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This exercise is divided into two independent parts:

1. Implement and test a logistic regression classifier with and without regularization. The
classifiers will first be applied to a toy problem and then to images from the MNIST
dataset of handwritten digits.

2. Implement and test a Naive Bayes classifier. The classifier will be applied to an email
dataset for spam detection.

You can download the data needed for this exercise and a code skeleton from the following repos-
itory: https://bitbucket.org/gravis-unibas/pattern-recognition-2018.
A number of helper functions are provided - your task is to implement the TODO parts in the
python (.py) files.

Remember to upload your code to courses in a ZIP file. Do NOT include the
data folder. Only the python files you edited should be included + a file containing
the group members names. Only 1 person from the team should upload!

Data:

Each mat-file contains the training and the test set for a problem, named NAME_(train|test).
The sets are encoded as (d+ 1)×N -matrix, where N is the total number of data points and d
the dimension of the feature vector. The first column contains the label y ∈ {−1, 1}.

• toy (d = 2): A very small (x,y) toy data set that can be easily visualized. Use it for
development and for studying the behaviour of your classifiers.

• zip13 (d = 256): Handwritten digits automatically scanned by the U.S. Postal Service.
The set is reduced to the digits 1 and 3. The digits are normalised to a grey scale 16× 16
grid.

• zip38 (d = 256): As above with digits 3 and 8.

Remarks:

• Do not use the test sets for training!

• Be aware of the computational demands. Some implementations may take a while to train
with lots of data. During development use only a few data points until your implementation
works, then train with more data.
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1 Logistic Regression
1.1 Classification without regularization

Implement and test a Logistic Regression classifier without regularization. Start with the pro-
vided script logreg for the LOGREG class. Use a regcoeff of 0 and set every regularizationTerm
to zero for now. Refer to the slides for all the needed equations. Prepare your class by completing
the functions listed here:

• Define the activation function in the activationFunction function. Use the equation of
the logistic function.

• Define the cost function in the costFunction function. Remember, you are maximizing
the loglikelihood of the posterior for class 1. Pay attention to what you give as input to
the logarithm function! You will get a runtime error if the input value is 0.

• Calculate the gradient of the cost function in the calculateDerivative function. You
may directly use the derived form of the derivative from the lecture slides.

• Calculate the Hessian matrix in the calculateHessian function. Again, you may directly
use the equations derived in the lecture slides.

• Optimize using the Newton-Raphson algorithm in the optimizeNewtonRaphson function.
To implement this, you should update the model parameters iteratively. Refer to the
equation provided in the lecture slides for iterative optimization. Include a threshold
on the proposed update, if the update is below the self._threshold it is safe to assume
convergence.

• Train using the train function.

• Implement the classify function which uses the self.theta model parameters to classify
data points

• Implement the printClassification function to compute the classification error of the
classifier as well as the number of incorrectly classified items

Once your logreg class is ready, you can start training and testing on the three provided datasets.
Make sure you train your classifier on the training set and predict on the test set!

• Start with the toy dataset and the script ex4-LOGREG-1-Toy.py. Train the logistic re-
gression classifier and calculate the accuracy of its predictions on the training set. Then
calculate the accuracy of its predictions on the testing set. Visualize the results in 2D and
3D using the provided plotting functions plot2D and plot3D. Make sure you understand
and can explain the resulting figures (legend, colors, marker shape, straight lines).

• Now move on to the MNIST dataset. Use the script ex4-LOGREG-2-MNIST.py. Train and
test a classifier for each of the two MNIST datasets. Calculate the accuracy of each and
show the number of misclassified input vectors.

1.2 Classification with regularization

Now you will add regularization to the logistic regression classifier class. Recall that the goal
of regularization is to penalize large parameter values. There are 2 new terms to define in this
part: regularizationTerm and the regularization coefficient r. The regularization coefficient
r represents (1/2σ2) in the lecture slides. The regularizationTerm is what should be added
to the cost function to perform L2 regularization on the weight vector w. Start from your
implementation of part 1.1 and modify the functions costFunction, calculateDerivative,
calculateHessian:
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• Implement the equation of the regularizationTerm in the cost function, its first derivative
in the calculateDerivative function, and its second derivative in the calculateHessian
function. Make sure you do not regularizing the bias term of the parameters (w0) in all
three functions! The equations of the term in the cost function and its first derivative can be
found in the lecture slides. As for the Hessian derivation, you must perform the derivation
yourself, then construct a regularization matrix to add to your previously defined Hessian
matrix. Tip: The regularization matrix is a diagonal matrix with the same shape as the
Hessian. The first entry of the matrix must be explicitly set to zero, as it represents the
w0 term which should not be regularized.

For each of the three datasets, train your classifier on the training data and predict on the test
set. Use different values for the regularization coefficient: 0 (no regularization), 0.1 and 0.5.
Note down the accuracy and number of misclassifications of each. How does regularization affect
the accuracy on test data?
Plot the results on the toy dataset in 2D and 3D using the provided plotting functions plot2D and
plot3D. Compare the figures of the three different regularization conditions. How does the value
of the regularization coefficient affect the resulting hyperplane? Compare the posterior value
prediction of the same datapoint from each of the three regularization conditions. What is the
relationship between regularization and the confidence of predictions, and between regularization
and the error rate on the test data? In which cases would you prefer to increase regularization?
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2 Naive Bayes
Data:

For the email classification, the test and training emails can be found under data/emails/train
and data/emails/test.

• emails - each training example can be found in separate .txt files. The filenames starting
with the letter ’s’ are spam emails.

2.1 Linear Classification

Show that the Naïve Bayes model’s classification using the spam score is linear if we use a fixed
vocabulary and word counts xi as our features. You have to show the correspondence of the
classification function with the standard linear classifier g(x) = w0 + ⟨w,x⟩.

2.2 Implementation

(a) Learning Learn the likelihood terms and prior probabilities for the Bayes model based on
the provided training data.

• What are the 10 most found words in spam and non-spam emails?
• What are the 10 most indicative words for spam / non-spam emails?

(b) Classification Accuracy
Implement the functions classify and classifyAllInFolder that classifies emails using
the model estimated above. Test your Naïve Bayes Classifier on the provided test dataset.
Plot the classification accuracy using the top X features (X = [1, 2, 5, 10, 20, 30, 40, 50]).
What words are good indicators for spam?

2.3 Independence

The Naïve Bayes classifier assumes independence among the words for a given class. Find an
example where this is not a proper assumption. Look for a combination of two words in the
non-spam set whose frequencies do not satisfy the independence assumptions

P (x1|h)P (x2|h) = P (x1, x2|h).

Alternatively, you can also present a non-formal argument.
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