks
 - Fundamental Properties of Images
 - Basic Architecture & Examples
- Applications
- Open Research Questions

Convolutional Layer

- Preserve the 2D structure of *X* (no vectorization)
- Hidden units in the *feature map* are connected to small image patches x_i of size z × z
 (Property 1)
- Weights w_i are shared across the hidden units in the same feature map (Property 2)

Convolutional Layer

Input Image X

Feature Maps

- Preserve the 2D structure of X (no vectorization)
- Hidden units in the *feature map* are connected to small image patches x_i of size $z \times z$ (Property 1)
- Weights w_i are shared across the hidden units (Property 2) -> $w_i = w \forall x_i$
- Multiple (N) feature maps are learned per conv-layer
- This reduces the number of learnable parameters to N * z² (e.g. N = 64, z = 3)

Convolution

Random weights:

Feature Map:

	-0.12	-0.12	-0.18	-0.39	-0.34
	-0.27	0.36	0.29	-0.42	0.10
<i>w</i> =	-0.22	0.11	0.28	0.06	-0.00
	0.15	0.08	-0.09	0.31	-0.46
	0.00	0.45	0.10	0.46	-0.13

ReLu Activation Function

Max Pooling

9	0	2	1	0	9
6	9	1	2	9	0
3	1	9	9	2	3
0	2	9	9	1	0
1	9	2	1	9	1
9	3	0	2	3	9

Max Pooling

9	0	2	1	0	9
6	9	1	2	9	0
3	1	9	9	2	3
0	2	9	9	1	0
1	9	2	1	9	1
9	3	0	2	3	9

9	

Max Pooling

9	0	2	1	0	9
6	9	1	2	9	0
3	1	9	9	2	3
0	2	9	9	1	0
1	9	2	1	9	1
9	3	0	2	3	9

Max Pooling

9	0	2	1	0	9
6	9	1	2	9	0
3	1	9	9	2	3
0	2	9	9	1	0
1	9	2	1	9	1
9	3	0	2	3	9

Max Pooling

9	0	2	1	0	9
6	9	1	2	9	0
3	1	9	9	2	3
0	2	9	9	1	0
1	9	2	1	9	1
9	3	0	2	3	9

Max Pooling

9	0	2	1	0	9
6	9	1	1 2		0
3	1	9	9	1	1
0	2	9	9	1	0
1	9	2	1	9	1
9	3	0	2	3	9

Max Pooling

- Max pooling is a down-sampling process, that locally pools feature responses together. Its main benefits are:
 - 1. Dimensionality reduction
 - Reduces the number of parameters
 - Simplifies discovery of global patterns
 - 2. Invariance to small changes of the input signal

9	0	2	1	0	9
6	9	1	2	9	0
3	1	9	9	1	1
0	2	9	9	1	0
1	9	2	1	9	1
9	3	0	2	3	9

Pooling Layer

Classification

• Add an output layer and train the weights via backpropagation

" dog "

Visualization of the learned weights

• When trained for face detection:

Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. Lee, Honglak, et al. 2009

Visualization of the learned weights

• When trained for different object classes:

Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. Lee, Honglak, et al. 2009

Hyper-Parameters

- Architecture
 - Number of layers
 - Order of layers
- Convolutional Layer
 - Number of features
 - Size of features

- Pooling Layer
 - Window size
 - Window stride
- Fully Connected Layer
 - Number of hidden units

Practical Example

- The winner of the ImageNet Challenge 2012 (84.7%)
 - ~ 60 million parameters, 8 layers
- Choosing the hyper-parameters needs a lot of expert knowledge

Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. Lee, Honglak, et al. 2009

DEEP NEURAL NETWORKS | PATTERN RECOGNITION 2018

Practical Example

- This CNN was the winner of the ImageNet Challenge 2012 (84.7%)
 - ~ 60 million parameters, 8 layers
- Choosing the hyper-parameters needs a lot of expert knowledge
- 2014: GoogLeNet **93.33%**, 22 layers

Going deeper with convolutions." Szegedy, Christian, et al. 2015.

