
10907 Pattern Recognition Exercise 6 Fall 2018

10907 Pattern Recognition
Lecturers Assistants
Prof. Dr. Thomas Vetter ⟨thomas.vetter@unibas.ch⟩ Dr. Adam Kortylewski ⟨adam.kortylewski@unibas.ch⟩

Dennis Madsen ⟨dennis.madsen@unibas.ch⟩
Dana Rahbani ⟨dana.rahbani@unibas.ch⟩

Exercise 6 — Neural Networks
Introduction 28.11
Questions 03.12
Deadline 11.12 Upload code to Courses.

10.12+11.12 Group presentations, U1.001, see schedule online

In this exercise, you will compute by hand one iteration of the backpropagation algorithm. In
addition, you will implement the backpropagation algorithm in pyTorch. Finally, you will study
a neural network at a simple classification task.
You can download the data needed for this exercise and a code skeleton from the following repos-
itory: https://bitbucket.org/gravis-unibas/pattern-recognition-2018.
A number of helper functions are provided - your task is to implement the changes to the code
as explained in Sections 1 & 2.

Remember to upload your code to courses in a ZIP file. Do NOT include the
data folder. Only the python files you edited should be included + a file containing
the group members names. Only 1 person from the team should upload!

Data:

Each npy-file contains the training and testing sets for a problem. Use it for developing the algo-
rithms and studying the behaviour of your neural networks. The files are named (train|test)_(inputs|targets).

Backpropagation (1 iteration - by hand)

Figure 1: Fully connected Neural Network with three layers.

Update the parameters of the neural network in Figure 1 with the backpropagation algorithm
based on one data point X = [1, 1] with label y = 1. Consider the following network parameters
for your calculations:

• Weights: w1 = 0.5, w2 = 0.3, w3 = 0.3, w4 = 0.1,w5 = 0.8, w6 = 0.3,w7 = 0.5,w8 = 0.9,
w9 = 0.2

10907 Pattern Recognition Exercise 6 Fall 2018

• The hidden neurons use a sigmoid activation function:

a(t) =
1

1 + exp−t

• The output neuron is computed with a simple linear activation function.

(a) Forward Pass
Calculate the values of the hidden neurons h1, h2 and the output neuron y and evaluate
the error E of the prediction result. Use the mean squared error.

(b) Backward Pass and Parameter Update
Calculate the partial derivative of the prediction error E w.r.t. each weight ∂E

∂wi
and update

the weights via: w∗
i = wi − η ∂E

∂wi
with η = 0.2. Use the chain rule for obtaining the partial

derivatives. Be aware that the derivative of the sigmoid function is: a(t)′ = a(t)∗(1−a(t)).
Verify your result by testing if the prediction error decreased after the weight update.

1 Automatic Differentiation with PyTorch
In this exercise, you have to implement the neural network depicted in Figure 1 in pyTorch and
verify your backpropagation calculations from the previous section. The helper script for this
task is provided in ex6_NN_1_Toy.py. Implement the forward computation as scalar products
according to toy example presented in the lecture on neural networks. Invoke the automatic
differentiation by calling the ”.backward()”-function on your error variable. Are the computed
gradients the same as the ones you obtained in your backpropagation implemention results?

2 Classification with a Multi-Layer Perceptron
In this exercise, you must classify the data provided in the data file with a neural network in
pyTorch. We provide you with an implementation of a neural network with a single hidden
layer. The model is defined in the file mlp.py. The Trainer class in the file trainer.py already
implements all functionalities needed to train and test a neural network as well as for visualizing
the decision function. Your tasks are as follows:

• Basics

– Run the code by executing ex6_NN_2_Parabola.py. What is the validation accuracy
after 500 epochs of training? How many parameters does the neural network have?

– Increase the number of neurons in the hidden layer to 6 and then to 10. What
phenomena do you observe?

– Define a neural network with two hidden layers and three neurons per layer. How many
parameters does the network have? Train the network and compare the outcome to
the models you have trained before.

• Regularization

– Introduce L2 regularization on the weights by increasing the weight_decay parameter.
What phenomena can you observe when studying the training and validation loss, as
well as the evolution of the decision function?

