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Exercise 3 — Support Vector Machine

Introduction 22.10
Deadline 30.10 Upload code to Courses.

29.10+30.10 Group presentations, U1.001, see schedule online

In this series you will implement and compare linear and non-linear support vector machines.
The classifiers will be applied to three problems: A linear separable toy problem, a non-linear
separable toy problem and handwritten character recognition (OCR).

You can download the data needed for this exercise and a code skeleton from the following
repository: https://bitbucket.org/gravis-unibas/pattern-recognition-2018.
A number of helper functions are provided - your task is to implement the TODO parts in the
python (.py) files.

Remember to upload your code to courses in a ZIP file. Do NOT include the
data folder. Only the python files you edited should be included + a file containing
the group members names. Only 1 person from the team should upload!

Data:

Each mat-file contains the training and the test set for a problem, named NAME (train|test).
The sets are encoded as (d+ 1)×N -matrix, where N is the total number of data points and d
the dimension of the feature vector. The first column contains the label y ∈ {−1, 1}. For the
non-linear separable toy example, the data is available in the .npy files. The dimensionality of
the data is structured the same as in the mat-files, except that the data and the labels are stored
in separate files.
The provided skeleton code already loads the data for you and reshapes it into an appropriate
format.

• toy (d = 2): A very small (x,y) toy data set. Use it for development and to study the
behaviour of your linear classifiers. It can be easily visualized.

• skin (d = 2): A very small (x,y) toy data set. Use it for development and to study the
behaviour of your kernel classifiers. It can be easily visualized.

• zip13 (d = 256): Handwritten digits automatically scanned by the U.S. Postal Service.
The set is reduced to binary classification scenarios: the digits 1 and 3 are provided. The
digits are normalised to a grey scale 16× 16 grid.
To display the first digit image use

img = np.reshape(x_array[:, 0], (16, 16))

plt.imshow(img, cmap=’gray’)

• zip38 (d = 256): As above, but with the digits 3 and 8.

If you are interested in the complete USPS data set, it can be obtained from
http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
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Remarks:

• Do not use the test sets for training!

• Be aware of the computational demands. Some implementations may take a while to train
with lots of data. During development use only a few data points until your implementation
works, then train with more data. It might be impractical to use all data provided for your
PC. In this case use as much of the training data as possible.

1 Linear SVM

Implement and test a Support Vector Machine classifier. The following TODO sections will first
provide mathematic notation help to solve the programming parts.

Todo 1 (Linear Support Vector Machine - CVXOPT interface) Start with the quadratic
programming problem given in the lecture script. To solve it, the function cvxopt.solvers.qp()

will be used. Use the full documentation online to get more details:
http: // cvxopt. org/ userguide/ coneprog. html# quadratic-programming .

The primal problem of the SVM as seen in the lecture:

ω = argmin
ω

1

2
‖ω‖2 subject to yi(ω

Txi + ω0) ≥ 1 , ∀i

And with the corresponding dual problem:

λ = argmax
λ

 N∑
i

λi −
1

2

N∑
i,j

λiλjyiyjx
T
i xj

 subject to

N∑
i=1

λiyi = 0 , λi ≥ 0 , ∀i

In vector format, the dual problem looks as follows:

λ = argmin
λ

(
1

2
λTHλ− 1Tλ

)
subject to

N∑
i=1

λiyi = 0 , λi ≥ 0,∀i

WhereH is aNxN matrix (N = #ofSamples) created from the given data x and their respective
labels y as seen in the expanded dual problem: yiyjx

T
i xj .

The problem needs to be translated into the interface provided by CVXOPT with the function
cvxopt.solvers.qp(P, q[, G, h[, A, b[, solver[, initvals]]]]).

λ = argmin
x

(
1

2
xTPx+ qTx

)
subject to Ax = b , Gx ≤ h

Construct the respective matrices and vectors by using the CVXOPT matrix cvx.matrix().
The solution can be optioned through the x variable:

import cvxopt as cvx

cvx.solvers.options[’show_progress’] = False

solution = cvx.solvers.qp(P, q, G, h, A, b)

lambdas = solution[’x’]

Remember only to use the λ’s that are larger than 0 (in practice use a value close to zero: 1e-5).
Refer to the lecture slides for information about how to compute the w vector and the bias term
w0.

Todo 2 (SVM training implementation) Use the above information about the CVXOPT
library to implement the train function in the SVM class found in the svm.py file.
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Todo 3 (SVM linear classification) Implement the linear classification function classifyLinear()

in the SVM class. The formula for the linear classifier (primal form):

f(x) = ωTx+ ω0

Call the above classification function from the printLinearClassificationError(). Compute
and print the classification error.

Todo 4 (Experiments) Apply your classifier to the linear toy example. Skeleton code is given
in the file ex3-SVM 1 LinearToy.py.

Todo 5 (Soft-margin) Extend the linear solution with a soft margin (controlled by the C pa-
rameter).
Remember from the lecture slides that the contraint 0 ≤ λi,∀i needs to be further constraint to

0 ≤ λi ≤ C

Try running the ex3-SVM 1 LinearToy.py with different C values and observe what happens. C
values: 1,10,100,1000,None

• What influence does the parameter C of the SVM have? Count the number of Support
Vectors in the classifiers.

Hint: To add the soft-margin, extend the G and the h matrices.

2 Kernel SVM

Todo 6 (Kernel functions and kernel matrix) Extend the SVM class by implementing the
local kernel functions.
Implement the linear, the polynomial and the RBF kernel function

• Linear kernel: k(x, x′) = xTx′

• Polynomial kernel: k(x, x′) = (xTx′ + 1)p

• RBF (Gaussian) kernel: k(x, x′) = exp
(
−‖x−x

′‖2
2σ2

)
The computeKernel function also needs to be implemented. This computes the complete
kernel matrix and takes in the kernel function to be used as and argument together with the
kernel parameter.

Todo 7 (Non-linear SVM) Expand the SVM class with a classifyKernel() function and the
printKernelClassificationError similar to the linear case.
Formula for the non-linear classifier (dual form):

f(x) =

Ns∑
i=0

λiyiK(xi, x) + ω0

Think of how the decision surface is now defined and how a single data point is classified. Apply
the kernel trick to expand your linear SVM to a non-linear SVM.

Todo 8 (Non-linear Experiments) Apply your classifier to the non-linear separable toy ex-
ample. Skeleton code is given in the file ex3-SVM 2 KernelToy.py. Try out different kernels and
kernel parameters to see what gives the best solution boundary.

Todo 9 (MNIST Experiments) Train your non-linear SVM for the zip13 and the zip38

dataset. Skeleton code can be found in the ex3-SVM 3 MNIST.py file. Visualize correct and
incorrect classified images by completing the visualizeClassification() function. Compare
the classification train and test error by using different kernels (linear, polynomial, RBF). Discuss
the following questions:
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• What is the influence of σ? Compare in particular the training and test error for different
values σ = 0.1, 1, 10

• What is the influence of C when used together with the RBF kernel. Compare in particular
the training and test error for different values.

Todo 10 (Linear vs Non-linear speed comparison) Use the linear separable dataset to per-
form a speed comparison of the linear svm and a kernel svm with a linear kernel. Implement this
in the ex3-SVM 4 SpeedComparison.py file. Train the 2 SVM classifiers, and measure how long
time the classifyLinear and classifyKernel calls take.

• Note down the average time for each classifier by running it 1000 times

• Which classifier is faster? How many times faster? And why?
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