Overview

- Backpropagation in Computational Graphs
- Deep Neural Networks
 - From Perceptrons to Deep Neural Networks
 - High Level APIs
 - Optimization and Regularization
- Convolutional Neural Networks
 - Fundamental Properties of Images
 - Basic Architecture & Examples
- Applications
- Open Research Questions

Application: Scene Classification

Predictions:

- Type of environment: outdoor
- Semantic categories: bridge:0.40, lighthouse:0.09, viaduct:0.08, river:0.08, tower:0.07

http://places.csail.mit.edu/demo.html

Applications beyond Classification

A Neural Algorithm of Artistic Style - Gatys, Ecker, Bethge. 2015

Beyond CNNs: Speech Recognition

Microsoft performs on par with human performance in speech recognition

THE MICROSOFT 2016 CONVERSATIONAL SPEECH RECOGNITION SYSTEM

W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu and G. Zweig

Microsoft Research

run 2000 hrs. of data and have 9k senones.							
Model	N-gra	ım LM	RNN LM				
	СН	SWB	СН	SWB			
Saon et al. [28] LSTM	15.1	9.0	-	-			
Povey et al. [19] LSTM	15.3	8.5	-	-			
Saon et al. [28] Combination	-	-	12.2	6.6			
300h ResNet	19.2	10.0	17.7	8.2			
ResNet GMM alignment	15.3	8.8	13.7	7.3			
ResNet	14.8	8.6	13.2	6.9			
VGG	15.7	9.1	14.1	7.6			
LACE	14.8	8.3	13.5	7.1			
BLSTM	16.7	9.0	15.3	7.8			
27k Senone BLSTM	16.2	8.7	14.6	7.5			
Combination	13.4	7.4	11.9	6.3			

Table 5. Word error rates (%) on the eval 2000 set with different acoustic models. Unless otherwise noted, models are trained on the full 2000 hrs. of data and have 9k senones.

DEEP NEURAL NETWORKS | PATTERN RECOGNITION 2018

Beyond CNNs: Playing Go

Prototypical Network Architectures

Overview

- Backpropagation in Computational Graphs
- Deep Neural Networks
 - From Perceptrons to Deep Neural Networks
 - High Level APIs
 - Optimization and Regularization
- Convolutional Neural Networks
 - Fundamental Properties of Images
 - Basic Architecture & Examples
- Applications
- Open Research Questions

Learning from Failure Cases

- Type of environment: outdoor
- Semantic categories: arch:0.29, amphitheater:0.13 viaduct:0.11, stadium/football:0.11 bridge:0.08

http://places.csail.mit.edu/demo.html

Learning from Failure Cases

Adding the "right" noise induces miss-classification
 ostrich

Szegedy, Christian, et al. "Intriguing properties of neural networks." 2013

Learning from Failure Cases

 Generating "adversarial" examples – classification confidence > 99%

Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. Nguyen₆₃ Anh, Jason Yosinski, and Jeff Clune. *2015*

Open Questions

• Transfer learning

Reuse learning results from other datasets

- How can the Hyper-Parameters be learned?
- Vanishing Gradients

Different activation functions Adding momentum to the gradient

- How to apply these networks to problems with few data
 Data Augmentation
- Better theoretical understanding Why and when do more hidden layers help?
- How to integrate reasoning capabilities (context, human expert knowledge)

Summary

- Automated differentiation on computational graphs allows for differentiation of complex mathematical programs
- Deep Neural Networks are a powerful tool and the driving force of recent developments in artificial intelligence
- Deep learning is currently rather an engineering science than a theoretical science (comparable to early alchemy)
- Many open questions left that must be addressed

Credits

neuralnetworksanddeeplearning.com

class.coursera.org/neuralnets-2012-001 cs231n.github.io appliedgo.net brohrer.github.io

Presentations @ CVSS15 of

- Raquel Urtasun
- Andrew Zisserman