10907 Pattern Recognition

Lecturers

Prof．Dr．Thomas Vetter 〈thomas．vetter＠unibas．ch〉

Assistants
Dr．Adam Kortylewski 〈adam．kortylewski＠unibas．ch〉
Dennis Madsen 〈dennis．madsen＠unibas．ch〉
Dana Rahbani 〈dana．rahbani＠unibas．ch〉

Exercise 1 －Normal Distribution

Introduction 24.09
Deadline $\quad 30.09$（on paper，Spiegelgasse 1）

1 Multivariate Normal Distribution［3p］

Consider a bivariate normal population with $\mu_{1}=-2, \mu_{2}=1, \sigma_{1}^{2}=6, \sigma_{2}^{2}=6$ ，and with cross correlation coefficient，$\rho_{12}=-\frac{1}{2}$ ．

1．Expand the full probability density［1p］
2．Determine the main axes and sketch the constant－density contour at one standard deviation ［2p］

2 Independence［3p］

Consider $\boldsymbol{X}=\left[X_{1}, X_{2}, X_{3}\right]^{\mathrm{T}}$ distributed according to $\mathcal{N}(\boldsymbol{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with

$$
\boldsymbol{\mu}=\left[\begin{array}{c}
-3 \\
1 \\
4
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 6 & -3 \\
0 & -3 & 6
\end{array}\right]
$$

Which of the following pairs of random variables are independent？Explain．
1．X_{3} and X_{1}
2．X_{3} and X_{2}
3． $2 X_{1}-X_{2}-X_{3}$ and $X_{3}-X_{2}$

3 Conditional Distribution［2p］

Calculate the conditional distribution of X_{1} ，given that $X_{2}=x_{2}$ in the joint distribution $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ ．Compare the conditional distribution $P\left(X_{1} \mid X_{2}=1\right)$ to the marginal distribution $P\left(X_{1}\right)$ in a plot．

$$
\boldsymbol{\mu}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{cc}
6 & -3 \\
-3 & 6
\end{array}\right]
$$

4 Classification［2p］

Classify a point $\mathbf{X}=[-2.0,-1.8]$ into one of two classes，where each class follows a normal distribution with parameters $\boldsymbol{\mu}_{\boldsymbol{1}}=[-4,-2]$ and $\boldsymbol{\mu}_{\mathbf{2}}=[-1,-2]$ and
（a）isotropic and identical covariance matrices．
（b）covariance matrices：

$$
\boldsymbol{\Sigma}_{\mathbf{1}}=\left[\begin{array}{cc}
1.5 & 1.8 \\
1.8 & 6
\end{array}\right], \quad \boldsymbol{\Sigma}_{\mathbf{2}}=\left[\begin{array}{cc}
1.5 & 0.9 \\
0.9 & 0.6
\end{array}\right]
$$

